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Abstract 

Many complex networks have a connectivity that might be only partially detected or that tends 

to grow over time, hence the prediction of non-observed links is a fundamental problem in 

network science. The aim of topological link prediction is to forecast these non-observed links 

by only exploiting features intrinsic to the network topology. It has a wide range of real 

applications, like suggesting friendships in social networks or predicting interactions in 

biological networks. 

The Cannistraci-Hebb theory is a recent achievement in network science that includes a 

theoretical framework to understand local-based link prediction on paths of length n. In this 

study we introduce two innovations: theory of modelling (science) and theory of realization 

(engineering). For the theory of modelling we first recall a definition of network automata as a 

general framework for modelling the growth of connectivity in complex networks. We then 

show that several deterministic models previously developed fall within this framework and 

we introduce novel network automata following the Cannistraci-Hebb rule. For the theory of 

realization, we present how to build adaptive network automata for link prediction, which 

incorporate multiple deterministic models of self-organization and automatically choose the 

rule that better explains the patterns of connectivity in the network under investigation.  

We compare Cannistraci-Hebb adaptive (CHA) network automaton against state-of-the-art link 

prediction methods such as structural perturbation method (SPM), stochastic block models 

(SBM) and artificial intelligence algorithms for graph embedding. CHA displays an overall 

higher link prediction performance across different evaluation frameworks on 1386 networks. 

Finally, we highlight that CHA offers the key advantage to explicitly explain the mechanistic 

rule of self-organization which leads to the link prediction performance, whereas SPM and 

graph embedding not. In comparison to CHA, SBM unfortunately shows irrelevant and 

unsatisfactory performance demonstrating that SBM modelling is not adequate for link 

prediction in real networks. 
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1. Introduction 

Many complex networks have a connectivity that might be only partially detected or that tends 

to grow over time, hence the prediction of non-observed links is a fundamental problem in 

network science. The aim of topological link prediction is to forecast these non-observed links 

by only exploiting features intrinsic to the network topology. It has a wide range of real 

applications, like suggesting friendships in social networks or predicting interactions in 

biological networks [1]–[3]. A plethora of methods based on different methodological 

principles have been developed in recent years, and in this study we will consider for reference 

the state-of-the-art algorithms. The first is Structural Perturbation Method (SPM), a model-free 

global approach that relies on a theory derived from the first-order perturbation in quantum 

mechanics [4]. The second represents a class of generative models named Stochastic Block 

Models (SBM), whose general idea is that the nodes are partitioned into groups and the 

probability that two nodes are connected depends on the groups to which they belong [5]. The 

third class of methods is model-free and includes machine learning algorithms for graph 

embedding (GE). Such methods convert the graph data into a low dimensional space in which 

certain graph structural information and properties are preserved. Different graph embedding 

variants have been developed aiming to preserve different information in the embedded space, 

some examples are: HOPE [6], node2vec [7], NetSMF [8], ProNE [9]. 

While the aforementioned approaches have been shown to be competitive link predictors, they 

do not offer a clear interpretability of the mechanisms behind the network growth, except SBM 

that is model-based. This property, instead, can be fulfilled for example by mechanistic models 

based on the Cannistraci-Hebb theory [3], [10]–[14], since each of them is based on an explicit 

deterministic mathematical formulation. Each model in the Cannistraci-Hebb theory represents 

a specific rule of self-organization which is associated to explicit principles that drive the 

growth’s dynamics of the underlying complex networked physical system. 

The Cannistraci-Hebb theory is a recent achievement in network science [14], [15] that 

includes a theoretical framework to understand local-based link prediction on paths of length 

n. It includes any type of classical local link predictor based on paths of length two such as 

common neighbors (CN) [16], resource allocation (RA) [17], Jaccard [18] and preferential 

attachment (PA) [16]; and even the recently proposed link predictor on paths of length three of  

Kovács et al. [19], which triggered a fundamental discovery on the organization of protein  

interaction networks (PPI). Following the discovery of a previous article of Daminelli et al. 

[10] that stressed the importance of paths of length three for link prediction in bipartite 
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networks [10], on the same line Kovács et al. suggested that proteins interact according to an 

underlying bipartite scheme. Indeed, proteins interact not if they are similar to each other, but 

if one of them is similar to the other’s partners. This principle, such as the one proposed by 

Daminelli et al. [10], mathematically relies on network paths of length three (L3) [19], whereas 

most of the deterministic local based models previously developed were based on paths of 

length two (L2) [3]. These findings lead to a change of perspective in the field, highlighting 

the existence of different classes of networks whose patterns of interactions are organized either 

as L2 or L3. However, a conceptual limitation of the studies of Daminelli et al. [10] and Kovács 

et al. is that the L3-based link predictors developed [19] were not properly connected to already 

known principles of modelling, which prompted us to formulate and introduce a generalized 

theory. 

In this study we seek to bring innovations on two sides: theory of modelling (science) and 

theory of realization (engineering). For the theory of modelling (section 2.1), we first recall a 

definition of network automata as a general framework for modelling the growth of 

connectivity in complex networks. We then show that several deterministic models previously 

developed fall within this framework and we introduce novel network automata following the 

Cannistraci-Hebb rule. For the theory of realization (section 2.2), we present how to build 

adaptive network automata for link prediction, which incorporate multiple deterministic 

models of self-organization and automatically choose the rule that better explains the patterns 

of connectivity in the network under investigation. Finally (section 2.3), we compare our 

proposed Cannistraci-Hebb adaptive (CHA) network automaton with SPM, stochastic block 

models and artificial intelligence algorithms for embedding of graph data, in order to 

understand what type of link predictor is overall best performing across several evaluation 

frameworks. 

 

2. Results 

2.1. Science of physical modelling 

2.1.1. Network automata 

The concept of network automata has been originally introduced by Wolfram [20] and later 

formally defined by Smith et al. [21] as a general framework of network growth. A network 

automaton represents a network whose links update their state over time and the ruleset 

governing the network evolution is only dependent on quantities that can be computed from 
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the current topology. In other words, the evolution of the network from time step t to the next 

step t+1 can be expressed in terms of some operation F acting upon the adjacency matrix X: 

𝑋(𝑡 + 1)  =  𝐹(𝑋(𝑡)) 

The ruleset could be related to any property of the nodes or links and might be deterministic or 

stochastic. In contrast to cellular automata on a network [20], [22], in which the states of nodes 

evolve and whose neighborhoods are defined by the network, in the network automata the states 

of links evolve, therefore the topology itself changes over time. 

Smith et al. [21] provide an example in which the state update of a link 𝑋𝑢,𝑣(𝑡 + 1)  is 

determined by a simple topological property such as the sum of the node degrees 𝑓𝑢,𝑣(𝑡) =

𝑑𝑢(𝑡) + 𝑑𝑣(𝑡). If the link is existing 𝑋𝑢,𝑣(𝑡) = 1 and the property is larger than a survival 

threshold 𝑓𝑢,𝑣(𝑡) > 𝑥𝑆 , then the link survives, otherwise not. If the link is not existing 

𝑋𝑢,𝑣(𝑡) = 0 and the property is larger than a birth threshold 𝑓𝑢,𝑣(𝑡) > 𝑥𝐵, then the link is born, 

otherwise not. In this example, the computation of the topological property and the link update 

based on the survival and birth thresholds constitute the F operation. This basic ruleset 

exhaustively describes the evolution of a network automata. 

We let notice that, if we focus on the topological property 𝑓𝑢,𝑣(𝑡), we could replace the sum of 

the node degrees with any of the several mathematical models already developed for link 

prediction, such as common neighbors (CN) [16], resource allocation (RA) [17], Jaccard [18] 

and preferential attachment (PA) [16]. Indeed, while they are often indicated as heuristics, the 

previous definition and the example provided clearly highlight that such local and deterministic 

models actually represent network automata. 

As final remark, in this link prediction study we specifically use the algorithms only to predict 

the non-observed links that are more likely to be born at the next step of the network evolution, 

therefore we will not further consider and discuss the survival and birth thresholds, but only 

focus on the topological property 𝑓𝑢,𝑣(𝑡). We will also omit the time variable t for simplicity 

of notation. 

 

2.1.2. Network automata on paths of length n 

After having recalled the framework of network automata defined by Smith et al. [21], here we 

introduce a particular subclass named network automata on paths of length n. These automata 

evaluate the topological property between two nodes based on the topological information 

contained along the paths of length n between them. In mathematical terms, we can express the 

topological property in the form: 
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𝑓(𝑢, 𝑣) = ∑ 𝑓′(𝑧1 … 𝑧𝑛−1)

𝑧1…𝑧𝑛−1 ∈ 𝐿𝑛

 

where u and v are the two seed nodes of the candidate interaction; the summation is executed 

over all the paths of length n; 𝑧1 … 𝑧𝑛−1 are the intermediate nodes on each path of length n; 

and 𝑓′(𝑧1 … 𝑧𝑛−1) is some function dependent on the intermediate nodes. 

A simple example is represented by the resource allocation (RA) model developed by Zhou et 

al. [17], which is a network automaton on paths of length two (L2), using as function 𝑓′(𝑧) the 

inverse of the degree of the intermediate node (common neighbour in the L2 case). The 

mathematical formula is as follows: 

𝑅𝐴_𝐿2(𝑢, 𝑣) = ∑
1

𝑑𝑧
𝑧 ∈ 𝐿2

 

where the summation is executed over all the paths of length two; 𝑧 is the intermediate node 

on each path of length two; and 𝑑𝑧 is the respective node degree. 

In order to generalize to paths of length n > 2, we need an operator that merges the individual 

topological contributions of the intermediate nodes on a path of length n. If, without lack of 

generality, we use as merging operator the geometrical mean, we derive the following 

generalized formula for RA on paths of length n: 

𝑅𝐴_𝐿𝑛(𝑢, 𝑣) = ∑
1

(𝑑𝑧1
∗ … ∗ 𝑑𝑧𝑛−1

)
1

𝑛−1𝑧1…𝑧𝑛−1 ∈ 𝐿𝑛

 

where the summation is executed over all the paths of length n; 𝑧1 … 𝑧𝑛−1 are the intermediate 

nodes on each path of length n; 𝑑𝑧1
… 𝑑𝑧𝑛−1

 are the respective node degrees. 

We let notice that for paths of length three (L3), the formula given above becomes equal to the 

one proposed by Kovács et al. [19], which indeed extends the resource allocation principle to 

paths of length three, although this was not properly clarified in their study, but was 

subsequently explained by us in a preliminary study [14] supporting the present one. From here 

forward we will refer to it with the name of RA-L3. 

 

2.1.3. Cannistraci-Hebb network automata on paths of length n 

In this section we are going to introduce a new rule of self-organization that can be modelled 

using different network automata on paths of length n, but let’s first recall some theory. 

In 1949, Donald Olding Hebb advanced a local learning rule in neuronal networks that can be 

summarized as follows: neurons that fire together wire together [23]. However, the concept of 

wiring together was not further specified, and could be interpreted in two different ways. The 
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first interpretation is that the connectivity already present, between neurons that fire together, 

is reinforced; the second interpretation is the formation of new connectivity between neurons 

not yet interacting but already integrated in an interacting cohort. In 2013, Cannistraci et al. [3] 

named the second interpretation of the Hebbian learning as epitopological learning, and 

noticed that such learning could be formalized as a mere problem of topological link prediction 

in complex networks. The rationale is that, in a network with local-community organization, 

cohort of neurons tend to be co-activated (fire together) and to learn by forming new 

connections between them (wire together) because they are topologically isolated in the same 

local community. 

Cannistraci et al. [3] postulated that the identification of epitopological learning in neuronal 

networks was only a special case, hence they proposed it as a general rule of local learning 

valid for topological link prediction in any complex network with local-community-paradigm 

(LCP) architecture [3]. Based on this idea, they devised a new class of link predictors that 

demonstrated, also in following studies of other authors, to outperform state of the art link 

predictors both in monopartite [3], [24]–[30] and bipartite topologies [10], [11], not only on 

brain connectomes but also on other complex network classes (such as social, biological, 

economical, etc.). In addition, a recent study of Narula et al. [31] shows that local-community-

paradigm and epitopological learning can enhance our understanding of how local brain 

connectivity is able to process, learn and memorize chronic pain [31]. 

The previous conceptual and mathematical formalizations of the LCP theory were immature 

and put more emphasis on the fact that the information related with the common neighbour 

nodes should be complemented with the topological information emerging from the 

interactions between them (internal local-community-links, iLCL, in Fig. 1). This represents a 

current limitation of the LCP theory that we want to overcome in this study. Indeed, as recently 

shown by Cannistraci [12], the local isolation of the common neighbour nodes in every local 

community is equally important to carve the LCP architecture, and this is guaranteed by the 

fact that the common neighbours minimize their interactions external to the local community 

(external local-community-links, eLCL, in Fig. 1) [12]. This minimization forms a sort of 

topological energy barrier, which limits the information processing to remain internal to the 

local community [12]. 

Here, we introduce the concept of Cannistraci-Hebb (CH) rule, which revises the mathematical 

formalization of the LCP theory and represents any rule that explicitly considers the 

minimization of eLCL. In particular, we name Cannistraci-Hebb network automata on paths of 

length n all the network automata models whose function 𝑓′(𝑧1 … 𝑧𝑛−1) follows the CH rule. 
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The first CH model we present is a model already introduced by Cannistraci et al. [3] and 

previously named Cannistraci-Resource-Allocation (CRA) model, which here we rename as 

CH1. Its mathematical formula in L2 is: 

𝐶𝐻1_𝐿2(𝑢, 𝑣) = ∑
𝑑𝑖𝑧

𝑑𝑧
𝑧 ∈ 𝐿2

 

where 𝑑𝑖𝑧 is the internal node degree (number of iLCL) of the intermediate node. Since the 

degree of the intermediate node can be decomposed as 𝑑𝑧 = 2 + 𝑖𝐿𝐶𝐿 + 𝑒𝐿𝐶𝐿, there is an 

explicit minimization of eLCL, which makes the CRA a CH model. However, the mathematical 

formulation of CH1 is not so clean, because the minimization of eLCL is conditioned by the 

presence of iLCL (𝑑𝑖𝑧 > 0), indeed if 𝑑𝑖𝑧 = 0 then the intermediate node does not give any 

contribution to the summation. For this reason, we introduced the CH2 model, whose 

mathematical formula in L2 is: 

𝐶𝐻2_𝐿2(𝑢, 𝑣) = ∑ (
𝑑𝑖𝑧

∗

𝑑𝑒𝑧
∗

=
1 + 𝑑𝑖𝑧

1 + 𝑑𝑒𝑧
)

𝑧 ∈ 𝐿2

 

where 𝑑𝑖𝑧  and 𝑑𝑒𝑧  are the internal and external node degrees of the intermediate node 

(respectively the number of iLCL and eLCL). Note that a unitary term is added to the numerator 

and denominator to avoid the saturation of the value in case of iLCL or eLCL equal to zero. 

Finally, we propose a third model (CH3) that exclusively implements the CH rule, solely based 

on the minimization of eLCL. The mathematical formula in L2 is: 

𝐶𝐻3_𝐿2(𝑢, 𝑣) = ∑ (
1

𝑑𝑒𝑧
∗

=
1

1 + 𝑑𝑒𝑧
)

𝑧 ∈ 𝐿2

 

We let notice that the RA model is also a CH network automaton, whereas for example the CN 

model is not. In the rest of the study we will focus on these four CH network automata: RA, 

CH1, CH2 and CH3. We will not consider non-CH network automata, such as the several ones 

already considered by Kovács et al. [32], since they were already shown to be less performing. 

Analogously to RA, also the other CH network automata can be generalized to paths of Ln. 

The mathematical formula of the four CH models on paths of L2, L3 and Ln are summarized 

in Fig. 1. In the generalized case Ln, the local community is the set of all intermediate nodes 

involved in any path of length n between the two seed nodes. The iLCL are the links between 

two nodes in the local community, while the eLCL are the links between a node in the local 

community and a node external to the local community (excluding the seed nodes). 

At last, we clarify that the CH model is endowed of a sub-ranking strategy (detailed in Methods 

section 4.1.8) in order to internally sub-rank all the node pairs characterized by the same CH 
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score. In the current version of the study this sub-ranking strategy is not yet adopted, but we 

plan to provide the updated results in the next version. 

 

2.2. Engineering the adaptive network automata machine 

It has been shown that different complex networks can be organized according to different 

patterns of connectivity, such as L2 or L3, and therefore there is not a unique network 

automaton model that would be able to effectively describe all of them. For example, while 

performing link prediction on a social network one might decide to adopt a L2-based method, 

whereas on a PPI network it would likely be better to choose a L3-based method. However, 

here we want to make a step forward from the engineering point of view and design a 

computational machine that is adaptive to the network under investigation and would 

automatically select the model that would likely provide the best prediction. 

In order to do this, we exploit a particular property of the network automata models discussed 

in the previous section. Such deterministic rules for link prediction can assign both to observed 

and non-observed links a score that is comparable, meaning that the scores of observed links 

are not biased to be higher or lower than the scores of non-observed links. This is because the 

mathematical equation to compute the score of the connection between two nodes is 

independent from the existence of that link, whether the link is observed or not in the current 

topology does not affect the score. 

Given a model, we can assign likelihood scores to both observed and non-observed links and 

compute the AUPR to evaluate how well the model can discriminate them. The assumption is 

that, if the model tends to score observed links higher than non-observed links, then it would 

be more effective in predicting missing or future links. Therefore, the adaptive network 

automaton works as follows: given a network and a set of candidate models, for each model 

we compute the AUPR, then we automatically select as link prediction result the scores of the 

non-observed links from the model that obtained the highest AUPR. In the next section we will 

discuss the computational experiments that highlighted what is the best set of candidate 

network automata models to adopt for building the adaptive version. 

 

2.3. Computational results on prediction of connectivity in real networks 

In order to perform a wide investigation, we collected an ATLAS of 1371 real networks of size 

up to 20.000 nodes and we categorized them into 14 classes. As first analysis, we performed 

link prediction using a 10% link removal evaluation (see Methods section 4.2.1. for details) 

and applying as methods the CH models (RA, CH1, CH2, CH3) on path lengths L2 and L3. In 
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Fig. 2A we report for each network class the win rate of L2 versus L3 models, highlighting that 

the prediction of connectivity in most classes is dominated by either the L2 or the L3 rule. 

For completeness, we also verified that considering longer paths (L4, L5 and L6) does not 

improve the link prediction performance with respect to simply using L2 or L3 (see Suppl. 

Table 1). In addition, computing longer paths increases the time complexity of the algorithm, 

therefore, at least for the networks here considered, it seems not worth to develop CH adaptive 

(CHA) network automata based on paths longer than L3. 

The following analysis is instead focused to understand what is the best combination of CH 

models to include in the adaptive variant. By testing all the possible CH model combinations, 

the results of link prediction over the whole ATLAS suggest that using the combination of 

CH2-CH3 models is the best choice (see Suppl. Table 2). Such models are also the best 

performing when tested individually for each network class (see Suppl. Table 3). 

The CHA network automaton that we propose in this study is therefore based on the CH models 

CH2-CH3 and on the path lengths L2-L3. Fig. 2B shows the comparison of link prediction win 

rate over the whole ATLAS for the CHA method versus the single CH models incorporated in 

CHA. The results clearly highlight the advantage of using an adaptive strategy, with a win rate 

of almost 0.80 for CHA versus a win rate of around 0.50 for CH2-L2 as best single model. 

In addition, the next relevant achievement is that the link prediction win rate of CHA is 

considerably higher than state-of-the-art methods such as SPM and HOPE (Fig. 2C and Suppl. 

Table 4), as well as than other embedding-based methods (Suppl. Table 5). We have also 

compared CHA against several SBM variants on 900 networks of lower size (up to 100 nodes, 

due to the high computational time requirements of SBM), confirming the outperformance of 

the adaptive automaton (Fig. 2D and Suppl. Table 6). 

As final analysis, we performed temporal link prediction (see Methods section 4.2.2. for details) 

using CHA, SPM and the embedding-based methods on 15 networks with temporal information. 

The results presented in Suppl. Table 7 highlight the higher performance of CHA also in this 

different evaluation framework, with 0.80 win rate versus 0.60 of SPM as second best method. 

Within the temporal link prediction evaluation framework, we also tested the idea of 

performing evolutionary link prediction. Classical link prediction strategies compute a 

likelihood score for all non-observed links at once. However, the topology of many real 

networks is the result of an evolutionary link growth driven by the dynamic process of a 

complex connected system. Therefore, we decided to take advantage of this natural mechanism 

and design a link prediction strategy that evolves over time. Details of the CHA evolutionary 

link prediction approach are provided in Methods section 4.1.9. We performed temporal link 
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prediction comparing CHA and CHA-evolutionary on 11 networks with temporal information. 

The results presented in Suppl. Table 8 highlight that there seems to be no clear advantage in 

adopting the evolutionary link prediction. However, the idea of evolutionary link prediction 

would benefit of a more extensive analysis and we leave this matter open for future 

investigations. 

  

3. Discussion 

In this study, after recalling a definition of network automata as a general framework for 

modelling the growth of connectivity in complex networks, we have introduced a particular 

subclass named network automata on paths of length n. Within this subclass, we have defined 

a set of network automata following the Cannistraci-Hebb (CH) rule, which are deterministic 

models explicitly considering the minimization of links external to a local community for 

prediction of connectivity. As engineering contribution, we presented how to build adaptive 

network automata for link prediction, which incorporate multiple deterministic models of self-

organization and automatically choose the rule that better explains the patterns of connectivity 

in the network under investigation. In particular, we have shown that the combination of 

models CH2-CH3 and of path lengths L2-L3 represents the optimal choice for a Cannistraci-

Hebb adaptive (CHA) network automaton on the tested networks. Then, we compared our 

proposed CHA against state-of-the-art link prediction methods such as SPM, SBM and 

artificial intelligence algorithms for embedding of graph data, highlighting an overall higher 

link prediction performance across different evaluation frameworks. Finally, we stress that 

CHA offers the key advantage to explicitly explain the mechanistic rule of self-organization 

which leads to the link prediction performance, whereas SPM and graph embedding not. In 

comparison to CHA, SBM unfortunately shows irrelevant and unsatisfactory performance 

demonstrating that SBM modelling is not adequate for link prediction in real networks.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2022                   doi:10.20944/preprints202012.0808.v3

https://doi.org/10.20944/preprints202012.0808.v3


11 
 

4. Methods 

4.1. Link prediction methods 

4.1.1. Structural Perturbation Method (SPM) 

The structural perturbation method (SPM) relies on a theory similar to the first-order 

perturbation in quantum mechanics [4]. A high-level description of the procedure is the 

following: (1) randomly remove 10% of the links from the network adjacency matrix X, 

obtaining a reduced network X’ = X - R, where R is the set of removed links; (2) compute the 

eigenvalues and eigenvectors of X’; (3) considering the set of links R as a perturbation of X’, 

construct the perturbed matrix XP via a first-order approximation that allows the eigenvalues 

to change while keeping fixed the eigenvectors; (4) repeat steps 1-3 for 10 independent 

iterations and take the average of the perturbed matrices XP. The link prediction result is given 

by the values of the average perturbed matrix, which represent the scores for the non-observed 

links. The higher the score the greater the likelihood that the interaction exists. 

The idea behind the method is that a missing part of the network is predictable if it does not 

significantly change the structural features of the observable part, represented by the 

eigenvectors of the matrix. If this is the case, the perturbed matrices should be good 

approximations of the original network [4]. 

The MATLAB implementation has been provided by the authors of the study [4]. 

 

4.1.2. Stochastic Block Model (SBM) 

The general idea of stochastic block model (SBM) is that the nodes are partitioned into B blocks 

and a B x B matrix specifies the probabilities of links existing between nodes of each block. 

SBM provides a general framework for statistical analysis and inference in networks, in 

particular for community detection and link prediction [33]. The concept of degree-corrected 

(DC) SBM has been introduced for community detection tasks in [34] and for prediction of 

spurious and missing links in [35], in order to keep into account the variations in node degree 

typically observed in real networks. The nested (N) version of SBM has been introduced [5] in 

order to overcome two major limitations: the inability to separate true structures from noise 

and to detect smaller but well-defined clusters as network size becomes large. 

All the four variants tested (SBM, SBM-DC, SBM-N, SBM-DC-N) require to find a proper 

partitioning of the network in order to make inference. We considered the implementation 

available in Graph-tool [36], that adopts an optimized Monte Carlo Markov Chain (MCMC) to 

sample the space of the possible partitions [33]. Graph-tool [36] is a Python module that can 
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be downloaded on the website: http://graph-tool.skewed.de/. As suggested in [37], in general 

the predictive performance is higher when averaging over collections of partitions than when 

considering only the single most plausible partition, since this can lead to overfitting. Therefore 

for a given network we sampled P partitions, for each partition we obtained the likelihood 

scores related to the non-observed links, and then considered the average likelihood scores as 

the link prediction result. We set P = 100 for the ATLAS networks with N ≤ 100, and P = 50 

for the connectomes with N > 100. 

 

4.1.3. HOPE 

High-Order Proximity preserved Embedding (HOPE) is a graph embedding algorithm aiming 

to preserve the high-order proximities of graphs and capturing the asymmetric transitivity [6]. 

Asymmetric transitivity depicts the correlation among directed edges, therefore HOPE is 

particularly useful for embedding of directed networks, however can be analogously adopted 

for undirected networks. Many high-order proximity measurements can reflect the asymmetric 

transitivity in graphs, among which the Katz index [38], and many of them share a general 

formulation. Instead of computing the proximity matrix and performing singular value 

decomposition (SVD) on that, HOPE exploits such general formulation to transform the 

original SVD problem into a generalized SVD problem that can learn directly the embedding 

vectors, avoiding the calculation of the proximity matrix [6]. However, for the link prediction 

purpose, an approximation of the proximity matrix can be reconstructed from the embedding. 

In summary, in our scenario, HOPE provides a scalable solution for an approximation of the 

Katz index through graph embedding. The entries of the approximated Katz proximity matrix 

represent the link prediction result. The higher the proximity the greater the likelihood that the 

interaction exists. 

The MATLAB implementation is available at: https://github.com/ZW-ZHANG/HOPE. We set 

as dimensions of embedding the minimum between 128 and N (number of nodes), and used 

the default values for the other parameters. 

 

4.1.4. node2vec 

node2vec is a graph embedding algorithm that maps nodes to a low-dimensional feature space 

maximizing the likelihood of preserving network neighborhoods of nodes [7]. The 

maximization is performed on a custom graph-based objective function using stochastic 

gradient descent, motivated by prior work on natural language processing and related to the 

Skip-gram model [7]. Considering a flexible definition of a neighborhood, the algorithm 
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exploits a 2nd-order random walk approach to sample network neighborhoods for nodes. The 

random walk is dependent on two parameters p (return parameter) and q (in-out parameter) that 

bias the walk towards different network exploration strategies [7]. 

After embedding the nodes, we obtain for each node pair a feature vector using the Hadamard 

(element-wise) product of the feature vectors of the two nodes, as suggested in the node2vec 

study [7]. Then, the node pairs features are used to train a logistic regression classifier in order 

to obtain likelihood scores for the non-observed links of the network (see Methods section 4.1.7. 

for details). 

The implementation of the node2vec embedding method is available on GitHub: 

https://github.com/snap-stanford/snap/. We set as dimensions of embedding the minimum 

between 128 and N-1 and we discarded node features having the same value for all the nodes. 

We tested the parameters p and q using three configurations (p = 0.5, q = 2; p = 1, q = 1; p = 2, 

q = 0.5) and we chose the best one using cross-validation (see Methods section 4.1.7. for 

details). We used the default values for the other parameters. 

 

4.1.5. ProNE and ProNE-SMF 

ProNE has been proposed as a fast and scalable graph embedding algorithm that maps nodes 

to a low-dimensional feature space using a two-steps procedure [9]. The first step consists in 

initializing the network embedding using sparse matrix factorization to efficiently obtain an 

initial node representation, which is achieved by randomized truncated singular value 

decomposition. The second step is inspired by the higher-order Cheeger’s inequality and 

consists in performing spectral propagation in order to enhance the initial embedding [9]. In 

our analysis we considered both the embeddings obtained after the first step (ProNE-SMF) and 

after the second step (ProNE). 

After embedding the nodes, we obtain for each node pair a feature vector using the Hadamard 

(element-wise) product of the feature vectors of the two nodes. Then, the node pairs features 

are used to train a logistic regression classifier in order to obtain likelihood scores for the non-

observed links of the network (see Methods section 4.1.7. for details). 

The implementation of the ProNE and ProNE-SMF embedding methods is available on GitHub: 

https://github.com/THUDM/ProNE/. We set as dimensions of embedding the minimum 

between 128 and N-1 and we discarded node features having the same value for all the nodes. 

We used the default values for the parameters. 
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4.1.6. NetSMF 

NetSMF is a graph embedding algorithm that maps nodes to a low-dimensional feature space 

[8]. It is based on previous results according to which several network embedding algorithms 

implicitly factorize a certain closed-form matrix, and that explicitly factorizing the matrix leads 

to higher performance. However, such matrix is dense and therefore computationally expensive 

to handle for large networks. NetSMF proposes a scalable solution that firstly leverages 

spectral graph sparsification techniques to build a sparse matrix spectrally close to the original 

dense one, and then performs randomized singular value decomposition to efficiently factorize 

the sparse matrix, obtaining the embedding [8]. 

After embedding the nodes, we obtain for each node pair a feature vector using the Hadamard 

(element-wise) product of the feature vectors of the two nodes. Then, the node pairs features 

are used to train a logistic regression classifier in order to obtain likelihood scores for the non-

observed links of the network (see Methods section 4.1.7. for details). 

The implementation of the ProNE and ProNE-SMF embedding methods is available on GitHub: 

https://github.com/xptree/NetSMF/. We set as dimensions of embedding the minimum 

between 128 and N-1 and we discarded node features having the same value for all the nodes. 

We set rounds = 10000 and used the default values for the other parameters. 

 

4.1.7. Logistic regression classifier 

After obtaining feature vectors for each node pair from the network embedding of node2vec, 

ProNE, ProNE-SMF and NetSMF, we trained a logistic regression classifier in order to obtain 

likelihood scores for the non-observed links of the network. 

In particular, we repeated 10 times a 5-fold cross-validation. For each repetition i ∈ [1, 10], we 

performed the following steps: (1) create a learning set with all the observed links and an equal 

amount of non-observed links (if available, otherwise all of them); (2) split the learning set for 

a 5-fold cross-validation; (3) for each cross-validation iteration j ∈ [1, 5]: (3.1) train a logistic 

regression classifier using 4 folds and get coefficient estimates 𝐵𝑖,𝑗; (3.2) validation: using the 

coefficients 𝐵𝑖,𝑗, get from the classifier likelihood scores for the remaining fold and evaluate 

the prediction computing AUPR𝑖,𝑗. 

After the 10 repetitions, we compute the mean coefficients estimates �̅� over the 10 repetitions 

and the 5 cross-validation iterations. Using the coefficients �̅� , we get from the classifier 

likelihood scores for the non-observed links of the network, which represent the link prediction 

result. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2022                   doi:10.20944/preprints202012.0808.v3

https://github.com/xptree/NetSMF/
https://doi.org/10.20944/preprints202012.0808.v3


15 
 

In the case of node2vec, for which multiple parameter configurations are tested, we compute 

the mean AUPR̅̅ ̅̅ ̅̅ ̅̅  of the validation phase over the 10 repetitions and 5 cross-validation iterations, 

and we chose as link prediction result the one related to the parameter configuration that obtains 

the highest AUPR̅̅ ̅̅ ̅̅ ̅̅ . In the case of ProNE, ProNE-SMF and NetSMF, for which only one 

parameter configuration is tested, the validation step (3.2) is not required. We used the 

MATLAB implementation of the logistic regression classifier (functions mnrfit and mnrval). 

 

4.1.8. CH model sub-ranking strategy 

Here we describe the sub-ranking strategy adopted by the CH model in order to internally sub-

rank all the node pairs characterized by the same CH score. The goal is to refine the CH model 

link prediction by reducing the ranking uncertainty of node pairs that are tied-ranked.  

Given a network and the CH scores 𝐶𝐻𝑖,𝑗 already computed for all node pairs (𝑖, 𝑗) according 

to a certain CH model, the sub-ranking algorithmic steps are as follows: (1) assign to each link 

(𝑖, 𝑗) of the network a weight 𝑤𝑖,𝑗 =
1

1+𝐶𝐻𝑖,𝑗
; (2) compute the shortest paths (SP) between all 

node pairs in the weighted network; (3) for each node pair (𝑖, 𝑗), compute the prediction score 

𝑆𝑃𝑐𝑜𝑟𝑟𝑖,𝑗 as the Spearman's rank correlation between the two vectors of all shortest paths from 

𝑖 and from 𝑗; (4) generate a final ranking in which node pairs are firstly ranked by 𝐶𝐻𝑖,𝑗 and 

ties are sub-ranked by 𝑆𝑃𝑐𝑜𝑟𝑟𝑖,𝑗. If both the scores are tied, the node pairs obtain the same rank. 

Although the 𝑆𝑃𝑐𝑜𝑟𝑟 score could be replaced by any other link predictor, without loss of 

generality, we adopted this strategy because it has neurobiological foundations in line with the 

CH model. Indeed, according to one interpretation of the Peters’ rule, the probability of two 

neurons being connected is proportional to the spatial apposition of their respective axonal and 

dendritic arbors [39]. In other words, the connectivity depends on the geometrical proximity of 

the neurons. This neurobiological concept is in agreement with the 𝑆𝑃𝑐𝑜𝑟𝑟 score and inside 

the framework of CH modelling, since a high correlation indicates that the two nodes have 

similar shortest paths to the other nodes of the network, suggesting (with a certain 

approximation) that they are spatially close because they are network-geometrically close. 

 

4.1.9. CHA evolutionary link prediction 

The evolutionary link prediction performed with CHA requires two additional input parameters 

with respect to CHA: (1) M, the number of non-observed links to predict with an evolutionary 

process; (2) r, the evolutionary rate, representing the proportion of M predicted at each 

evolutionary step. 
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Given M and r, the CHA evolutionary link prediction will perform several evolutionary 

iterations until M non-observed links have been predicted. At each iteration: (1) the network is 

given in input to CHA to predict all non-observed links; (2) the top 𝑀 ∗ 𝑟 non-observed links 

are added to the network and they are added to a final ranking (if 𝑀 ∗ 𝑟 < 1, we consider only 

one top non-observed link). 

When the evolutionary iterations are finished, the final ranking will be composed of M non-

observed links. All the non-observed links not yet in the final ranking are also added to the 

final ranking based on the CHA prediction at the last evolutionary iteration. Note that setting 

M equal to the total number of non-observed links and r = 1 would be equivalent to CHA 

without evolutionary link prediction. 

In our simulations on networks with temporal information (see Methods section 4.2.2. for 

details), where T snapshots are available for a given network, we set M equal to the number of 

non-observed links at time 1 that appear at time T, and we test different evolution rates r = [0.5, 

0.2, 0.1, 0.05, 0.01].   

 

4.2. Link prediction evaluation 

4.2.1. 10% link removal evaluation 

The 10% link removal evaluation framework is adopted when there is no information available 

about missing links or links that will appear in the future with respect to the time point of the 

network under consideration. 

Given a network X, 10% of links are randomly removed, obtaining a reduced network X’ = X 

- R, where R is the set of removed links. For a certain algorithm to be evaluated, the reduced 

network X’ is given in input, obtaining in output likelihood scores for the non-observed links 

in X’. The non-observed links are ranked by decreasing likelihood scores and the area under 

precision-recall curve (AUPR) is computed, considering as positive samples the set R of links 

previously removed. Due to the randomness of the link removal, the evaluation is repeated 10 

times and the mean AUPR indicates the performance of the algorithm on the network X. 

 

4.2.2. Temporal evaluation 

The temporal evaluation framework is adopted when there is information available about links 

that will appear in the future with respect to the time point of the network under consideration.  

For a given network, a certain number T of snapshots are available, corresponding to different 

time points of the network. Each snapshot at times i ∈ [1, T-1] is given in input to a certain 
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algorithm to be evaluated, obtaining in output likelihood scores for the non-observed links at 

time i. For each pair of time points (i, j), with i ∈ [1, T-1] and j ∈ [i+1, T], the non-observed 

links at time i are ranked by decreasing likelihood scores and the area under precision-recall 

curve (AUPR) is computed, considering as positive samples the non-observed links at time i 

that appear at time j. Non-observed links at time i involving nodes that disappear at time j are 

removed from the ranking. The mean AUPR over all the pairs of time points (i, j) indicates the 

performance of the algorithm on the network. In the temporal evaluation framework adopted 

to assess the performance of CHA-evolutionary (Suppl. Table 8), the precision is computed 

rather than the AUPR, since the focus of the evaluation is on the top-ranked links. 

 

4.3. Datasets 

4.3.1. ATLAS 

We have collected a dataset of 1371 real networks, either downloaded from publicly available 

online sources or provided by authors of previous scientific studies. The networks have been 

categorized into 14 classes (respective number of networks in brackets): collaboration (18), 

contact (32), covert (86), friendship (16), PPI (19), connectome (529), foodweb (71), trade 

(200), transcription (8), coauthorship (24), flightmap (36), internet (215), socialnetwork (108), 

software (9). 

For a complete list of the networks, basic properties (number of nodes and edges), references, 

sources and descriptions, please refer to Supplementary Information File 2. 

 

4.3.2. Temporal networks 

We have collected a dataset of 15 real networks with temporal information, downloaded from 

publicly available online sources. For each network, a certain number of snapshots are available, 

corresponding to different time points. 

For a complete list of the networks, basic properties (number of nodes and edges), references, 

sources and descriptions, please refer to Supplementary Information File 2. 

 

Hardware and software 

The sources of the software for the algorithms used is indicated in the respective Methods 

sections. Where not indicated, MATLAB code has been implemented. The simulations have 

been carried out partly on a workstation under Windows 8.1 Pro with 512 GB of RAM and 2 

Intel(R) Xenon(R) CPU E5-2687W v3 processors with 3.10 GHz, and partly on the ZIH-

Cluster Taurus of the TU Dresden. 
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Figure 1. Cannistraci-Hebb epitopological rationale. 

The figure shows an explanatory example for the topological link prediction performed using the L2 or 

L3 Cannistraci-Hebb epitopological rationale. The two black nodes represent the seed nodes whose 

non-observed interaction should be scored with a likelihood. The white nodes are the L2 or L3 common-

neighbours (CNs) of the seed nodes, further neighbours are not shown for simplicity. The cohort of 

common-neighbours and the iLCL form the local community. The different types of links are reported 

with different colours: non-LCL (green), external-LCL (red), internal-LCL (white). The set of L2 and 

L3 paths related to the given examples of local communities are shown. At the bottom, the mathematical 

description of the L2, L3 and Ln methods considered in this study are reported. Notation: 𝑢, 𝑣 are the 

seed nodes; 𝑧 is the intermediate node (CN) in the L2 path; 𝑑𝑧 is the degree of 𝑧; 𝑑𝑖𝑧 is the internal 

degree (number of iLCL) of 𝑧; 𝑑𝑒𝑧 is the external degree (number of eLCL) of 𝑧. For any degree it is 

valid the following: 𝑑∗ = 1 + 𝑑. For L3 and Ln paths the definitions are analogous.  
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Figure 2. L2-L3 network classes and results on ATLAS. 

(A) For each network of the ATLAS (considering N≤20000, 1371 networks) and for each CH model 

(RA, CH1, CH2, CH3) of path lengths L2-L3, we applied the 10% link removal evaluation, obtaining 

the AUPR as measure of performance (see Methods section 4.2.1. for details). For each path length L2-

L3, we assigned as performance on a network the maximum AUPR over the CH models. The barplots 

report for each network class and for each path length the win rate over the networks of that class. For 

each class, the number of networks is shown in brackets. (B) For each network of the ATLAS 

(considering N≤20000, 1371 networks) and for the algorithms CHA, CH2-L2, CH3-L2, CH2-L3 and 

CH2-L3, we applied the 10% link removal evaluation, obtaining the AUPR as measure of performance. 

The barplot reports the mean win rate over the network classes. (C) The barplot is analogous to (B), for 

each network of the ATLAS (considering N≤20000, 1371 networks) and for the algorithms CHA, SPM 

and HOPE. (D) The barplot is analogous to (B), for each network of the ATLAS (considering N≤100, 

900 networks) and for the algorithms CHA and SBM variants.  
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 L2 L3 L4 L5 L6 

collaboration (17) 0.88 (0.32) 0.18 (0.26) 0.00 (0.19) 0.00 (0.17) 0.00 (0.15) 

contact (23) 0.96 (0.32) 0.13 (0.28) 0.04 (0.25) 0.04 (0.23) 0.04 (0.22) 

covert (84) 0.86 (0.28) 0.25 (0.20) 0.00 (0.13) 0.00 (0.09) 0.01 (0.07) 

friendship (16) 0.94 (0.25) 0.19 (0.21) 0.06 (0.17) 0.06 (0.16) 0.06 (0.15) 

PPI (14) 0.07 (0.03) 1.00 (0.09) 0.00 (0.01) 0.00 (0.05)  

connectome (522) 0.98 (0.42) 0.04 (0.27) 0.01 (0.21) 0.01 (0.19)  

foodweb (70) 0.01 (0.06) 0.97 (0.33) 0.00 (0.08) 0.03 (0.19)  

trade (196) 0.01 (0.02) 0.80 (0.14) 0.03 (0.02) 0.29 (0.11)  

transcription (8) 0.00 (0.01) 1.00 (0.11) 0.00 (0.00) 0.00 (0.02)  

coauthorship (18) 1.00 (0.74) 0.00 (0.46) 0.00 (0.26)   

flightmap (35) 0.26 (0.13) 0.74 (0.21) 0.03 (0.10)   

internet (170) 0.04 (0.12) 0.98 (0.22) 0.02 (0.14)   

socialnetwork (19) 0.79 (0.24) 0.26 (0.20) 0.00 (0.12)   

software (7) 0.00 (0.02) 1.00 (0.10) 0.00 (0.02)   

 

Suppl. Table 1. Results of CH for increasing path lengths on ATLAS. 

For each class, we have selected a set of ATLAS networks and a maximum path length that made the 

computation feasible in a reasonable amount of time. For each class, the number of networks is shown 

in brackets and the path lengths not evaluated are left empty in the table. As algorithms, we have 

considered the CH models (RA, CH1, CH2, CH3) of each path length. For each network and for each 

algorithm, we applied the 10% link removal evaluation, obtaining the AUPR as measure of performance 

(see Methods section 4.2.1. for details). For each path length, we assigned as performance on a network 

the maximum AUPR over the CH models. The table reports for each class and for each path length the 

win rate and the mean AUPR (in brackets) over the networks of that class. For each class, the best win 

rate is highlighted in red.  
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 win rate AUPR 

upper bound 1 0.28 

CH2-CH3 0.75 0.27 

RA-CH2-CH3 0.75 0.27 

CH3 0.74 0.27 

RA-CH3 0.73 0.27 

CH1-CH2-CH3 0.69 0.27 

CH1-CH3 0.68 0.27 

RA-CH1-CH2-CH3 0.68 0.27 

RA-CH1-CH3 0.67 0.27 

RA-CH2 0.38 0.27 

CH2 0.37 0.26 

CH1-CH2 0.34 0.26 

RA-CH1-CH2 0.33 0.26 

RA 0.25 0.26 

RA-CH1 0.22 0.26 

CH1 0.16 0.24 

 

Suppl. Table 2. Results of CHA variants on ATLAS. 

We considered as algorithms several CHA variants on path lengths L2-L3 using all the possible 

combinations of CH models. For each network of the ATLAS (considering N≤20000, 1371 networks) 

and for each algorithm, we applied the 10% link removal evaluation, obtaining the AUPR as measure 

of performance (see Methods section 4.2.1. for details). For each network class, we computed the win 

rate and the mean AUPR over the networks of that class. The table reports for each algorithm the mean 

win rate and mean AUPR over the classes. The best win rate and AUPR are highlighted in red. The 

algorithms are sorted by decreasing win rate, their names represent the combinations of CH models 

used in the adaptive variant. The upper bound indicates the performance that would be reached if the 

best CH model and path length would be selected for each network.  
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 CH3-L3 CH3-L2 CH2-L3 CH2-L2 RA-L2 RA-L3 CH1-L2 CH1-L3 

collaboration (18) 0.00 (0.26) 0.56 (0.32) 0.06 (0.24) 0.33 (0.32) 0.22 (0.30) 0.11 (0.24) 0.28 (0.30) 0.00 (0.24) 

contact (32) 0.13 (0.29) 0.56 (0.34) 0.09 (0.29) 0.25 (0.34) 0.38 (0.34) 0.16 (0.30) 0.25 (0.33) 0.06 (0.29) 

covert (86) 0.17 (0.21) 0.37 (0.28) 0.12 (0.20) 0.30 (0.27) 0.42 (0.28) 0.10 (0.21) 0.15 (0.25) 0.09 (0.19) 

friendship (16) 0.06 (0.20) 0.56 (0.24) 0.06 (0.19) 0.63 (0.24) 0.50 (0.24) 0.13 (0.20) 0.38 (0.24) 0.06 (0.19) 

PPI (19) 0.84 (0.10) 0.00 (0.03) 0.53 (0.09) 0.16 (0.04) 0.00 (0.02) 0.21 (0.09) 0.11 (0.05) 0.05 (0.08) 

connectome (529) 0.04 (0.27) 0.94 (0.42) 0.04 (0.26) 0.05 (0.39) 0.05 (0.39) 0.02 (0.26) 0.02 (0.37) 0.02 (0.26) 

foodweb (71) 0.80 (0.33) 0.01 (0.04) 0.62 (0.32) 0.00 (0.06) 0.01 (0.04) 0.08 (0.27) 0.00 (0.06) 0.06 (0.28) 

trade (200) 0.73 (0.15) 0.02 (0.03) 0.50 (0.14) 0.01 (0.02) 0.01 (0.02) 0.57 (0.14) 0.01 (0.02) 0.42 (0.14) 

transcription (8) 1.00 (0.11) 0.00 (0.01) 0.13 (0.10) 0.00 (0.01) 0.00 (0.01) 0.00 (0.09) 0.00 (0.00) 0.13 (0.08) 

coauthorship (24) 0.00 (0.44) 0.92 (0.72) 0.00 (0.39) 0.21 (0.69) 0.29 (0.71) 0.00 (0.40) 0.04 (0.62) 0.00 (0.34) 

flightmap (36) 0.47 (0.22) 0.08 (0.13) 0.25 (0.21) 0.08 (0.13) 0.08 (0.13) 0.33 (0.21) 0.08 (0.10) 0.25 (0.20) 

internet (215) 0.98 (0.20) 0.01 (0.09) 0.28 (0.19) 0.03 (0.11) 0.01 (0.08) 0.09 (0.18) 0.01 (0.10) 0.00 (0.18) 

socialnetwork (108) 0.13 (0.10) 0.50 (0.17) 0.05 (0.10) 0.59 (0.18) 0.05 (0.16) 0.03 (0.08) 0.16 (0.17) 0.02 (0.09) 

software (9) 1.00 (0.20) 0.00 (0.02) 0.44 (0.20) 0.00 (0.02) 0.00 (0.02) 0.11 (0.18) 0.00 (0.02) 0.11 (0.18) 

mean win rate (AUPR) 0.45 (0.22) 0.32 (0.20) 0.23 (0.21) 0.19 (0.20) 0.14 (0.20) 0.14 (0.20) 0.11 (0.19) 0.09 (0.20) 

 

Suppl. Table 3. Results of CH models on ATLAS. 

For each network of the ATLAS (considering N≤20000, 1371 networks) and for each algorithm, we 

applied the 10% link removal evaluation, obtaining the AUPR as measure of performance (see Methods 

section 4.2.1. for details). The table reports for each network class and for each algorithm the win rate 

and the mean AUPR (in brackets) over the networks of that class. For each class, the number of 

networks is shown in brackets. As bottom row, the table reports the mean win rate and AUPR over the 

classes. For each class, the best win rate is highlighted in red. The algorithms are sorted left to right 

according to the best mean win rate.  
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 CHA SPM HOPE 

collaboration (18) 0.78 (0.33) 0.33 (0.31) 0.11 (0.25) 

contact (32) 0.66 (0.35) 0.41 (0.34) 0.28 (0.30) 

covert (86) 0.69 (0.27) 0.20 (0.23) 0.31 (0.22) 

friendship (16) 0.56 (0.24) 0.56 (0.24) 0.25 (0.22) 

PPI (19) 0.79 (0.10) 0.42 (0.09) 0.21 (0.08) 

connectome (529) 0.03 (0.42) 0.98 (0.47) 0.02 (0.29) 

foodweb (71) 0.45 (0.33) 0.59 (0.43) 0.00 (0.07) 

trade (200) 0.75 (0.14) 0.31 (0.11) 0.06 (0.04) 

transcription (8) 1.00 (0.11) 0.13 (0.06) 0.00 (0.02) 

coauthorship (24) 1.00 (0.72) 0.04 (0.57) 0.00 (0.40) 

flightmap (36) 0.72 (0.21) 0.22 (0.16) 0.06 (0.13) 

internet (215) 0.54 (0.20) 0.62 (0.22) 0.01 (0.17) 

socialnetwork (108) 0.13 (0.19) 0.90 (0.24) 0.03 (0.19) 

software (9) 0.89 (0.20) 0.11 (0.16) 0.00 (0.10) 

mean win rate (AUPR) 0.64 (0.27) 0.42 (0.26) 0.10 (0.18) 

 

Suppl. Table 4. Results of CHA, SPM and HOPE on ATLAS. 

For each network of the ATLAS (considering N≤20000, 1371 networks) and for each algorithm, we 

applied the 10% link removal evaluation, obtaining the AUPR as measure of performance (see Methods 

section 4.2.1. for details). The table reports for each network class and for each algorithm the win rate 

and the mean AUPR (in brackets) over the networks of that class. For each class, the number of 

networks is shown in brackets. As bottom row, the table reports the mean win rate and AUPR over the 

classes. For each class, the best win rate is highlighted in red. The algorithms are sorted left to right 

according to the best mean win rate.  
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 CHA HOPE node2vec ProNE ProNE-SMF NetSMF 

collaboration (18) 1.00 (0.33) 0.11 (0.25) 0.00 (0.16) 0.00 (0.12) 0.00 (0.12) 0.00 (0.06) 

contact (32) 0.88 (0.35) 0.28 (0.30) 0.00 (0.20) 0.00 (0.16) 0.00 (0.16) 0.03 (0.13) 

covert (86) 0.74 (0.27) 0.35 (0.22) 0.03 (0.11) 0.01 (0.11) 0.01 (0.08) 0.00 (0.07) 

friendship (16) 0.81 (0.24) 0.25 (0.22) 0.00 (0.15) 0.06 (0.13) 0.00 (0.08) 0.00 (0.11) 

PPI (10) 1.00 (0.09) 0.20 (0.05) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.00) 

connectome (529) 0.98 (0.42) 0.03 (0.29) 0.01 (0.21) 0.00 (0.19) 0.01 (0.19) 0.00 (0.06) 

foodweb (71) 1.00 (0.33) 0.00 (0.07) 0.00 (0.09) 0.00 (0.05) 0.01 (0.08) 0.00 (0.04) 

trade (200) 0.86 (0.14) 0.04 (0.04) 0.07 (0.05) 0.01 (0.02) 0.13 (0.04) 0.01 (0.01) 

transcription (8) 1.00 (0.11) 0.00 (0.02) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

coauthorship (18) 1.00 (0.74) 0.00 (0.42) 0.00 (0.15) 0.00 (0.18) 0.00 (0.15) 0.00 (0.13) 

flightmap (36) 0.86 (0.21) 0.14 (0.13) 0.00 (0.06) 0.00 (0.05) 0.00 (0.06) 0.00 (0.01) 

internet (108) 1.00 (0.20) 0.01 (0.15) 0.01 (0.01) 0.01 (0.03) 0.01 (0.07) 0.01 (0.00) 

socialnetwork (40) 0.33 (0.21) 0.68 (0.23) 0.00 (0.06) 0.00 (0.12) 0.00 (0.12) 0.00 (0.04) 

software (6) 1.00 (0.10) 0.00 (0.05) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01) 0.00 (0.01) 

mean win rate (AUPR) 0.89 (0.27) 0.15 (0.17) 0.01 (0.09) 0.01 (0.08) 0.01 (0.08) 0.00 (0.05) 

 

Suppl. Table 5. Results of CHA and embedding methods on ATLAS. 

For each network of the ATLAS (considering N≤5000, 1178 networks) and for each algorithm, we 

applied the 10% link removal evaluation, obtaining the AUPR as measure of performance (see Methods 

section 4.2.1. for details). The table reports for each network class and for each algorithm the win rate 

and the mean AUPR (in brackets) over the networks of that class. For each class, the number of 

networks is shown in brackets. As bottom row, the table reports the mean win rate and AUPR over the 

classes. For each class, the best win rate is highlighted in red. The algorithms are sorted left to right 

according to the best mean win rate.  
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 CHA SBM SBM-DC SBM-N SBM-DC-N 

collaboration (14) 1.00 (0.34) 0.07 (0.26) 0.00 (0.21) 0.00 (0.26) 0.07 (0.21) 

contact (24) 1.00 (0.34) 0.04 (0.25) 0.04 (0.19) 0.00 (0.25) 0.04 (0.19) 

covert (79) 0.80 (0.27) 0.13 (0.18) 0.09 (0.16) 0.09 (0.18) 0.09 (0.17) 

friendship (13) 0.92 (0.26) 0.15 (0.17) 0.08 (0.13) 0.08 (0.17) 0.08 (0.13) 

connectome (507) 0.99 (0.43) 0.01 (0.27) 0.01 (0.28) 0.01 (0.27) 0.01 (0.28) 

foodweb (39) 0.77 (0.29) 0.15 (0.26) 0.05 (0.21) 0.15 (0.28) 0.00 (0.21) 

trade (193) 0.58 (0.13) 0.10 (0.08) 0.34 (0.11) 0.12 (0.09) 0.34 (0.11) 

coauthorship (4) 1.00 (0.83) 0.00 (0.45) 0.00 (0.38) 0.00 (0.55) 0.00 (0.47) 

flightmap (26) 0.27 (0.17) 0.38 (0.21) 0.27 (0.19) 0.38 (0.21) 0.19 (0.18) 

socialnetwork (1) 1.00 (0.20) 0.00 (0.15) 0.00 (0.11) 0.00 (0.14) 0.00 (0.09) 

mean win rate (AUPR) 0.83 (0.33) 0.10 (0.23) 0.09 (0.20) 0.08 (0.24) 0.08 (0.20) 

 

Suppl. Table 6. Results of CHA and SBM variants on ATLAS. 

For each network of the ATLAS (considering N≤100, 900 networks) and for each algorithm, we applied 

the 10% link removal evaluation, obtaining the AUPR as measure of performance (see Methods section 

4.2.1. for details). The table reports for each network class and for each algorithm the win rate and the 

mean AUPR (in brackets) over the networks of that class. For each class, the number of networks is 

shown in brackets. As bottom row, the table reports the mean win rate and AUPR over the classes. For 

each class, the best win rate is highlighted in red. The algorithms are sorted left to right according to 

the best mean win rate.  
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 CHA SPM HOPE ProNE-SMF node2vec ProNE NetSMF 

contact-SFHH 0.08 0.08 0.08 0.07 0.07 0.07 0.06 

contact-officefrance2013 0.16 0.16 0.15 0.11 0.11 0.09 0.06 

socialnetwork-enronemployees 0.16 0.18 0.15 0.11 0.10 0.12 0.10 

socialnetwork-facebookforum 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

contact-ACM2009 0.23 0.22 0.23 0.18 0.20 0.18 0.15 

email-manufacturing 0.19 0.21 0.20 0.18 0.17 0.14 0.06 

contact-primaryschool 0.23 0.23 0.20 0.16 0.18 0.14 0.17 

contact-wirelesshaggle 0.40 0.37 0.39 0.23 0.25 0.12 0.04 

email-EUcore 0.15 0.16 0.13 0.10 0.05 0.07 0.04 

email-DNC 0.10 0.10 0.09 0.02 0.02 0.01 0.00 

socialnetwork-UCImessages 0.03 0.02 0.01 0.02 0.01 0.01 0.01 

socialnetwork-retweets 0.03 0.02 0.01 0.00 0.00 0.00 0.00 

socialnetwork-mathoverflow 0.04 0.04 0.03 0.02 0.01 0.02 0.00 

ARK201012 0.06 0.03 0.04 0.00 0.00 0.00 0.00 

facebook 0.02 0.02 0.02 0.01 0.00 0.01 0.01 

mean AUPR 0.13 0.12 0.12 0.08 0.08 0.07 0.05 

win rate 0.80 0.60 0.20 0.00 0.00 0.00 0.00 

 

Suppl. Table 7. Results of CHA, SPM and embedding methods on temporal networks. 

For each temporal network and for each algorithm, we applied the temporal evaluation, obtaining the 

AUPR as measure of performance (see Methods section 4.2.2. for details), which is reported in the table. 

As bottom rows, the table reports the mean AUPR and win rate over the networks. For each network, 

the best AUPR is highlighted in red. The algorithms are sorted left to right according to the best win 

rate. 
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 CHA 
CHA-evol 

r=0.5 
CHA-evol 

r=0.2 
CHA-evol 

r=0.05 
CHA-evol 

r=0.01 
CHA-evol 

r=0.1 

contact-SFHH 0.11 0.11 0.11 0.11 0.11 0.11 

contact-officefrance2013 0.22 0.22 0.21 0.23 0.21 0.22 

socialnetwork-enronemployees 0.21 0.20 0.17 0.14 0.13 0.15 

socialnetwork-facebookforum 0.03 0.03 0.02 0.02 0.03 0.02 

contact-ACM2009 0.25 0.25 0.25 0.25 0.24 0.25 

email-manufacturing 0.24 0.24 0.21 0.20 0.19 0.20 

contact-primaryschool 0.26 0.26 0.25 0.24 0.24 0.24 

contact-wirelesshaggle 0.42 0.42 0.42 0.41 0.42 0.41 

email-EUcore 0.22 0.22 0.20 0.18 0.17 0.19 

email-DNC 0.17 0.16 0.15 0.15 0.14 0.15 

socialnetwork-UCImessages 0.06 0.05 0.04 0.03 0.03 0.04 

mean precision 0.20 0.20 0.18 0.18 0.17 0.18 

win rate 0.91 0.64 0.27 0.27 0.27 0.18 

 

Suppl. Table 8. Results of CHA and CHA-evol on temporal networks. 

For each temporal network and for each algorithm (CHA and CHA-evolutionary at different evolution 

rates r = [0.5, 0.2, 0.1, 0.05, 0.01]), we applied the temporal evaluation, obtaining the precision as 

measure of performance (see Methods section 4.2.2. for details), which is reported in the table. As 

bottom rows, the table reports the mean precision and win rate over the networks. For each network, 

the best precision is highlighted in red. The algorithms are sorted left to right according to the best win 

rate. 
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