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Abstract: We consider the Dirac electron as a nonperturbative particle-like solution consistent1

with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier2

models of the KN electron regularized by Israel and López, and consider the non-perturbative3

electron model as a bag model formed by Higgs mechanism of symmetry breaking. The The4

López regularization determines the unique shape of the electron in the form of a thin disk with a5

Compton radius reduced by 4π. In our model this disk is coupled with a closed circular string6

which is placed on the border of the disk and creates the caused by gravitation frame-dragging7

string tension produced by the vector potential of the Wilson loop. Using remarkable features8

of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions9

of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show10

that this solution takes the form of a massless relativistic string. Parallelism of this model with11

quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties12

of the stringy electron model in the relativistic scattering processes.13

Keywords: Kerr-Newman black hole, Compton scale, Dirac equations, fermionic string, frame14

dragging, Wilson loop, Heisenberg picture, Schrodinger picture, Kerr-Schild coordinates15

1. Introduction16

One of the main points of confrontation between Gravity and Quantum theory17

is the structure of elementary particles, which are considered in quantum theory as18

structureless, like a point-like electron in Dirac theory, but must be represented as an19

extended field model in configuration space for compatibility with the stress-energy20

tensor of Einstein’s equations.21

A revolutionary step towards unification quantum with gravity was taken in super-22

string theory, which represented particles as extended strings. Gravitational black holes23

(BH) have been considered as candidates for elementary particles repeatedly since 1980,24

and since the 1990s, they have also attracted attention in the theory of superstrings.25

However, as one of its founders, John Schwartz, noted,“... Since 1974, superstring26

theory has ceased to be regarded as particle physics... " and "... a realistic model of27

elementary particles still seems a distant dream ..." [1].28

Meanwhile, a renewed interest to relationships between black holes and elementary29

particles has been obtained recently in the works [2–5].30

Formation of BHs is related with gravitational effect of frame-dragging. In the31

rotating Kerr-Newman BH solution, with parameters J, m, a corresponding to spin, mass32

and Kerr’s rotational parameter a of elementary particle, spin creates a giant over-33

rotating dragging of space, which is directed along of direction of rotation, leading to34

a new important effect, formation of the closed Wilson loop, which never was used in35

particle physics before.36
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In contrast to considered earlier cases of the Schwarzschild or Reissner-Nordström
gravity, the characteristic scale of the KN gravity is essentially increases, because it is
determined by radius of the Kerr singular ring

a =
J

mc
, (1)

which corresponds to the reduced Compton wave length of the particle.37

This fact, established already in the first models of an electron based on the Kerr38

geometry [6–12] was remarkable itself, because it was known, but was not timely es-39

timated as one of the first evidences of the correspondence between KN particle and40

quantum theory.41
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Figure 1. Kerr congruence and Kerr singular ring generated by null congruence kµ.

The gigantic ratio between the spin and mass values for elementary particles in KN
geometry violated the generally accepted concept of the weakness of gravity, based on
the earlier estimations of gravitational radius of the Schwarzschild solution

rg = 2Gm. (2)

Gravitational field of an electron corresponding to the Kerr-Newman solution was42

singular and changed topology of space at the Compton distance.43

In 1968, Carter obtained that the Kerr-Newman (KN) solution for a charged and44

rotating black hole (BH) has gyromagnetic ratio g = 2 – just the same as that of the Dirac45

electron [6]. It gave rise to study of the electron model based on the KN solution, see46

[6–14] and so on.47

It should be noted that the KN electron model is not actually a black hole, because48

taking the parameters of KN solution in correspondence with parameters of an electron,49

mass m, charge e and angular momentum J = ma ∼ h̄/2, we obtain the relation50

a2 � (m2 + e2) which shows that the rotation parameter a is so large, that all horizons51

of the BH solution disappear. There appears the Kerr singular ring, which was hidden52

earlier behind the horizon of the KN solution. This ring forms a type of the door that53

opens the way to another sheet of the Kerr space. The space becomes two-sheeted,54

having the basic background and some kind of the mirror Alice world behind the Kerr55

ring.56

In previous papers [15–17] we developed the line started by W. Israel [8], who57

suggested to truncate the second sheet of the Kerr geometry along the disk spanned by58

the Kerr singular ring. After analysis of the Israel source by Hamity [9], a modified59

disk-like source was suggested by C. López [10] as an ellipsoidal vacuum bubble – a thin60

shell covering the Kerr singular ring and matching with the external KN solution.61

In the papers [15–17] we considered a generalization of the López model, in which62

the KN bubble is formed of the Higgs field, which is in a superconducting vacuum state.63

The thin shell of bubble is replaced by a domain-wall solution, which is described by the64

Landau-Ginzburg (LG) supersymmetric model of phase transition. Domain Wall (DW)65
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Figure 2. Disk-like source of the regularized solution of KN as a bag model. Deformation of the
disk at different ratios of parameters R = re and a. For re = e2/2m disk is very thin, and re/a = α

corresponds to the fine structure const.

interpolates between the superconducting (and supersymmetric) internal vacuum state66

and the external exact gravitational KN solution.67

The obtained by C.Lopez bubble source of the KN geometry [10] (see Fig.2) was68

presented in our works as a supersymmetric and superconducting bag model. The69

reason for interpretation of the KN source as a bag model, is their ability to elasticity and70

deformations under influence of external conditions, which is known from the behavior71

of the well-known MIT and SLAC bag models [18,19]. It was assumed also that bags are72

similar to strings and can turn into strings under strong deformations [20,21].73

Meanwhile, one feature of the KN bag significantly distinguishes it from the MIT74

and SLAC bag models – the usual bag models form a cavity in superconductor, while75

the KN bag must have an internal superconducing state. This feature is the source of76

problems, that force us to use a supersymmetric LG field model of phase transition.77

The corresponding Hamiltonian was reduced to Bogomolnyi form, and it was78

shown that this soliton forms a supersymmetric, PBS saturated state. In this letter we79

would like pay attention to the used intricate method reduction to Bogomolnyi form,80

which was apparently first suggested in [22] for a two-dimensional kink solution, and81

then successfully used for the planar DW in [23–27]. We generalize this method to82

the much more complex case of the Kerr geometry, in which the source is spinning83

and bounded by the DW of ellipsoidal form. Besides, it is formed by the system of84

chiral fields, when one of them depends on the Kerr angular coordinate and time. With85

respect to previous treatment [15,16], we obtain new very important feature of the DW86

source – formation of the DW-antiDW (breather) structure, which is very essential for87

the discussed here solutions of the Dirac equations.88

Our task here is to obtain a self-consistent solution of the Dirac equation embedded89

in the proper gravitational and electromagnetic field of the electron corresponding to90

Kerr-Newman solution. By solving this problem, we obtain that Kerr-Schild coordinate91

system is unique, in the sense that it allows us to use γ - matrices of the auxiliary92

Minkowski space, where the Dirac equations in proper gravitational and electromagnetic93

field are linearized.94

We obtain that solutions of the Dirac equations take the form of a massless rel-95

ativistic string based on an orientifold structure discussed in one of our old works96

[28].97

2. Kerr-Schild geometry and structure of KN solution98

Specific feature of the Kerr-Schild approach is the use of the auxiliary Minkowski99

space M4, (signature (−+++)), with Cartesian coordinates x = xµ = (t, x, y, z).100
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In these coordinates, metric of the KN solutions is [7]

gµν = ηµν + 2Hkµkν, (3)

where ηµν is flat metric of the auxiliary Minkowski space, and H is the scalar function
which for the KN solution takes the form

HKN =
mr− e2/2

r2 + a2 cos2 θ
. (4)

The KN vector potential is given as

Aµ =
−er

(r2 + a2 cos2 θ)
kµ. (5)

The field kµ(x) forms a Principal Null Congruence (PNC), kµkµ = 0, shown on Fig.1.101

In terms of BH geometry this field shows a local direction of dragging the frame, that102

in the case of overrotating HB solutions produces closed Wilson lines surrounding the103

source of KN geometry, see Fig.3.104
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Figure 3. Deformations of the Kerr coordinate φ = const. caused by dragging of space in angular
direction near the Kerr singular ring.

Kerr’s congruence can be represented as an electromagnetic radiation which propa-105

gates (with twist) from infinity towards the Kerr ring, penetrates it, and coming out on106

the other sheet of the Kerr geometry goes out again to infinity. In Cartesian coordinates107

xµ ∈ M4, the form kµdxµ shows local direction of frame-dragging.108

In the Kerr angular coordinates PNC is presented in [7] by the form

kµdxµ = dr− dt− a sin2 θdφK. (6)

The relation between Cartesian coordinates and Kerr’s angular coordinates is the follow-109

ing110

x + iy = (r + ia) exp{iφK} sin θ,

z = r cos θ, ρ = r− t, (7)

The incoming PNC is directed to the Kerr ring. Rays lying in equatorial plane (cos θ = 0)
focus on the Kerr singular ring. Other incoming rays, passing trough the ring, turn into
out-going rays propagating on another (say "negative") sheet of the Kerr space. Thus,
the Kerr solution in the KS form describes two different sheets of space-time with two
different congruences

k±µ dxµ = ±dr− dt− a sin2 θdφK (8)
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and two different metrics
g±µν = ηµν + 2Hk±µ k±ν (9)

on the same Minkowski background xµ ∈ M4. Working with outgoing Kerr field corre-111

sponding to retarded potentials, we choose sign plus in (8), and following [7] we take112

kµ = k+µ .113

The Kerr theorem.114

Kerr theorem defines two fields of PNC, k+(x) and k−(x), in terms of Penrose’s
twistor theory [29–31]. Kerr theorem presents two complex analytic solutions Y± of the
equation

F(TA) = 0, (10)

where F is quadratic holomorphic function of the projective twistor coordinates115

TA = {Y, ζ −Yv, u + Yζ̄}, A = 1, 2, 3,116

and117

2
1
2 ζ = x + iy, 2

1
2 ζ̄ = x− iy,

2
1
2 u = z + t, 2

1
2 v = z− t, (11)

are the null Cartesian coordinates of the auxiliary Minkowski space xµ ∈M4.118

In the class of quadratic in Y functions F(TA), the Kerr theorem gives two ana-
lytic solutions Y±(xµ), of the equation (10), which correspond to two projective spinor
coordinates

Y+ = ξ 1̇/ξ 0̇, Y− = η1/η0, (12)

which are antipodically conjucate

Y+ = −1/Ȳ−, (13)

and the corresponding Weyl spinors ξ α̇ and ηα define two antipodal fields of the principal
null directions

kµ+ = ξ̄ασ
µ
αα̇ξ α̇, kµ− = η̄α̇σ̄µα̇αηα. (14)

3. Shape of the KN bag model and Wilson loop119

The Löpez boundary of the bubble, where the KN space can be matched continu-
ously with the flat internal metric ηµν, is unambiguously determined by the Kerr-Shild
metric form (3), as the surface where H = 0. Setting HKN = 0 we obtain

r = re = e2/2m, (15)

that gives us the “classical” electron radius.120

Since r is the Kerr radial coordinate, we obtain that the bag boundary represents121

indeed an oblate ellipsoidal surface – a thin disk of the radius a, which is about the122

reduced Compton wave length, and the thickness of the disk re, which is equal to123

classical electron radius. One sees that degree of oblateness of the disk is re/a = 1/137124

that corresponds to the fine structure constant α.125

Therefore, the Kerr-Newman spin parameter a leads to a strong deformation of the126

shape of the bag model, and this deformation of the bag leads to the appearance of a127

relativistic string at the sharp edge of the KN disk (see Fig.4).128

The existence of this string is evidenced by the Wilson loop of the vector potential129

placed along border of the bag, which was obtained first in [32] and then discussed in130

[15,33,34].131
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From (5) and (6) we obtain that vector-potential of the regularized KN solution
takes its maximal value in the equatorial plane (cos θ = 0) at the bag border r = re ,

Amax
µ dxµ = −2m

e
(dr− dt− adφK). (16)

This potential is tangent to the bag border r = re, and for the fixed time t = const., it
forms the closed Wilson loop C : φK ∈ [0, 2π], so that the loop integral
W(C) = P exp e

∮
C Amax

µ dxµ, gives the following incursion of the potential

δφ = e
∮

C
Amax

φK
dφK. (17)

Integration gives δφ = 4πma, and using relation J = ma we obtain

δφ = 4π J. (18)

Definiteness of potential requires δφ = 4π J, leading to quantum condition J = 1
2 .132

4. String structure and superficial currents on the border of KN bag133

4.1. Scattering process and orientation of the Kerr disk134

On the initially two-sheeted KN space-time, the directed in future vortex field of135

the Kerr congruence k+ forms an in-going on the negative sheet of the Kerr space r− < 0,136

where it is directed towards the Kerr singular ring. Penetrating through the ring, this137

field continues analytically on the second sheet r+ > 0, turning into an out-going where138

another coordinate system is used, (7).139

Although, in the regularized KN solution, the passage to the r− sheet is closed,140

consideration of the analog of this sheet is relevant in the scattering process, when we141

observe the in-going field incident on the source of the KN solution before the scattering,142

and then the signal reflected in the scattering process in the form of an out-going field.143

In contrast to the case with the negative sheet of the Kerr solution, in this case we144

use the same Kerr’s coordinate system (7) for both in-going and out-going fields, in145

which we do a replacement of r → −r, getting an equivalent coordinate transformation146

for the in-going field on r−,147

x + iy = (r− ia) exp{−iφK} sin θ,

z = −r cos θ, ρ = −r− t, (19)

compatible with metric
g−µν = ηµν + 2Hk−µ k−ν , (20)

and with in-going Kerr congruence k−µ .148
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Figure 4. Disk-like shape of the Kerr-Newman bag model. Border of the superconducting bag
ends with Wilson loop forming a closed circular string.
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This process shows that disk-like source of KN field has two faces: one from the149

side of the in-going fields k−µ , and the other from the side of the out-going fields k+µ .150

These two sides are related with reverse sign of the disk rotation a→ −a, and change151

the orientation angle φk → −φk for the incoming field.152

The corresponding string-like structure, was suggested in [28] as an orientifold153

string. This string forms the Kerr’s light-like world-sheet X = XL(τ + σ), containing154

only the left modes on the fundamental interval [0, π]. For a static picture of the Kerr155

disk at t = 0, the orientifold string is formed as a parity operator Ω : [σ → 2π − σ],156

which covers the string world sheet twice: first time on the interval [0, π], and second157

time on the interval [2π − σ] in opposite direction.158

The full orientifold world-sheet is formed as a folded string on the doubled interval159

σ ∈ [0, 2π], and contains the sum of the left and right modes X = XL(τ + σ)+ XR(τ− σ).160

The orientifold string is left-right symmetric in the static representation, t = const.,161

which in quantum theory is called as Heisenberg picture, however the symmetry Ω is162

broken on the rotating disk.163

4.2. Surface currents caused by Wilson loop, Higgs phases and stringy parametrization164

The Kerr-Newman solution demonstrates an intrinsic connection to string theory.165

The role of the string is played by the singular ring of the Kerr solution [12,13]. A166

regularized version of this string occurs at the sharp edge of the disk-like boundary of167

the ellipsoidal bag forming the regular source of the Kerr-Newman solution.168
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Figure 5. KN disk as a carrier of the orientifold string in the static t = const. picture. Kinematic
relations in the equatorial plane of KN disk. The shown out-going light-like beam of the Kerr
congruence kµ is tangent to Kerr singular ring and crosses the edge of the disk at the angle
θr = arctan re/a ≈ α .

As is known, the Higgs field model coincides with the Landau-Ginzburg (LG) model169

for a phase transition in a superconducting medium [35]. Similarly, the supersymmetric170

Higgs model is described by a supersymmetric (or generalized) Landau-Ginzburg (LG)171

model, [22,26].172

The corresponding supersymmetric bag model is formed by the Domain Wall (DW),173

which separates the external gravitational field KN from the flat inner space filled with174

supersymmetric vacuum of the Higgs field.175

Although the consistent description of this phase transition requires a supersym-
metric scheme of phase transition with several chiral fields, [15–17], the simple LG field
model with one chiral field can describe each separate process of the phase transition
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with creation superficial currents on the boundary of the bag. Corresponding Lagrangian
with one Higgs fields is, [35],

L = −1
4

FµνFµν − 1
2
(DµΦ)(DµΦ)∗ −V(|Φ|), (21)

where Dµ = ∇µ + ieAµ are covariant derivatives with vector-potencial Aµ, Fµν =
Aµ,ν − Aν,µ, and

V = λ(ΦΦ∗ − η2)2, (22)

where η is the v.e.v. of the Higgs field Φ, η =< |Φ| >.176

Superconducting vacuum state of the Higgs field inside the Bag leads to equations

�Aµ = Iµ = e|Φ|2(χ,µ +eAµ), (23)

which shows that inside the superconductor current Iµ is pushed out, Iµ = 0, and is177

concentrated in a surface layer with a depth of penetration δ, [36]). Potential of the KN178

field (5) increases near the bag boundary, and takes maximum in the equatorial plane,179

near the bag boundary r = R = e2/2m, cos θ = 0.180

According the Wess-Zumino model, the supersymmetric QED is described by two181

Higgs fields Φ+ = |Φ+|e−ieχ+ and Φ− = |Φ−|eieχ− , [37], and the equation (23) allows182

us to connect two phases of the Higgs fields χ+ and χ− with two boundaries of the KN183

bag model A−µ and A+
µ , which where obtained in the double-face structure of the KN184

disk [17], related with congruences k+ and k−, and forming a DW-AntiDW structure,185

know also as "breather" [38].186

Integration of the LG equations for out-going phase of the Higgs field, placed on187

the boundary r = r+, gives χ+|r+ = 2m(t + aφK),188

while for the in-going Higgs phase, placed on the boundary r = r−, we obtain189

χ−|r− = 2m(t− aφK),190

where we tuck also into account the change of charge sign by the transition a→ −a.191

Therefore, on the boundary r = r+ we obtain the potential eA0 = 2m, eAφK = 2ma,192

and on the bounday r = r− – the potential eA0 = −2m, eAφK = −2ma.193

Applying these solutions to the out-going vector field A+
µ (r+e ) on the boundary194

r = r+e , which is dragged by gravitational field of the Kerr congruence, forming the195

closed Wilson loop C+ : t = const. on the border r = r+e we obtain:196

1) incursion of the potential A+
µ along the loop C+ is controlled by the Higgs phase

χ+, and integration of the equations I+µ = 0⇒ χ+,µ +eA+
µ = 0 gives

χ+|r+ = 2m(t+ + aφ+
K ), (24)

2) similarly, the out-going potential A+
µ , acting on the boundary r− gives

χ−|r− = −2m(t− − aφ−K ), (25)

and therefore, the phases of the Higgs fields (t+ + aφ+
K ) and (t− − aφ−K ) behave like197

parametrization of the left and right modes of a relativistic string, see [17,34].198

The formation of a Wilson loop around a singular ring is a characteristic feature of199

the string models with a tension mechanism in the form of a tube of force lines,[39].200

The singular ring of the Kerr solution is a light-like line, since the light direction of201

the Kerr congruence kµ touches the singular ring. Note, that the existence of "right" and202

"left" excitation modes is an indispensable condition for the formation of a string as a203

world sheet. A string described by only one mode, say the right one, turns into world line204

that depends on only one parameter. For this reason, a simple light -like Kerr’s singular205

ring does not form a world sheet, and strictly speaking is not a string, but a world line.206

In the regularized Kerr solution, string is formed on the border of disk, where the null207

line of the Kerr congruence crosses the string at an angle θc = arctan re/a, and kinematic208
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relations show (see Fig.5) that the speed at the edge of the disk is only slightly less than209

the speed of light, v = c cos θc < c. A simple null-string is replaced by a string of the210

’orientifold’ type considered in [28]. Two-faced structure of the KN disk is analogous211

to the DW-AntiDW field model of the KN source considered in [17], i.e. an oscillating212

solution of the type ‘breather’ [38].213

5. The Dirac equations for an electron interacting with its own gravitational and214

electromagnetic field215

We come to the main part of our consideration – the solutions of the Dirac equations216

for fermionic string which emerge on the border of the regularized KN disk interacting217

with the consistent gravitational and electromagnetic KN field.218

We see that our analysis unavoidably leads us to the typical features of the quantum219

considerations: importance of the separable analysis of the Heisenberg and Schrödinger220

pictures, the corresponding state vectors, unitary transformation, plane waves and the221

scattering process.222

5.1. The KN disk-like source as electron in the Heisenberg picture.223

The KN gravitational field can only be consistent with one of two types of the Kerr224

congruence, either in-going or out-going, [46], and we choose the out-going variant, that225

is consistent with the retarded electromagnetic fields.226

Out-going Kerr congruence

k+µ dxµ = dr− dt− a sin2 θdφK. (26)

propagates from the both sides of the disk r+ and r− towards direction +∞. The in-going
congruence

k−µ dxµ = −dr− dt− a sin2 θdφK (27)

propagates from −∞ towards the disk and focus at the both sides of the disk r+ and r−.227

The transition from out-going picture to in-going is connected with the replacement228

r → −r, that in the coordinate transformation (7) corresponds to the replacement229

ρ+ → ρ−, changing in the direction of rotation a→ −a, and in the orientation angle φK.230

The Kerr disk is located at the scattering boundary t = 0, which corresponds to231

the state vector in the Heisenberg picture. Orientation of the disk is changed under232

transition from r → −0 to r → +0, and the string on the border of KN disk acquires the233

properties of the orientifold string with two faces r+ and r−.234

The regularized Kerr’s disk has a finite thickness |r| = re which is determined by235

the physics of scattering process.236

The role of the equations of motion in the Heisenberg picture, is played by the Dirac237

equations.238

5.2. Uniqueness of the Kerr-Schild coordinates239

The Dirac equation in the Kerr-Newman gravitational field was studied in many240

works, in particular in [40–45]. The freedom to choice a coordinate system is an important241

aspect of general relativity.242

It should be particularly noted the uniqueness of the description of the KN solution in the243

Kerr-Schild coordinate system, which allows us to linearize both electromagnetic and gravitational244

equations on the background of the KN solution.245

The Dirac operator in the charged and curved space-time is defined by the replace-
ment

γµ(pµ − eAµ)→ γµ(pµ − eAµ) + B, (28)

where B = 1
2∇µγµ can be represented in the form

B =
1

2
√
|g|

∂µ(
√
|g|γµ), (29)
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and is canceled because |g| = 1.246

As a consequence, γ-matrices of the auxiliary Minkowski space can be used in the Dirac247

equation.248

The same argument leads also to the linearization of the electromagnetic field by249

the use of the Kerr-Schild coordinates in the KN solution, [12].250

5.3. The Dirac equations in the Weyl representation251

The Dirac equations in the Weyl representation decompose into two equations252

(pµ − eA+
µ )σ

µ
αα̇ξ α̇ = mηα, (30)

(pµ − eA−µ )σ̄
µα̇αηα = mξ α̇, (31)

where σ̄0 = σ0, and σ̄1,2,3 = −σ1,2,3, or~σ = σ1,2,3.253

Where the Wilson loop potential eA±µ dxµ = 2m(dr± − dt∓ adφK) acts on both r±-254

boundaries (faces) of the KN disk.255

In the considered earlier analogous physical model of the rotating KN disk-like
source, the in-going and out-going Kerr congruences are controlled by two related
phases of the Higgs field, χ+ = −χ−, and the momentum pµ of the string solution must
be completed by an "internal" angular momentum of two semi-strings ps = ps+ + ps−,
associated with rotation of the KN disk under its evolution in time,

pµ → pµ + ps
µ. (32)

According (14), the spinors ξ α̇ and ηα have different helicities with respect to helicity256

operator 1
2 (k~σ), and the Weyl spinor ξ α̇ is aligned with out-going direction k+ = (1, k),257

while the spinor ηα is aligned with in-going direction k− = (1,−k). The sign of ps is258

already taken into account in the Dirac equations (30) and (31).259

In the same time, the both vector fields of the Wilson lines eA±µ dxµ are out-going260

and, being emanated from the boundaries r+ and r−, they are related with spinors of261

different chirality. As a result, the electromagnetic contribution from Wilson line eA−µ dxµ
262

should change the sign in the equation (31).263

The spinor string is formed of two semi-strings of opposite helicities ξ α̇ and ηα,264

which have the unique common point corresponding to the point where the orientation265

of the string changes, a→ −a.266

Integrating the Ginzburg-Landau equations for the out-going phase of the Higgs267

field and r = r+, we obtained χ+|r+ = 2m(t + aφ), which for J = ma = 1/2 gives268

ps
µ|r+ = (2m, ∂φK ). The corresponding vector potential is eAµ = (2m, eAφK ).269

For the boundary r = r−, we have the opposite sign of charge, which corresponds270

to the Wess-Zumino supersmmetric QED model, and also corresponds to integration of271

the BPS equations considered in [17]. The change of orientation, a→ −a, is accompanied272

by the potential of the Wilson line in the form −eA0 = −2m, −eAφK = 2ma.273

To simplify notations we will omit further the index K in the Kerr angular coordinate φK.274

5.4. The Dirac equations in the Heisenberg picture for t = const.275

Taking the Weyl representation for γ-matrices, we can write the Dirac equations in276

Heisenberg picture for t = const..277

Setting pµ = (ε, p + ps) with ε = p0, and p = 0, we obtain the Dirac equations in278

the rest frame,279

(p0 − 2m)σ0ξ α̇ + (ps
φ − 2maφ)~σξ α̇ = mηα (33)

(p0 + 2m)σ0ηα − (ps
φ + 2maφ)~σηα = mξ α̇. (34)

Where ξ α̇ and ηα are normalized spinors ξ̄ Iξ = η̄ Iη = −1, and I is unit matrix.280
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For any ξ α̇, ηα and m = 0, the first equation is identically satisfied when

p0 − eA0 = 0, ps
φ − eAφ = 0, (35)

and the second equation is identically satisfied when

p0 + eA0 = 0, ps
φ + eAφ = 0. (36)

Spinors |up >=

(
ξ α̇

ηα

)
are normalized as < ūp|up >= 2m.281

In the Heisenberg picture presenting the KN string at fixed time t = const. we have:282

1) the spinor string ξ α̇(φ) which is a massless half-string, created by the out-going283

light-like directions k+ = (1, k) and emanated from Wilson’s counter φ ∈ [0, 2π] placed284

at r = r+e , and also the one more massless half-string, created by the out-going light-like285

directions k+ = (1, k) emanated from Wilson’s counter φK ∈ [−2π, 0] placed at r = r−e .286

2) the spinor string ηα(φ) representing the second massless half-string, created by287

the in-going light-like directions k− = (1,−k) towards the Wilson counter φ ∈ [−2π, 0]288

placed at r = r−e .289

Since m = 0, is everywhere, for exclusion of singular point φ = 0 where the290

oppositely directed semi-strings are joined, the both half-strings are massless and do not291

interact, except for the point φ = 0, where a→ −a, and the mass term is presented as a292

delta-function m = mδ(φ).293

The potential energy of the semi-strings tension is determined by the Wilson loop
at the boundaries r±,

eA0 = ±2m, eAφ = ±2ma, (37)

and the full energy of the semi-strings is cancelled, as it was shown when integrating294

the BPS equations for the DW-AntiDW (breather) source of the KN solution, [17].295

In the Weyl representation for matrices γµ, the out-going and in-going fields are296

ordered in time, and the fields with negative frequencies do not arise.297

5.5. The Schrodinger picture, plane waves and string in the Kerr-Schild coordinates298

In the Schrodinger picture the plane waves and in the Kerr-Schild coordinates are
described by wave function [47]

ψp =
1√
2ε

upe−ipx, (38)

where−px = −pµxµ = p0x0− px, and xµ = (t, x), pµ = (p0, p), ε = p0 = +
√

p2 + m2.299

The spinor ψp satisfies the Dirac equations

(γµ ∂

∂xµ
+ m)ψp = 0. (39)

In the rest system, ε = m, p = 0, functions ψp and up are connected by unitary300

transformation U = e−iHt, where H = m is the Hamiltonian of the system.301

We consider U as operator acting on a state vector |up >=

(
ξ α̇

ηα

)
, in the static

Heisenberg picture, while the plane wave

ψp = Uup = e−imt
(

ξ α̇

ηα

)
, (40)

represents the state vector |ψp > in the dynamic Schrodinger picture.302

In the Schrodinger picture the string turns out to be asymmetric:303
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the semi-string ξ α̇(φ) covering the interval φ ∈ [0, 2π] gives eA+
0 = m, eA+

φ = ma,304

and305

semi-string ηα(φ) covering the interval φ ∈ [−2π, 0] gives eA−0 = −3m, eA−φ =306

−3ma.307

When φ = 0, the semi-strings are joined, ξ α̇(0) = ±ηα(0).308

6. Conclusion309

This preliminary analysis shows that, following to pioneering works by Carter,310

Israel and Lṕez, the Dirac electron can be described as an over-rotating KN gravitating311

BH solution described by the Dirac equations interacting with its proper gravitational312

and electromagnetic field in the Kerr-Schild coordinate system.313

Such description in important both from point of view of the unification gravity314

with quantum theory, from point of view of the nonperturbative model of the extended315

electron based on the Higgs mechanism of the spontaneously broken gauge theory.316

This treatment shows that the existing theories and models of elementary particles317

are at least incomplete, and do not take into account a number of important effects asso-318

ciated with the gravitational process of the frame-dragging in the spinning gravitational319

space-time, in particular, the strong influence of the Wilson loop in the Kerr-Newman320

gravitational field.321

The main new lessons that this model provides are as follows:322

1. The gravitational field of a particle with spin must be described by the regularized323

Kerr-Newman solution, which distorts space on the Compton scale, and increases the324

zone of influence of gravity by about 22 orders of magnitude.325

2. The supersymmetric Higgs model (Landau-Ginzburg field model) allows us to326

resolve the known conflict between gravity and quantum theory without changes of the327

Einstein equations.328

3. The regularized electron model takes the form of a superconducting disk-like a329

bag formed from the Higgs field in a supersymmetric vacuum state.330

4. The Kerr-Schild coordinates are exceptional, since the Dirac and Maxwell equa-331

tions are linearized in these coordinates on the gravitational KN background.332

5. The Wilson loop, formed by gravitational dragging of the vector potential, gives333

an important nonlinear contribution to the electron self-energy.334

6. The Dirac equations in the KN gravitational field take a stringy form, and the335

corresponding electron’s dynamics reproduces the dynamics of a massless relativistic336

string.337

When this paper was finished, I found the work by Ahmed Alharthy and Vladimir338

V. Kassandrov [48] which overlaps with main theme of our work. The work by these339

authors is very interesting and based on the old works by F.Edjo Ovono, V. Kassandrov340

and Ya. Terletsky which develops the works and ideas of Natan Rosen. Although341

it seems that these works are very far from the KN electron model, we find that the342

inrtoduced by Rosen scalar potential is prototype of the considered in our work the343

Higgs field. The authors come to similar conclusions with our own that gravity has a344

strong influence on the formation of elementary particles, and although authors do not345

come to our direct statement that gravity works on the Compton scale, it seems natural,346

because they do not take into account the influence of spin, i.e. the frame-dragging of347

the KN solution.348

The fact that the core of an electron takes the form of a relativistic string is very349

important, as it can explain some of the striking properties of the electron that are350

known from scattering experiments, where the electron exhibits its seemingly point-like351

structure.352
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