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Abstract

We consider the Dirac electron as a particle-like solution consistent with its own
Kerr-Newman (KN) gravitational field. The regularized by Israel-López KN solution
forms a bag model – the thin superconducting disk coupled with circular string placed
along its perimeter. Using unique features of the Kerr-Schild coordinate system, which
linearizes Dirac equation in KN space, we obtain solutions of the Dirac equation consis-
tent with KN gravitational and electromagnetic field, and show that the corresponding
solution take the form of a massless relativistic string. Obvious parallelism with quan-
tum theory explains remarkable properties of the electron in relativistic scattering
processes.

1 Introduction

One of the main points of confrontation between Gravity and Quantum theory is the struc-
ture of elementary particles, which are considered in quantum theory as structureless, like
a point-like electron in Dirac theory, but must be represented as an extended field model in
configuration space for compatibility with the stress-energy tensor of Einstein’s equations.

A revolutionary step towards unification quantum with gravity was taken in superstring
theory, which represented particles as extended strings. Gravitational black holes (BH) have
been considered as candidates for elementary particles repeatedly since 1980, and since the
1990s, they have also attracted attention in the theory of superstrings.

However, as one of its founders, John Schwartz, noted,“... Since 1974, superstring theory
has ceased to be regarded as particle physics... ” and ”... a realistic model of elementary
particles still seems a distant dream ...” [1].

Meanwhile, a renewed interest to relationships between black holes and elementary par-
ticles has been obtained recently in the works [2, 3, 4, 5].

Formation of BHs is related with gravitational effect of frame-dragging. In the rotating
Kerr-Newman BH solution, with parameters J,m, a corresponding to spin, mass and Kerr’s
rotational parameter a of elementary particle, spin creates a giant over-rotating dragging of
space, which is directed along of direction of rotation, leading to a new important effect,
formation of the closed Wilson loop, which never was used in particle physics before.
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In contrast to considered earlier cases of the Schwarzschild or Reissner-Nordström gravity,
the characteristic scale of the KN gravity is essentially increases, because it is determined
by radius of the Kerr singular ring

a =
J

mc
, (1)

which corresponds to the reduced Compton wave length of the particle.
This fact, established already in the first models of an electron based on the Kerr ge-

ometry [6, 7, 8, 9, 10, 11, 12] was remarkable itself, because it was known, but was not
timely estimated as one of the first evidences of the correspondence between KN particle
and quantum theory.
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Figure 1: Kerr congruence and Kerr singular ring generated by null congruence kµ.

The gigantic ratio between the spin and mass values for elementary particles in KN
geometry violated the generally accepted concept of the weakness of gravity, based on the
earlier estimations of gravitational radius of the Schwarzschild solution

rg = 2Gm. (2)

Gravitational field of an electron corresponding to the Kerr-Newman solution was singular
and changed topology of space at the Compton distance.

In 1968, Carter obtained that the Kerr-Newman (KN) solution for a charged and rotating
black hole (BH) has gyromagnetic ratio g = 2 – just the same as that of the Dirac electron
[6]. It gave rise to study of the electron model based on the KN solution, see [6, 7, 8, 9, 10,
11, 12, 13, 14] and so on.

It should be noted that the KN electron model is not actually a black hole, because taking
the parameters of KN solution in correspondence with parameters of an electron, mass m,
charge e and angular momentum J = ma ∼ ~/2, we obtain the relation a2 ≫ (m2 + e2)
which shows that the rotation parameter a is so large, that all horizons of the BH solution
disappear. There appears the Kerr singular ring, which was hidden earlier behind the horizon
of the KN solution. This ring forms a type of the door that opens the way to another sheet
of the Kerr space. The space becomes two-sheeted, having the basic background and some
kind of the mirror Alice world behind the Kerr ring.

In previous papers [15, 16, 17] we developed the line started by W. Israel [8], who sug-
gested to truncate the second sheet of the Kerr geometry along the disk spanned by the Kerr
singular ring. After analysis of the Israel source by Hamity [9], a modified disk-like source
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Figure 2: Disk-like source of the regularized solution of KN as a bag model. Deformation
of the disk at different ratios of parameters R = re and a. For re = e2/2m disk is very thin,
and re/a = α corresponds to the fine structure const.

was suggested by C. López [10] as an ellipsoidal vacuum bubble – a thin shell covering the
Kerr singular ring and matching with the external KN solution.

In the papers [15, 16, 17] we considered a generalization of the López model, in which the
KN bubble is formed of the Higgs field, which is in a superconducting vacuum state. The
thin shell of bubble is replaced by a domain-wall solution, which is described by the Landau-
Ginzburg (LG) supersymmetric model of phase transition. Domain Wall (DW) interpolates
between the superconducting (and supersymmetric) internal vacuum state and the external
exact gravitational KN solution.

The obtained by C.Lopez bubble source of the KN geometry [10] (see Fig.2) was pre-
sented in our works as a supersymmetric and superconducting bag model. The reason for
interpretation of the KN source as a bag model, is their ability to elasticity and deformations
under influence of external conditions, which is known from the behavior of the well-known
MIT and SLAC bag models [18, 19]. It was assumed also that bags are similar to strings
and can turn into strings under strong deformations [20, 21].

Meanwhile, one feature of the KN bag significantly distinguishes it from the MIT and
SLAC bag models – the usual bag models form a cavity in superconductor, while the KN
bag must have an internal superconducing state. This feature is the source of problems, that
force us to use a supersymmetric LG field model of phase transition.

The corresponding Hamiltonian was reduced to Bogomolnyi form, and it was shown that
this soliton forms a supersymmetric, PBS saturated state. In this letter we would like pay
attention to the used intricate method reduction to Bogomolnyi form, which was apparently
first suggested in [22] for a two-dimensional kink solution, and then successfully used for the
planar DW in [23, 24, 25, 26, 27]. We generalize this method to the much more complex case
of the Kerr geometry, in which the source is spinning and bounded by the DW of ellipsoidal
form. Besides, it is formed by the system of chiral fields, when one of them depends on the
Kerr angular coordinate and time. With respect to previous treatment [15, 16], we obtain
new very important feature of the DW source – formation of the DW-antiDW (breather)
structure, which is very essential for the discussed here solutions of the Dirac equations.

Our task here is to obtain a self-consistent solution of the Dirac equation embedded in
the proper gravitational and electromagnetic field of the electron corresponding to Kerr-
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Newman solution. By solving this problem, we obtain that Kerr-Schild coordinate system is
unique, in the sense that it allows us to use γ - matrices of the auxiliary Minkowski space,
where the Dirac equations in proper gravitational and electromagnetic field are linearized.

We obtain that solutions of the Dirac equations take the form of a massless relativistic
string based on an orientifold structure discussed in one of our old works [28].

2 Kerr-Schild geometry and structure of KN solution

Specific feature of the Kerr-Schild approach is the use of the auxiliary Minkowski space M
4,

(signature (−+++)), with Cartesian coordinates x = xµ = (t, x, y, z).
In these coordinates, metric of the KN solutions is [7]

gµν = ηµν + 2Hkµkν , (3)

where ηµν is flat metric of the auxiliary Minkowski space, and H is the scalar function which
for the KN solution takes the form

HKN =
mr − e2/2

r2 + a2 cos2 θ
. (4)

The KN vector potential is given as

Aµ =
−er

(r2 + a2 cos2 θ)
kµ. (5)

The field kµ(x) forms a Principal Null Congruence (PNC), kµk
µ = 0, shown on Fig.1. In

terms of BH geometry this field shows a local direction of dragging the frame, that in the
case of overrotating HB solutions produces closed Wilson lines surrounding the source of KN
geometry, see Fig.3.
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Figure 3: Deformations of the Kerr coordinate φ = const. caused by dragging of space in
angular direction near the Kerr singular ring.

Kerr’s congruence can be represented as an electromagnetic radiation which propagates
(with twist) from infinity towards the Kerr ring, penetrates it, and coming out on the other
sheet of the Kerr geometry goes out again to infinity. In Cartesian coordinates xµ ∈ M4,
the form kµdx

µ shows local direction of frame-dragging.
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In the Kerr angular coordinates PNC is presented in [7] by the form

kµdx
µ = dr − dt− a sin2 θdφK . (6)

The relation between Cartesian coordinates and Kerr’s angular coordinates is the following

x+ iy = (r + ia) exp{iφK} sin θ,
z = r cos θ, ρ = r − t, (7)

The incoming PNC is directed to the Kerr ring. Rays lying in equatorial plane (cos θ = 0)
focus on the Kerr singular ring. Other incoming rays, passing trough the ring, turn into
out-going rays propagating on another (say ”negative”) sheet of the Kerr space. Thus, the
Kerr solution in the KS form describes two different sheets of space-time with two different
congruences

k±µ dx
µ = ±dr − dt− a sin2 θdφK (8)

and two different metrics
g±µν = ηµν + 2Hk±µ k

±

ν (9)

on the same Minkowski background xµ ∈M4. Working with outgoing Kerr field correspond-
ing to retarded potentials, we choose sign plus in (8), and following [7] we take kµ = k+µ .

The Kerr theorem.

Kerr theorem defines two fields of PNC, k+(x) and k−(x), in terms of Penrose’s twistor
theory [29, 30, 31]. Kerr theorem presents two complex analytic solutions Y ± of the equation

F (TA) = 0, (10)

where F is quadratic holomorphic function of the projective twistor coordinates TA = {Y, ζ−
Y v, u+ Y ζ̄}, A = 1, 2, 3,
and

2
1

2 ζ = x+ iy, 2
1

2 ζ̄ = x− iy,

2
1

2u = z + t, 2
1

2 v = z − t, (11)

are the null Cartesian coordinates of the auxiliary Minkowski space xµ ∈ M
4.

In the class of quadratic in Y functions F (TA), the Kerr theorem gives two analytic
solutions Y ±(xµ), of the equation (10), which correspond to two projective spinor coordinates

Y + = ξ 1̇/ξ 0̇, Y − = η1/η0, (12)

which are antipodically conjucate
Y + = −1/Ȳ −, (13)

and the corresponding Weyl spinors ξα̇ and ηα define two antipodal fields of the principal
null directions

kµ+ = ξ̄ασµ
αα̇ξ

α̇, kµ− = η̄α̇σ̄
µα̇αηα. (14)
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3 Shape of the KN bag model and Wilson loop

The Löpez boundary of the bubble, where the KN space can be matched continuously with
the flat internal metric ηµν , is unambiguously determined by the Kerr-Shild metric form (3),
as the surface where H = 0. Setting HKN = 0 we obtain

r = re = e2/2m, (15)

that gives us the “classical” electron radius.
Since r is the Kerr radial coordinate, we obtain that the bag boundary represents indeed

an oblate ellipsoidal surface – a thin disk of the radius a, which is about the reduced Compton
wave length, and the thickness of the disk re, which is equal to classical electron radius. One
sees that degree of oblateness of the disk is re/a = 1/137 that corresponds to the fine
structure constant α.

Therefore, the Kerr-Newman spin parameter a leads to a strong deformation of the shape
of the bag model, and this deformation of the bag leads to the appearance of a relativistic
string at the sharp edge of the KN disk (see Fig.4).

The existence of this string is evidenced by the Wilson loop of the vector potential placed
along border of the bag, which was obtained first in [32] and then discussed in [15, 33, 34].

From (5) and (6) we obtain that vector-potential of the regularized KN solution takes its
maximal value in the equatorial plane (cos θ = 0) at the bag border r = re ,

Amax
µ dxµ = −2m

e
(dr − dt− adφK). (16)

This potential is tangent to the bag border r = re, and for the fixed time t = const., it forms
the closed Wilson loop C : φK ∈ [0, 2π], so that the loop integral
W (C) = P exp e

∮

C
Amax

µ dxµ, gives the following incursion of the potential

δφ = e

∮

C

Amax
φK

dφK. (17)

Integration gives δφ = 4πma, and using relation J = ma we obtain

δφ = 4πJ. (18)

Definiteness of potential requires δφ = 4πJ, leading to quantum condition J = 1

2
.
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Figure 4: Disk-like shape of the Kerr-Newman bag model. Border of the superconducting
bag ends with Wilson loop forming a closed circular string.
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4 String structure and superficial currents on the bor-

der of KN bag

4.1 Scattering process and orientation of the Kerr disk

On the initially two-sheeted KN space-time, the directed in future vortex field of the Kerr
congruence k+ forms an in-going on the negative sheet of the Kerr space r− < 0, where it
is directed towards the Kerr singular ring. Penetrating through the ring, this field continues
analytically on the second sheet r+ > 0, turning into an out-going where another coordinate
system is used, (7).

Although, in the regularized KN solution, the passage to the r− sheet is closed, consid-
eration of the analog of this sheet is relevant in the scattering process, when we observe the
in-going field incident on the source of the KN solution before the scattering, and then the
signal reflected in the scattering process in the form of an out-going field.

In contrast to the case with the negative sheet of the Kerr solution, in this case we use
the same Kerr’s coordinate system (7) for both in-going and out-going fields, in which we do
a replacement of r → −r, getting an equivalent coordinate transformation for the in-going
field on r−,

x+ iy = (r − ia) exp{−iφK} sin θ,
z = −r cos θ, ρ = −r − t, (19)

compatible with metric
g−µν = ηµν + 2Hk−µ k

−

ν , (20)

and with in-going Kerr congruence k−µ .
This process shows that disk-like source of KN field has two faces: one from the side of

the in-going fields k−µ , and the other from the side of the out-going fields k+µ . These two sides
are related with reverse sign of the disk rotation a → −a, and change the orientation angle
φk → −φk for the incoming field.

The corresponding string-like structure, was suggested in [28] as an orientifold string.
This string forms the Kerr’s light-like world-sheet X = XL(τ + σ), containing only the left
modes on the fundamental interval [0, π]. For a static picture of the Kerr disk at t = 0, the
orientifold string is formed as a parity operator Ω : [σ → 2π − σ], which covers the string
world sheet twice: first time on the interval [0, π], and second time on the interval [2π − σ]
in opposite direction.

The full orientifold world-sheet is formed as a folded string on the doubled interval
σ ∈ [0, 2π], and contains the sum of the left and right modes X = XL(τ + σ) +XR(τ − σ).

The orientifold string is left-right symmetric in the static representation, t = const.,
which in quantum theory is called as Heisenberg picture, however the symmetry Ω is broken
on the rotating disk.

4.2 Surface currents caused by Wilson loop, Higgs phases and

stringy parametrization

The Kerr-Newman solution demonstrates an intrinsic connection to string theory. The role
of the string is played by the singular ring of the Kerr solution [12, 13]. A regularized version
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of this string occurs at the sharp edge of the disk-like boundary of the ellipsoidal bag forming
the regular source of the Kerr-Newman solution.
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Figure 5: KN disk as a carrier of the orientifold string in the static t = const. picture.
Kinematic relations in the equatorial plane of KN disk. The shown out-going light-like
beam of the Kerr congruence kµ is tangent to Kerr singular ring and crosses the edge of the
disk at the angle θr = arctan re/a ≈ α .

As is known, the Higgs field model coincides with the Landau-Ginzburg (LG) model for
a phase transition in a superconducting medium [35]. Similarly, the supersymmetric Higgs
model is described by a supersymmetric (or generalized) Landau-Ginzburg (LG) model,
[22, 26].

The corresponding supersymmetric bag model is formed by the Domain Wall (DW),
which separates the external gravitational field KN from the flat inner space filled with
supersymmetric vacuum of the Higgs field.

Although the consistent description of this phase transition requires a supersymmetric
scheme of phase transition with several chiral fields, [15, 16, 17], the simple LG field model
with one chiral field can describe each separate process of the phase transition with creation
superficial currents on the boundary of the bag. Corresponding Lagrangian with one Higgs
fields is, [35],

L = −1

4
FµνF

µν − 1

2
(DµΦ)(DµΦ)∗ − V (|Φ|), (21)

where Dµ = ∇µ+ ieAµ are covariant derivatives with vector-potencial Aµ, Fµν = Aµ,ν−Aν,µ,
and

V = λ(ΦΦ∗ − η2)2, (22)

where η is the v.e.v. of the Higgs field Φ, η =< |Φ| >.
Superconducting vacuum state of the Higgs field inside the Bag leads to equations

�Aµ = Iµ = e|Φ|2(χ,µ+eAµ), (23)

which shows that inside the superconductor current Iµ is pushed out, Iµ = 0, and is concen-
trated in a surface layer with a depth of penetration δ, [36]). Potential of the KN field (5)
increases near the bag boundary, and takes maximum in the equatorial plane, near the bag
boundary r = R = e2/2m, cos θ = 0.
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According the Wess-Zumino model, the supersymmetric QED is described by two Higgs
fields Φ+ = |Φ+|e−ieχ+ and Φ− = |Φ−|eieχ−, [37], and the equation (23) allows us to connect
two phases of the Higgs fields χ+ and χ− with two boundaries of the KN bag model A−

µ

and A+
µ , which where obtained in the double-face structure of the KN disk [17], related with

congruences k+ and k−, and forming a DW-AntiDW structure, know also as ”breather” [38].
Integration of the LG equations for out-going phase of the Higgs field, placed on the

boundary r = r+, gives χ+|r+ = 2m(t+ aφK),
while for the in-going Higgs phase, placed on the boundary r = r−, we obtain
χ−|r− = 2m(t− aφK),
where we tuck also into account the change of charge sign by the transition a→ −a.

Therefore, on the boundary r = r+ we obtain the potential eA0 = 2m, eAφK
= 2ma,

and on the bounday r = r− – the potential eA0 = −2m, eAφK
= −2ma.

Applying these solutions to the out-going vector field A+
µ (r

+
e ) on the boundary r = r+e ,

which is dragged by gravitational field of the Kerr congruence, forming the closed Wilson
loop C+ : t = const. on the border r = r+e we obtain:

1) incursion of the potential A+
µ along the loop C+ is controlled by the Higgs phase χ+,

and integration of the equations I+µ = 0 ⇒ χ+,µ +eA
+
µ = 0 gives

χ+|r+ = 2m(t+ + aφ+

K), (24)

2) similarly, the out-going potential A+
µ , acting on the boundary r− gives

χ−|r− = −2m(t− − aφ−

K), (25)

and therefore, the phases of the Higgs fields (t++aφ+

K) and (t−−aφ−

K) behave like parametriza-
tion of the left and right modes of a relativistic string, see [34, 17].

The formation of a Wilson loop around a singular ring is a characteristic feature of the
string models with a tension mechanism in the form of a tube of force lines,[39].

The singular ring of the Kerr solution is a light-like line, since the light direction of the
Kerr congruence kµ touches the singular ring. Note, that the existence of ”right” and ”left”
excitation modes is an indispensable condition for the formation of a string as a world sheet.
A string described by only one mode, say the right one, turns into world line that depends
on only one parameter. For this reason, a simple light -like Kerr’s singular ring does not form
a world sheet, and strictly speaking is not a string, but a world line. In the regularized Kerr
solution, string is formed on the border of disk, where the null line of the Kerr congruence
crosses the string at an angle θc = arctan re/a, and kinematic relations show (see Fig.5) that
the speed at the edge of the disk is only slightly less than the speed of light, v = c cos θc < c.
A simple null-string is replaced by a string of the ’orientifold’ type considered in [28]. Two-
faced structure of the KN disk is analogous to the DW-AntiDW field model of the KN source
considered in [17], i.e. an oscillating solution of the type ‘breather’ [38].

5 The Dirac equations for an electron interacting with

its own gravitational and electromagnetic field

We come to the main part of our consideration – the solutions of the Dirac equations for
fermionic string which emerge on the border of the regularized KN disk interacting with the
consistent gravitational and electromagnetic KN field.
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We see that our analysis unavoidably leads us to the typical features of the quantum con-
siderations: importance of the separable analysis of the Heisenberg and Schrödinger pictures,
the corresponding state vectors, unitary transformation, plane waves and the scattering pro-
cess.

5.1 The KN disk-like source as electron in the Heisenberg picture.

The KN gravitational field can only be consistent with one of two types of the Kerr congru-
ence, either in-going or out-going, [46], and we choose the out-going variant, that is consistent
with the retarded electromagnetic fields.

Out-going Kerr congruence

k+µ dx
µ = dr − dt− a sin2 θdφK . (26)

propagates from the both sides of the disk r+ and r− towards direction +∞. The in-going
congruence

k−µ dx
µ = −dr − dt− a sin2 θdφK (27)

propagates from −∞ towards the disk and focus at the both sides of the disk r+ and r−.
The transition from out-going picture to in-going is connected with the replacement

r → −r, that in the coordinate transformation (7) corresponds to the replacement ρ+ → ρ−,
changing in the direction of rotation a→ −a, and in the orientation angle φK .

The Kerr disk is located at the scattering boundary t = 0, which corresponds to the state
vector in the Heisenberg picture. Orientation of the disk is changed under transition from
r → −0 to r → +0, and the string on the border of KN disk acquires the properties of the
orientifold string with two faces r+ and r−.

The regularized Kerr’s disk has a finite thickness |r| = re which is determined by the
physics of scattering process.

The role of the equations of motion in the Heisenberg picture, is played by the Dirac
equations.

5.2 Uniqueness of the Kerr-Schild coordinates

The Dirac equation in the Kerr-Newman gravitational field was studied in many works,
in particular in [40, 41, 42, 43, 44, 45]. The freedom to choice a coordinate system is an
important aspect of general relativity.

It should be particularly noted the uniqueness of the description of the KN solution in
the Kerr-Schild coordinate system, which allows us to linearize both electromagnetic and
gravitational equations on the background of the KN solution.

The Dirac operator in the charged and curved space-time is defined by the replacement
[42]

γµ(pµ − eAµ) → γµ(pµ − eAµ) +B, (28)

where B = 1

2
∇µγ

µ can be represented in the form

B =
1

2
√

|g|
∂µ(

√

|g|γµ), (29)

and is canceled because |g| = 1.
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As a consequence, γ-matrices of the auxiliary Minkowski space can be used in the Dirac
equation.

The same argument leads also to the linearization of the electromagnetic field by the use
of the Kerr-Schild coordinates in the KN solution, [12].

5.3 The Dirac equations in the Weyl representation

The Dirac equations in the Weyl representation decompose into two equations

(pµ − eA+

µ )σ
µ
αα̇ξ

α̇ = mηα, (30)

(pµ − eA−

µ )σ̄
µα̇αηα = mξα̇, (31)

where σ̄0 = σ0, and σ̄1,2,3 = −σ1,2,3, or ~σ = σ1,2,3.
Where the Wilson loop potential eA±

µ dx
µ = 2m(dr± − dt ∓ adφK) acts on both r±-

boundaries (faces) of the KN disk.
In the considered earlier analogous physical model of the rotating KN disk-like source,

the in-going and out-going Kerr congruences are controlled by two related phases of the
Higgs field, χ+ = −χ−, and the momentum pµ of the string solution must be completed by
an ”internal” angular momentum of two semi-strings ps = ps++ps−, associated with rotation
of the KN disk under its evolution in time,

pµ → pµ + psµ. (32)

According (14), the spinors ξα̇ and ηα have different helicities with respect to helicity
operator 1

2
(k~σ), and the Weyl spinor ξα̇ is aligned with out-going direction k+ = (1,k),

while the spinor ηα is aligned with in-going direction k− = (1,−k). The sign of ps is already
taken into account in the Dirac equations (30) and (31).

In the same time, the both vector fields of the Wilson lines eA±

µ dx
µ are out-going and,

being emanated from the boundaries r+ and r−, they are related with spinors of different
chirality. As a result, the electromagnetic contribution from Wilson line eA−

µ dx
µ should

change the sign in the equation (31).
The spinor string is formed of two semi-strings of opposite helicities ξα̇ and ηα, which

have the unique common point corresponding to the point where the orientation of the string
changes, a→ −a.

Integrating the Ginzburg-Landau equations for the out-going phase of the Higgs field and
r = r+, we obtained χ+|r+ = 2m(t + aφ), which for J = ma = 1/2 gives psµ|r+ = (2m, ∂φK

).
The corresponding vector potential is eAµ = (2m, eAφK

).
For the boundary r = r−, we have the opposite sign of charge, which corresponds to the

Wess-Zumino supersmmetric QED model, and also corresponds to integration of the BPS
equations considered in [17]. The change of orientation, a → −a, is accompanied by the
potential of the Wilson line in the form −eA0 = −2m, −eAφK

= 2ma.
To simplify notations we will omit further the index K in the Kerr angular coordinate φK .

5.4 The Dirac equations in the Heisenberg picture for t = const.

Taking the Weyl representation for γ-matrices, we can write the Dirac equations in Heisen-
berg picture for t = const..
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Setting pµ = (ǫ,p + ps) with ǫ = p0, and p = 0, we obtain the Dirac equations in the
rest frame,

(p0 − 2m)σ0ξα̇ + (psφ − 2maφ)~σξα̇ = mηα (33)

(p0 + 2m)σ0ηα − (psφ + 2maφ)~σηα = mξα̇. (34)

Where ξα̇ and ηα are normalized spinors ξ̄Iξ = η̄Iη = −1, and I is unit matrix.
For any ξα̇, ηα and m = 0, the first equation is identically satisfied when

p0 − eA0 = 0, psφ − eAφ = 0, (35)

and the second equation is identically satisfied when

p0 + eA0 = 0, psφ + eAφ = 0. (36)

Spinors |up >=
(

ξα̇

ηα

)

are normalized as < ūp|up >= 2m.

In the Heisenberg picture presenting the KN string at fixed time t = const. we have:
1) the spinor string ξα̇(φ) which is a massless half-string, created by the out-going light-

like directions k+ = (1,k) and emanated from Wilson’s counter φ ∈ [0, 2π] placed at r = r+e ,
and also the one more massless half-string, created by the out-going light-like directions
k+ = (1,k) emanated from Wilson’s counter φK ∈ [−2π, 0] placed at r = r−e .

2) the spinor string ηα(φ) representing the second massless half-string, created by the
in-going light-like directions k− = (1,−k) towards the Wilson counter φ ∈ [−2π, 0] placed
at r = r−e .

Since m = 0, is everywhere, for exclusion of singular point φ = 0 where the oppositely
directed semi-strings are joined, the both half-strings are massless and do not interact, except
for the point φ = 0, where a → −a, and the mass term is presented as a delta-function
m = mδ(φ).

The potential energy of the semi-strings tension is determined by the Wilson loop at the
boundaries r±,

eA0 = ±2m, eAφ = ±2ma, (37)

and the full energy of the semi-strings is cancelled, as it was shown when integrating the
BPS equations for the DW-AntiDW (breather) source of the KN solution, [17].

In the Weyl representation for matrices γµ, the out-going and in-going fields are ordered
in time, and the fields with negative frequencies do not arise.

5.5 The Schrodinger picture, plane waves and string in the Kerr-

Schild coordinates

In the Schrodinger picture the plane waves and in the Kerr-Schild coordinates are described
by wave function [47]

ψp =
1√
2ǫ
upe

−ipx, (38)

where −px = −pµxµ = p0x0 − px, and xµ = (t,x), pµ = (p0,p), ǫ = p0 = +
√

p2 +m2.
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The spinor ψp satisfies the Dirac equations

(γµ
∂

∂xµ
+m)ψp = 0. (39)

In the rest system, ǫ = m, p = 0, functions ψp and up are connected by unitary transfor-
mation U = e−iHt, where H = m is the Hamiltonian of the system.

We consider U as operator acting on a state vector |up >=
(

ξα̇

ηα

)

, in the static Heisen-

berg picture, while the plane wave

ψp = Uup = e−imt

(

ξα̇

ηα

)

, (40)

represents the state vector |ψp > in the dynamic Schrodinger picture.
In the Schrodinger picture the string turns out to be asymmetric:

the semi-string ξα̇(φ) covering the interval φ ∈ [0, 2π] gives eA+

0 = m, eA+

φ = ma, and

semi-string ηα(φ) covering the interval φ ∈ [−2π, 0] gives eA−

0 = −3m, eA−

φ = −3ma.

When φ = 0, the semi-strings are joined, ξα̇(0) = ±ηα(0).
Although in Heisenberg picture electron represents a string about the Compton size (or

Wilson Loop) surrounding the Kerr-Newman disk, this is a static picture corresponding to
shape of the string an fixed time t = const. Really, the electron is an ultra-relativistic object,
and any external observer (including other particles) perceives the electron in Schrodinger
picture, where its wave function is multiplied by unitary factor eiHt.

The consistent with gravity Compton radius of an electron is not its effective scattering
radius, and the people working in the high energy physics perceive it as a micro-vortex,
which works like a scalpel.

6 Conclusion

This preliminary analysis shows that, following to pioneering works by Carter, Israel and
López, the Dirac electron can be described as an over-rotating KN gravitating BH solution
described by the Dirac equations interacting with its proper gravitational and electromag-
netic field in the Kerr-Schild coordinate system.

Such description is important both from point of view of the unification gravity with
quantum theory, and from point of view of the nonperturbative model of the extended
electron based on the Higgs mechanism of the spontaneously broken gauge theory.

This treatment shows that the existing theories and models of elementary particles are at
least incomplete, and do not take into account a number of important effects associated with
the gravitational process of the frame-dragging in the spinning gravitational space-time, in
particular, the strong influence of the Wilson loop in the Kerr-Newman gravitational field.

The main new lessons that this model provides are as follows:
1. The gravitational field of a particle with spin must be described by the regularized

Kerr-Newman solution, which distorts space on the Compton scale, and increases the zone
of influence of gravity by about 22 orders of magnitude.

2. The supersymmetric Higgs model (Landau-Ginzburg field model) allows us to resolve
the known conflict between gravity and quantum theory without changes of the Einstein
equations.
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3. The regularized electron model takes the form of a superconducting disk-like a bag
formed from the Higgs field in a supersymmetric vacuum state.

4. The Kerr-Schild coordinates are exceptional, since the Dirac and Maxwell equations
are linearized in these coordinates on the gravitational KN background.

5. The Dirac equations in the KN gravitational field take a stringy form, and the corre-
sponding electron’s dynamics reproduces the dynamics of a massless relativistic string.

When this paper was finished, I found the work by Ahmed Alharthy and Vladimir V.
Kassandrov [48] which overlaps with main theme of our work. The work by these authors
is very interesting and based on the old works by F.Edjo Ovono, V. Kassandrov and Ya.
Terletsky which develops the works and ideas of Natan Rosen.

Although it seems that these works are very far from the KN electron model, we find
that the inrtroduced by Rosen scalar potential is prototype of the considered in our work the
Higgs field. The authors come to similar conclusions with our own that gravity has a strong
influence on the formation of elementary particles, and although authors do not come to our
categoric statement that gravity works on the Compton scale, it seems natural, because they
do not take into account the influence of spin, i.e. the frame-dragging of the KN solution.

The fact that the core of an electron takes the form of a relativistic string is very impor-
tant, as it can explain some of the striking properties of the electron that are known from
scattering experiments, where the electron exhibits its seemingly point-like structure.
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