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Abstract

We consider the Dirac electron as a particle-like solution consistent with its own
Kerr-Newman (KN) gravitational field. In our previous works we considered the regu-
larized by López KN solution as a bag-like soliton model formed from the Higgs field in
a supersymmetric vacuum state. This bag takes the shape of a thin superconducting
disk coupled with circular string placed along its perimeter. Using the unique features
of the Kerr-Schild coordinate system, which linearizes Dirac equation in KN space,
we obtain solution of the Dirac equations consistent with the KN gravitational and
electromagnetic field, and show that the corresponding solution takes the form of a
massless relativistic string. Obvious parallelism with Heisenberg and Schrödinger pic-
tures of quantum theory explains remarkable features of the electron in its interaction
with gravity and in the relativistic scattering processes.

1 Introduction

One of the main points of confrontation between Gravity and Quantum theory is the struc-
ture of elementary particles, which are considered in quantum theory as structureless, like
a point-like electron in Dirac theory, but must be represented as an extended field model in
configuration space for compatibility with the stress-energy tensor of Einstein’s equations.

A revolutionary step towards unification quantum with gravity was taken in superstring
theory, which represented particles as extended strings. Gravitational black holes (BH) have
been considered as candidates for elementary particles repeatedly since 1980, and since the
1990s, they have also attracted attention in the theory of superstrings.

However, as one of its founders, John Schwartz, noted,“... Since 1974, superstring theory
has ceased to be regarded as particle physics... ” and ”... a realistic model of elementary
particles still seems a distant dream ...” [1].

Meanwhile, a renewed interest to relationships between black holes and elementary par-
ticles has been obtained recently in the works [2, 3, 4, 5].

Formation of BHs is related with gravitational effect of frame-dragging. In the rotating
Kerr-Newman BH solution, with parameters J,m, a corresponding to spin, mass and Kerr’s
rotational parameter a of elementary particle, spin creates a giant over-rotating dragging of
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space, which is directed along of direction of rotation, leading to a new important effect,
formation of the closed Wilson loop, which never was used in particle physics before.

In contrast to considered earlier cases of the Schwarzschild or Reissner-Nordström gravity,
the characteristic scale of the KN gravity is essentially increases, because it is determined
by radius of the Kerr singular ring

a =
J

mc
, (1)

which corresponds to the reduced Compton wave length of the particle.
This fact, established already in the first models of an electron based on the Kerr ge-

ometry [6, 7, 8, 9, 10, 11, 12] was remarkable itself, because it was known, but was not
timely estimated as one of the first evidences of the correspondence between KN particle
and quantum theory.
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Figure 1: Kerr congruence and Kerr singular ring generated by null congruence kµ.

The gigantic ratio between the spin and mass values for elementary particles in KN
geometry violated the generally accepted concept of the weakness of gravity, based on the
earlier estimations of gravitational radius of the Schwarzschild solution

rg = 2Gm. (2)

Gravitational field of an electron corresponding to the Kerr-Newman solution was singular
and changed topology of space at the Compton distance.

In 1968, Carter obtained that the Kerr-Newman (KN) solution for a charged and rotating
black hole (BH) has gyromagnetic ratio g = 2 – just the same as that of the Dirac electron
[6]. It gave rise to study of the electron model based on the KN solution, see [6, 7, 8, 9, 10,
11, 12, 13, 14] and so on.

It should be noted that the KN electron model is not actually a black hole, because taking
the parameters of KN solution in correspondence with parameters of an electron, mass m,
charge e and angular momentum J = ma ∼ ~/2, we obtain the relation a2 ≫ (m2 + e2)
which shows that the rotation parameter a is so large, that all horizons of the BH solution
disappear. There appears the Kerr singular ring, which was hidden earlier behind the horizon
of the KN solution. This ring forms a type of the door that opens the way to another sheet
of the Kerr space. The space becomes two-sheeted, having the basic background and some
kind of the mirror Alice world behind the Kerr ring.

In previous papers [15, 16, 17] we developed the line started by W. Israel [8], who sug-
gested to truncate the second sheet of the Kerr geometry along the disk spanned by the Kerr
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singular ring. After analysis of the Israel source by Hamity [9], a modified disk-like source
was suggested by C. López [10] as an ellipsoidal vacuum bubble – a thin shell covering the
Kerr singular ring and matching with the external KN solution.
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Figure 2: Disk-like source of the regularized solution of KN as a bag model. Deformation
of the disk at different ratios of parameters R = re and a. For re = e2/2m disk is very thin,
and re/a = α corresponds to the fine structure const.

In the works [15, 16, 17] we considered a generalization of the López model, in which
the KN bubble was formed from the Higgs field in a superconducting vacuum state. The
thin shell of bubble was replaced by a domain-wall solution, which was described by the
Landau-Ginzburg (LG) supersymmetric model of phase transition. Domain Wall (DW) was
interpolated between the superconducting (and supersymmetric) internal vacuum state and
the external exact gravitational KN solution.

The bubble source of the KN geometry obtained by C.López [10] (see Fig.2) was pre-
sented in our works as a supersymmetric and superconducting bag model. The reason for
interpretation of the KN source as a bag model, was their ability to be elastic and deformable
under influence of external conditions, which was known from the behavior of the well-known
MIT and SLAC bag models [18, 19]. It was assumed also that bags are similar to strings
and can turn into strings under strong deformations [20, 21].

Meanwhile, one feature of the KN bag significantly distinguishes it from the MIT and
SLAC bag models – the usual bag models form a cavity in superconductor, while the KN
bag must have an internal superconducing state. This feature was the source of problems,
that forced us to use a supersymmetric LG field model of the phase transition [22, 23,
24, 25, 26]. The use of supersymmetry becomes really necessary, because the simpler non-
supersymmetric LG models cannot provide the concentration of the Higgs field inside of
the bag model and lead typically to the opposite configuration of the bag as a cavity in a
superconducting matter. This problem was discussed in details in [15, 16], and we will not
discuss it here, because our goal here is different – to get the consistent with gravity solutions
of the Dirac equations.

However, we will pay here attention to the important result obtained in the letter [17] –
the disk-like source of the KN solution turns out to be two-sided, and has an antiDW-side
along with the DW surface, and the presence of this DW-antiDW (breather) structure is
very essential for the solutions of the Dirac equations discussed here.
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Our task here is to obtain a self-consistent solution of the Dirac equation embedded in
the proper gravitational and electromagnetic field of the electron corresponding to Kerr-
Newman solution. By solving this problem, we obtain that Kerr-Schild coordinate system is
unique, in the sense that it allows us to use γ - matrices of the auxiliary Minkowski space,
where the Dirac equations in proper gravitational and electromagnetic field are linearized.

We obtain that solutions of the Dirac equations take the form of a massless relativistic
string based on an orientifold structure discussed in one of our old works [27].

2 Kerr-Schild geometry and structure of KN solution

Specific feature of the Kerr-Schild approach is the use of the auxiliary Minkowski space M
4,

(signature (−+++)), with Cartesian coordinates x = xµ = (t, x, y, z).
In these coordinates, metric of the KN solutions is [7]

gµν = ηµν + 2Hkµkν , (3)

where ηµν is flat metric of the auxiliary Minkowski space, and H is the scalar function which
for the KN solution takes the form

HKN =
mr − e2/2

r2 + a2 cos2 θ
. (4)

The KN vector potential is given as

Aµ =
−er

(r2 + a2 cos2 θ)
kµ. (5)

The field kµ(x) forms a Principal Null Congruence (PNC), kµk
µ = 0, shown on Fig.1. In

terms of BH geometry this field shows a local direction of dragging the frame, that in the
case of overrotating HB solutions produces closed Wilson lines surrounding the source of KN
geometry, see Fig.3.
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Figure 3: Deformations of the Kerr coordinate φ = const. caused by dragging of space in
angular direction near the Kerr singular ring.

Kerr’s congruence can be represented as an electromagnetic radiation which propagates
(with twist) from infinity towards the Kerr ring, penetrates it, and coming out on the other
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sheet of the Kerr geometry goes out again to infinity. In Cartesian coordinates xµ ∈ M4,
the form kµdx

µ shows local direction of frame-dragging.
In the Kerr angular coordinates PNC is presented in [7] by the form

kµdx
µ = dr − dt− a sin2 θdφK . (6)

The relation between Cartesian coordinates and Kerr’s angular coordinates is the following

x+ iy = (r + ia) exp{iφK} sin θ,
z = r cos θ, ρ = r − t, (7)

The incoming PNC is directed to the Kerr ring. Rays lying in equatorial plane (cos θ = 0)
focus on the Kerr singular ring. Other incoming rays, passing trough the ring, turn into
out-going rays propagating on another (say ”negative”) sheet of the Kerr space. Thus, the
Kerr solution in the KS form describes two different sheets of space-time with two different
congruences

k±µ dx
µ = ±dr − dt− a sin2 θdφK (8)

and two different metrics
g±µν = ηµν + 2Hk±µ k

±

ν (9)

on the same Minkowski background xµ ∈M4. Working with outgoing Kerr field correspond-
ing to retarded potentials, we choose sign plus in (8), and following [7] we take kµ = k+µ .

The Kerr theorem.

Kerr theorem defines two fields of PNC, k+(x) and k−(x), in terms of Penrose’s twistor
theory [28, 29, 30]. Kerr theorem presents two complex analytic solutions Y ± of the equation

F (TA) = 0, (10)

where F is quadratic holomorphic function of the projective twistor coordinates TA = {Y, ζ−
Y v, u+ Y ζ̄}, A = 1, 2, 3,
and

2
1

2 ζ = x+ iy, 2
1

2 ζ̄ = x− iy,

2
1

2u = z + t, 2
1

2 v = z − t, (11)

are the null Cartesian coordinates of the auxiliary Minkowski space xµ ∈ M
4.

In the class of quadratic in Y functions F (TA), the Kerr theorem gives two analytic
solutions Y ±(xµ), of the equation (10), which correspond to two projective spinor coordinates

Y + = ξ 1̇/ξ 0̇, Y − = η1/η0, (12)

which are antipodically conjucate
Y + = −1/Ȳ −, (13)

and the corresponding Weyl spinors ξα̇ and ηα define two antipodal fields of the principal
null directions

kµ+ = ξ̄ασµ
αα̇ξ

α̇, kµ− = η̄α̇σ̄
µα̇αηα. (14)
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3 Shape of the KN bag model and Wilson loop

The López boundary of the bubble, where the KN space can be matched continuously with
the flat internal metric ηµν , is unambiguously determined by the Kerr-Schild metric form
(3), as the surface where H = 0. Setting HKN = 0 we obtain

r = re = e2/2m, (15)

that gives us the “classical” electron radius. Although, the López’s truncation of the KN
metric is not smooth, the resulting solution can be uniformly approximated by the class of
smooth Güses and Gürsey metrics [14], which satisfy the Einstein-Maxwell equations.

Since r is the Kerr radial coordinate, we obtain that the bag boundary represents indeed
an oblate ellipsoidal surface – a thin disk of the radius a, which is about the reduced Compton
wave length, and the thickness of the disk re, which is equal to classical electron radius. One
sees that degree of oblateness of the disk is re/a = 1/137 that corresponds to the fine
structure constant α.

Therefore, the Kerr-Newman spin parameter a leads to a strong deformation of the shape
of the bag model, and this deformation of the bag leads to the appearance of a relativistic
string at the sharp edge of the KN disk (see Fig.4).

The existence of this string is evidenced by the Wilson loop of the vector potential placed
along border of the bag, which was obtained first in [31] and then discussed in [15, 32, 33].

From (5) and (6) we obtain that vector-potential of the regularized KN solution takes its
maximal value in the equatorial plane (cos θ = 0) at the bag border r = re ,

Amax
µ dxµ = −2m

e
(dr − dt− adφK). (16)

This potential is tangent to the bag border r = re, and for the fixed time t = const., it forms
the closed Wilson loop C : φK ∈ [0, 2π], so that the loop integral
W (C) = P exp e

∮

C
Amax

µ dxµ, gives the following phase increment

δφ = e

∮

C

Amax
φK

dφK. (17)

Integration gives δφ = 4πma, and using relation J = ma we obtain

δφ = 4πJ. (18)

−15 −10 −5 0 5 10 15−10

0

10

Figure 4: Disk-like shape of the Kerr-Newman bag model. Border of the superconducting
bag ends with Wilson loop forming a closed circular string.
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Definiteness of the phase increment requires δφ = 2π, and (18) leads to quantum condition
J = 1

2
.

4 String structure and superficial currents on the bor-

der of KN bag

4.1 Scattering process and orientation of the Kerr disk

On the initially two-sheeted KN space-time, the directed in future vortex field of the Kerr
congruence k+ formed an in-going field on the negative sheet of the Kerr space r− < 0,
where it was directed towards the Kerr singular ring. Penetrating through the ring, this
field continues analytically on the second sheet r+ > 0, turning into an out-going field,
where another coordinate system is used, (7).

Although, in the regularized KN solution, the passage to the r− sheet is closed, consid-
eration of the analog of this sheet is relevant in the scattering process, when we observe the
in-going field incident on the source of the KN solution before the scattering, and then the
signal reflected in the scattering process in the form of an out-going field.

In contrast to the case with the negative sheet of the Kerr solution, in this case we use
the same Kerr’s coordinate system (7) for both in-going and out-going fields, in which we do
a replacement of r → −r, getting an equivalent coordinate transformation for the in-going
field on r−,

x+ iy = (r − ia) exp{−iφK} sin θ,
z = −r cos θ, ρ = −r − t, (19)

compatible with metric
g−µν = ηµν + 2Hk−µ k

−

ν , (20)

and with in-going Kerr congruence k−µ .
This process shows that disk-like source of KN field has two faces: one from the side of

the in-going fields k−µ , and the other from the side of the out-going fields k+µ . These two sides
are related with reverse sign of the disk rotation a → −a, and change the orientation angle
φk → −φk for the incoming field.

The corresponding string-like structure, was suggested in [27] as an orientifold string.
This string forms the Kerr’s light-like world-sheet X = XL(τ + σ), containing only the left
modes on the fundamental interval [0, π]. For a static picture of the Kerr disk at t = 0, the
orientifold string is formed as a parity operator Ω : [σ → 2π − σ], which covers the string
world sheet twice: first time on the interval [0, π], and second time on the interval [2π − σ]
in opposite direction.

The full orientifold world-sheet is formed as a folded string on the doubled interval
σ ∈ [0, 2π], and contains the sum of the left and right modes X = XL(τ + σ) +XR(τ − σ).

The orientifold string is left-right symmetric in the static representation, t = const.,
which in quantum theory is called as Heisenberg picture, however the symmetry Ω is broken
on the rotating disk.
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4.2 Surface currents caused by Wilson loop, Higgs phases and

stringy parametrization

The Kerr-Newman solution demonstrates an intrinsic connection to string theory. The role
of the string is played by the singular ring of the Kerr solution [12, 13]. A regularized version
of this string occurs at the sharp edge of the disk-like boundary of the ellipsoidal bag forming
the regular source of the Kerr-Newman solution.
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Figure 5: KN disk as a carrier of the orientifold string in the static t = const. picture.
Kinematic relations in the equatorial plane of KN disk. The shown out-going light-like
beam of the Kerr congruence kµ is tangent to Kerr singular ring and crosses the edge of the
disk at the angle θr = arctan re/a ≈ α .

As is known, the Higgs field model coincides with the Landau-Ginzburg (LG) model for
a phase transition in a superconducting medium [34]. Similarly, the supersymmetric Higgs
model is described by a supersymmetric (or generalized) Landau-Ginzburg (LG) model,
[22, 25].

The corresponding supersymmetric bag model is formed by the Domain Wall (DW),
which separates the external gravitational field KN from the flat inner space filled with
supersymmetric vacuum of the Higgs field.

Although the consistent description of this phase transition requires a supersymmetric
scheme of phase transition with several chiral fields, [15, 16, 17], the simple LG field model
with one chiral field can describe each separate process of the phase transition with creation
superficial currents on the boundary of the bag. Corresponding Lagrangian with one Higgs
fields is, [34],

L = −1

4
FµνF

µν − 1

2
(DµΦ)(DµΦ)∗ − V (|Φ|), (21)

where Dµ = ∇µ+ ieAµ are covariant derivatives with vector-potencial Aµ, Fµν = Aµ,ν−Aν,µ,
and

V = λ(ΦΦ∗ − η2)2, (22)

where η is the v.e.v. of the Higgs field Φ, η =< |Φ| >.
Superconducting vacuum state of the Higgs field inside the Bag leads to equations

�Aµ = Iµ = e|Φ|2(χ,µ+eAµ), (23)
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which shows that inside the superconductor current Iµ is pushed out, and the equations

Iµ = 0 ⇒ χ,µ+eAµ = 0 (24)

show that current must be concentrated in a surface layer with a depth of penetration δ,
[35]). Inside the superconductor, potential Aµ must be eaten by phase of the Higgs field
according to (24).

Potential of the KN field (5) increases near the bag boundary, and takes maximum in
the equatorial plane, near the bag boundary r = R = e2/2m, cos θ = 0.

According the Wess-Zumino model, the supersymmetric QED is described by two Higgs
fields Φ+ = |Φ+|e−ieχ+ and Φ− = |Φ−|eieχ−, [36], and the equation (24) allow us to connect
two phases of the Higgs fields χ+ and χ− with two boundaries of the KN bag model A−

µ

and A+
µ , which where obtained in the double-face structure of the KN disk [17], related with

congruences k+ and k−, and forming a DW-AntiDW structure, know also as ”breather” [37].
Integration of the LG equations (24) for the superficial currents related with the out-

going phase of the Higgs field, placed on the boundary r = r+, gives χ+|r+ = 2m(t+ aφK),
while for the in-going Higgs phase, placed on the boundary r = r−, we obtain
χ−|r− = 2m(t− aφK),
where the change in the sign by the transition a→ −a was also taken into account.

Therefore, on the boundary r = r+ we obtain the potential eA0 = 2m, eAφK
= 2ma,

and on the boundary r = r− – the potential eA0 = −2m, eAφK
= −2ma.

Applying these solutions to the out-going vector field A+
µ (r

+
e ) on the boundary r = r+e ,

which is dragged by gravitational field of the Kerr congruence, forming the closed Wilson
loop C+ : t = const. on the border r = r+e we obtain:

1) incursion of the potential A+
µ along the loop C+ is controlled by the Higgs phase χ+,

and integration of the equations I+µ = 0 ⇒ χ+,µ +eA
+
µ = 0 gives

χ+|r+ = 2m(t+ + aφ+
K), (25)

2) similarly, the out-going potential A+
µ , acting on the boundary r− gives

χ−|r− = −2m(t− − aφ−

K), (26)

and therefore, the phases of the Higgs fields (t++aφ+
K) and (t−−aφ−

K) behave like parametriza-
tion of the left and right modes of a relativistic string, see [33, 17].

The formation of a Wilson loop around a singular ring is a characteristic feature of the
string models where the string tension mechanism is formed by a tube of force lines,[38].

The singular ring of the Kerr solution is formed of two light-like lines, ”left” and ”right”,
controlled by the conjugate phases χ+ and χ−, and the existence of ”right” and ”left”
excitation modes is an indispensable condition for the formation of a string as a world sheet.
A string described by only one mode, say the right one, turns into world line that depends
on only one parameter. For this reason, a simple light -like Kerr’s singular ring does not
form a world sheet, and strictly speaking is not a string, but a world line. The KN string
is formed as the ’orientifold’ string [27] consisting of two half-modes acting sequentially in
time, in correspondence with the DW-AntiDW field model of the KN source considered in
[17], i.e. forming an oscillating solution of the type ‘breather’ [37].
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5 The Dirac equations for an electron interacting with

its own gravitational and electromagnetic field

We come to the main part of our consideration – the solutions of the Dirac equations for
fermionic string which emerge on the border of the regularized KN disk interacting with the
consistent gravitational and electromagnetic KN field.

We see that our analysis unavoidably leads us to the typical features of the quantum con-
siderations: importance of the separable analysis of the Heisenberg and Schrödinger pictures,
the corresponding state vectors, unitary transformation, plane waves and the scattering pro-
cess.

5.1 The KN disk-like source as electron in the Heisenberg picture.

The KN gravitational field can only be consistent with one of two types of the Kerr congru-
ence, either in-going or out-going, [46], and we choose the out-going variant, that is consistent
with the retarded electromagnetic fields.

Out-going Kerr congruence

k+µ dx
µ = dr − dt− a sin2 θdφK . (27)

propagates from the both sides of the disk r+ and r− towards direction +∞. The in-going
congruence

k−µ dx
µ = −dr − dt− a sin2 θdφK (28)

propagates from −∞ towards the disk and focus at the both sides of the disk r+ and r−.
The transition from out-going picture to in-going is connected with the replacement

r → −r, that in the coordinate transformation (7) corresponds to the replacement ρ+ → ρ−,
changing in the direction of rotation a→ −a, and in the orientation angle φK .

The Kerr disk is located at the scattering boundary t = 0, which corresponds to the state
vector in the Heisenberg picture. Orientation of the disk is changed under transition from
r → −0 to r → +0, and the string on the border of KN disk acquires the properties of the
orientifold string with two faces r+ and r−.

The regularized Kerr’s disk has a finite thickness |r| = re which is determined by the
physics of scattering process.

The role of the equations of motion in the Heisenberg picture, is played by the Dirac
equations.

5.2 Uniqueness of the Kerr-Schild coordinates

The Dirac equation in the Kerr-Newman gravitational field was studied in many works, in
particular in [39, 40, 41, 42, 43, 44, 45]. The freedom to choice a coordinate system is an
important aspect of general relativity. However, in the case of the Kerr-Newman solution for
the over-rotating gravitational and electromagnetic field, the Kerr-Schild coordinate system
plays an exceptional role, greatly simplifying the problem under consideration.

The associated with the Kerr-Schild space coordinates of the auxiliary Minkowski space
(t, x, y, z) ∈ M4, or the equivalent null coordinates (11), allows one to represent the Maxwell
and Dirac equations in a form that formally coincides with their form in the flat Minkowski
space.
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In particular, the electromagnetic KN field is represented in [7] by the self-dual complex
tensor

Fµν = −Fνµ = Fµν +
i

2
ηµνρσF

ρσ, (29)

where ηµνρσ is completely skew-symmetric and equal to
√−g when µνρσ = 1234.

The system of Maxwell equations takes in this case the form

Fµν
;ν = (

√−gFµν),ν /
√−g = 0, (30)

and since determinant of the Kerr-Schild metric is

−g = 1, (31)

see for example [7], solutions of the Maxwell equations (30) written in the tetrad form, [7],

Fab
;b = 0, (32)

coincide with the corresponding solutions in the flat auxiliary Minkowski space M4 expressed
in the null Cartesian coordinates (11), see pp.6,7 in [7]. In particular, these solutions cre-
ate the electromagnetic field (7.8) and the stationary vector-potential (7.7) of [7], which
corresponds our expressions (5) and (6).

Considering the Dirac equation in the KN gravitational field regularized by López bound-
ary (15), we get a cut off of the Kerr singular ring, and also the additional suppression of
the gravitational field by the condition H(re) ≈ 0 leading to an almost flat space on the
boundary of the KN disk.

In this case, for the Dirac operator in the weak gravitational field, we can start in the
first approximation from the Dirac equation in the nearly flat Minkowski space-time with
Cartesian coordinates and the constant γ-matrices of the flat Minkowski space. Denoting
these matrices as γµM , we can estimate our deviations by using the convenient formulae of
the work [42]

γµ(pµ − eAµ) → γµM(pµ − eAµ) +B, (33)

where

B =
1

2
√

|g|
∂µ(

√

|g|γµ). (34)

In the result, since in the Kerr-Schild coordinate system we have −g = 1, we obtain that
B ≡ 0, and the initial substitution γµ = γµM turns out to be exact.

We obtain that description of the KN solution in the Kerr-Schild coordinate system is
the unique in that it leads to linearization of both electromagnetic and Dirac equations in
accordance with the gravitational background of the KN solution.

5.3 The Dirac equations in the Weyl representation

The Dirac equations in the Weyl representation decompose into two equations

(pµ − eA+
µ )σ

µ
αα̇ξ

α̇ = mηα, (35)

(pµ − eA−

µ )σ̄
µα̇αηα = mξα̇, (36)

where σ̄0 = σ0, and σ̄1,2,3 = −σ1,2,3, or ~σ = σ1,2,3.
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The Wilson loop potential increment eA±

µ dx
µ = 2m(dr± − dt∓ adφK) acts on both r±-

boundaries (faces) of the KN disk.
In the considered earlier analogous physical model of the rotating KN disk-like source,

the in-going and out-going Kerr congruences are controlled by two related phases of the
Higgs field, χ+ = −χ−, and the momentum pµ of the string solution must be completed by
an ”internal” angular momentum of two semi-strings ps = ps++ps−, associated with rotation
of the KN disk under its evolution in time,

pµ → pµ + psµ. (37)

According (14), the spinors ξα̇ and ηα have different helicities with respect to helicity
operator 1

2
(k~σ), and the Weyl spinor ξα̇ is aligned with out-going direction k+ = (1,k),

while the spinor ηα is aligned with in-going direction k− = (1,−k). The sign of ps is already
taken into account in the Dirac equations (35) and (36).

In the same time, the both vector fields of the Wilson lines eA±

µ dx
µ are out-going and,

being emanated from the boundaries r+ and r−, they are related with spinors of different
helicity. As a result, the electromagnetic contribution from Wilson line eA−

µ dx
µ should

change the sign in the equation (36).
The spinor string is formed of two semi-strings of opposite helicities ξα̇ and ηα, which

have the unique common point corresponding to the point where the orientation of the string
changes, a→ −a.

Integrating the Ginzburg-Landau equations for the out-going phase of the Higgs field
and r = r+, we obtained χ+|r+ = 2m(t + aφ), which for J = ma = 1/2 gives psµ|r+ =
(2m, ∂φK

). The corresponding contribution of the vector potential to the Dirac equation is
eAµ = (2m, eA+

φK
).

For the boundary r = r−, we have the opposite sign of charge, which corresponds to the
Wess-Zumino supersmmetric QED model, and also corresponds to integration of the BPS
equations considered in [17]. The change of orientation, a → −a, is accompanied by the
potential of the Wilson line in the form −eA0 = −2m, −eAφK

= 2ma.
To simplify notations we will omit further the index K in the Kerr angular coordinate φK .

5.4 The Dirac equations in the Heisenberg picture for t = const.

Taking the Weyl representation for γ-matrices, we can write the Dirac equations in Heisen-
berg picture for t = const..

Setting pµ = (ǫ,p + ps) with ǫ = p0, and p = 0, we obtain the Dirac equations in the
rest frame,

(p0 − 2m)σ0ξα̇ + (psφ − 2maφ)~σξα̇ = mηα (38)

(p0 + 2m)σ0ηα − (psφ + 2maφ)~σηα = mξα̇. (39)

Where ξα̇ and ηα are normalized spinors ξ̄Iξ = η̄Iη = −1, and I is unit matrix.
For any ξα̇, ηα and m = 0, the first equation is identically satisfied when

p0 − eA0 = 0, psφ − eAφ = 0, (40)

and the second equation is identically satisfied when

p0 + eA0 = 0, psφ + eAφ = 0. (41)
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Spinors |up >=
(

ξα̇

ηα

)

are normalized as < ūp|up >= 2m.

In the Heisenberg picture presenting the KN string at fixed time t = const. we have:
1) the spinor string ξα̇(φ) which is a massless half-string, created by the out-going light-

like directions k+ = (1,k) and emanated from Wilson’s counter φ ∈ [0, 2π] placed at r = r+e ,
and also the one more massless half-string, created by the out-going light-like directions
k+ = (1,k) emanated from Wilson’s counter φK ∈ [−2π, 0] placed at r = r−e .

2) the spinor string ηα(φ) representing the second massless half-string, created by the
in-going light-like directions k− = (1,−k) towards the Wilson counter φ ∈ [−2π, 0] placed
at r = r−e .

Since m = 0, is everywhere, for exclusion of singular point φ = 0 where the oppositely
directed semi-strings are joined, the both half-strings are massless and do not interact, except
for the point φ = 0, where a → −a, and the mass term is presented as a delta-function
m = mδ(φ).

The potential energy of the semi-strings tension is determined by the Wilson loop at the
boundaries r±. The potential at the end of the out-going semi-string is

A+
φ (2π) =

2ma

e
2π = 2π/e, (42)

and the potential at the end of the in-going semi-string, φ = −2π, turns out to be the same,
A−

φ (−2π) = 2π/e. Thus, the potential difference between the ends of the semi-strings in the
static Heisenberg picture is zero.

In the Weyl representation for matrices γµ, the out-going and in-going fields are ordered
in time, and the fields with negative frequencies do not arise.

5.5 The Schrödinger picture, plane waves and string in the Kerr-

Schild coordinates

In the Schrödinger picture the plane waves and in the Kerr-Schild coordinates are described
by wave function [47]

ψp =
1√
2ǫ
upe

−ipx, (43)

where −px = −pµxµ = p0x0 − px, and xµ = (t,x), pµ = (p0,p), ǫ = p0 = +
√

p2 +m2.
The spinor ψp satisfies the Dirac equations

(γµ
∂

∂xµ
+m)ψp = 0. (44)

In the rest system, ǫ = m, p = 0, functions ψp and up are connected by unitary transfor-
mation U = e−iHt, where H = m is the Hamiltonian of the system.

We consider U as operator acting on a state vector |up >=
(

ξα̇

ηα

)

, in the static Heisen-

berg picture, while the plane wave

ψp = Uup = e−imt

(

ξα̇

ηα

)

, (45)
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represents the state vector |ψp > in the dynamic Schrödinger picture.
When φ = 0, the semi-strings are joined, ξα̇(0) = ±ηα(0).
In the Schrödinger picture the string turns out to be asymmetric:

the semi-string ξα̇(φ) covering the interval φ ∈ [0, 2π] gives eA+
0 = m, eA+

φ = ma, and

the semi-string ηα(φ) covering the interval φ ∈ [−2π, 0] gives eA−

0 = −3m, eA−

φ = −3ma.

The potential at the end point φ = 2π of the out-going semi-string is A+
φ (2π) = π/e, while

the potential of the in-going semi-string at the end point φ = −2π is A−

φ (−3π) = 3π/e.
We note that this potential difference is similar to the Josephson effect in superconducting

junctions, where the voltage is determined by the rotations of the Higgs phase.
Although in Heisenberg picture electron represents a string about the Compton size (or

Wilson Loop) surrounding the Kerr-Newman disk, this is a static picture corresponding to
shape of the string at a fixed time t = const. Really, the electron is an ultra-relativistic object,
and external observers (including other particles) perceive the electron in the Schrödinger
picture, or in the interaction representation where the wave function of electron is multiplied
by unitary factor eiHt.

The consistent with gravity Compton radius of an electron is not its effective scattering
radius, and the people working in the high energy physics perceive it as an ultra-small
tornado that can work like a scalpel.

6 Conclusion

This preliminary analysis shows that, following to pioneering works by Carter, Israel and
López, the Dirac electron can be described as an over-rotating KN gravitating BH solution
described by the Dirac equations interacting with its proper gravitational and electromag-
netic field in the Kerr-Schild coordinate system.

Such description is important both from point of view of the unification gravity with
quantum theory, and from point of view of the nonperturbative model of the extended
electron based on the Higgs mechanism of the spontaneously broken gauge theory.

This treatment shows that the existing theories and models of elementary particles are
at least incomplete, and do not take into account a number of important effects associated
with the gravitational process of the frame-dragging in the spinning gravitational space-
time, in particular, the strong influence of the gravitationally induced Wilson loop in the
over-rotating Kerr-Newman gravitational field.

The main new lessons that this model provides are as follows:
1. The gravitational field of an electron can be described in Heisenberg picture by the

regularized Kerr-Newman solution, which distorts space on the Compton scale, increasing
the usually accepted zone of influence of gravity by about 22 orders of magnitude.

2. The supersymmetric Higgs model (Landau-Ginzburg field model) separates gravita-
tional field of the electron from its flat core, resolving the known conflict between gravity
and quantum theory without changing Einstein’s equations.

3. The regularized nonperturbative electron model takes the shape of a superconducting
disk formed from the Higgs field in a supersymmetric vacuum state.

4. The Kerr-Schild coordinates linearize the Dirac and Maxwell equations on the KN
background, playing exceptional role in formation of the nonperturbative disk-like image of
the electron in Heisenberg picture.
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5. The Dirac equations consistent with KN gravitational field take a stringy form, gen-
erating the circular currents at the boundary of nonperturbative bag model.

The fact that the core of an electron takes the form of a relativistic string in Heisenberg
picture is very important, since it can explain its gravitational interaction on the Compton
scale, while having the ultra-relativistic stringy nature, electron can exhibit strongly different
features in the Schrödinger picture and in the interaction representation, which may explain
the properties of the electron known from scattering experiments, where it exhibits the
seemingly point-like structure.

When this paper was finished, I found the work by Ahmed Alharthy and Vladimir V.
Kassandrov [48] which overlaps with main theme of our work. The work by these authors
is very interesting and based on the old works by F.Edjo Ovono, V. Kassandrov and Ya.
Terletsky which develops the works and ideas of Natan Rosen [49]. Although it seems that
these works are very far from the KN electron model, we find that the introduced by Rosen
scalar potential is prototype of the considered in our work Higgs field.
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[14] M. Gürses and F. Gürsey, “Lorentz covariant treatment of the Kerr-Schild geometry”,
J. Math. Phys. 16 2385 (1975).

[15] A. Burinskii, “Gravitating lepton bag model”, JETP (Zh. Eksp. Teor. Fiz.) 148, 228
(2015).

[16] A. Burinskii, “Stability of the lepton bag model based on the Kerr-Newman solution ”,
JETP (Zh. Eksp. Teor. Fiz.) 148 (2015) 937.

[17] A. Burinskii, “Source of the Kerr-Newman solution as a supersymmetric domain-wall
bubble: 50 years of the problem”, Phys. Lett B 754, 99 (2016).

[18] A. Chodos et al. “New extended model of hadrons”, Phys. Rev. D 9, 3471 (1974).

[19] W. A. Bardeen at al., “Heavy quarks and strong binding: A field theory of hadron
structure.” Phys. Rev. D 11, 1094 (1974).

[20] R.C. Giles, Semiclassical dynamics of the ”SLAC bag”, Phys. Rev. D 70 1670 (1976).

[21] K. Johnson K and C.B. Thorn, Stringlike solutions of the bag model Phys. Rev. D 13

1934 (1976),

[22] P. Fendley, S. Mathur, C. Vafa and N.P. Warner, Phys. Lett. B 243, 257 (1990).

[23] E.R.C. Abraham and P.K. Townsend, Nucl. Phys. B351, 313 (1991).

[24] M. Cvetic, F. Quevedo and S. J. Rey, Phys. Rev. Lett. 67, 1836, (1991).

[25] Xinrui Hou, A. Losev, M. Shifman, Phys. Rev. D 61,085005 (2000), hep-th/9910071,

[26] B. Chibisov and M. Shifman, Phys. Rev. D 56, 7990 (1997).

[27] A. Burinskii, Orientifold D-String in the Source of the Kerr Spinning Particle, Phys.
Rev. D 68, 105004 (2003).

[28] R. Penrose, Twistor Algebra, J. Math. Phys. 8 345 (1967).

[29] A. Burinskii, Wonderful Consequences of the Kerr Theorem, Grav.&Cosmology, 11, 301
(2005), hep-th/0506006.

[30] A. Burinskii, Complex Kerr geometry and nonstationary Kerr solutions, Phys. Rev. D
67 124024 (2003).

16

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2021                   doi:10.20944/preprints202012.0758.v4

https://doi.org/10.20944/preprints202012.0758.v4


[31] A. Burinskii Kerr-Newman electron as spinning soliton, Int J. of Mod.Phys. A 29

1450133 (2014),( Preprint arXiv:1410.2888) .

[32] A. Burinskii, Int. J. Mod. Phys. Source of the Kerr-Newman solution as a gravitating
bag model: 50 years of the problem of the source of the Kerr solution, Int. J. Mod. Phys.
A31, 1641002 (2016).

[33] A. Burinskii, “Features of spinning gravity in particle physics: supersymmetric core of
the Kerr-Newman electron”, Journal of Physics: Conf. Series 1275, 012031 (2019).

[34] H. B. Nielsen and P. Olesen, “Vortex-line models for dual strings”, Nucl. Phys. B 61

45 (1973).

[35] L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Volume 8 of A
Course of Theoretical Physics), Pergamon Press, 1960.

[36] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, New
Jersey, 1983.

[37] P.S. Lomdahl, O.H. Olsen and M.R. Samuelsen, Phys. Rev. A 29, 350 (1984).

[38] B. Zwiebach, A First Course in String Theory, Massachusetts Institute of Technology,
2009.

[39] S. Einstein and R. Finkelstein, Lorentz covariance and the Kerr-Newman geometry,
Phys. Rev. D 15 2721 (1977).

[40] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford University Press,
London, 1992.

[41] R. J. Adler, M. Bazin, and M. M. Schiffer, Introduction to General Relativity, 2nd
edition (McGraw-Hill, New York, 1975),

[42] F. Finster, Local U(2, 2) Symmetry in Relativistic Quantum Mechanics, J. Math. Phys.
39, 6276 (1998);

[43] F. Finster, J. Smoller, and S.-T. Yau, Particlelike solutions of the Einstein-Dirac equa-
tions, gr-qc/9801079, Phys. Rev. D 59 104020 (1999).

[44] F. Finster, J. Smoller, and S.-T. Yau, Non-Existence of Time-Periodic Solutions of the
Dirac Equation in a Reissner-Nordstrom Black Hole Background, J. Math. Phys. 41
2173 (2000).

[45] A. Burinskii, “Emergence of the Dirac Equation in the Solitonic Source of the Kerr
Spinning Particle”, Grav. Cosmol. 21 28 (2014), [arXiv:1404.5947].

[46] Ch. W. Misner, K. S. Thorne, J.A. Wheeler, Gravitation, Part 3, San Francisco: W. H.
Freeman, ISBN 978-0-7167-0344-0

[47] A.I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics, Interscience Publish-
ers, 1965.

17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2021                   doi:10.20944/preprints202012.0758.v4

https://doi.org/10.20944/preprints202012.0758.v4


[48] A. Alharthy and V. Kassandrov, On a Crucial Role of Gravity in the Formation of
Elementary Particles. Universe. 6, 193, 2020.

[49] Rosen, N. A field theory of elementary particles. Phys. Rev. 1939, 55, 94.

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2021                   doi:10.20944/preprints202012.0758.v4

https://doi.org/10.20944/preprints202012.0758.v4

