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Abstract: We consider the Dirac electron as a nonperturbative particle-like solution consistent
with its own Kerr-Newman (KN) gravitational and electromagnetic field. We develop the earlier
models of the KN electron regularized by Israel and Lépez, and consider the non-perturbative
electron model as a bag model formed by Higgs mechanism of symmetry breaking. The The
Loépez regularization determines the unique shape of the electron in the form of a thin disk with a
Compton radius reduced by 47r. In our model this disk is coupled with a closed circular string
which is placed on the border of the disk and creates the caused by gravitation frame-dragging
string tension produced by the vector potential of the Wilson loop. Using remarkable features
of the Kerr-Schild coordinate system, which linearizes the Dirac equation, we obtain solutions
of the Dirac equation consistent with the KN gravitational and electromagnetic field, and show
that this solution takes the form of a massless relativistic string. Parallelism of this model with
quantum representations in Heisenberg and Schrodinger pictures explains remarkable properties
of the stringy electron model in the relativistic scattering processes.

Keywords: Kerr-Newman black hole, Compton scale, Dirac equations, fermionic string, frame
dragging, Wilson loop, Heisenberg picture, Schrodinger picture, Kerr-Schild coordinates

1. Introduction

One of the main points of confrontation between Gravity and Quantum theory
is the structure of elementary particles, which are considered in quantum theory as
structureless, like a point-like electron in Dirac theory, but must be represented as an
extended field model in configuration space for compatibility with the stress-energy
tensor of Einstein’s equations.

A revolutionary step towards unification quantum with gravity was taken in super-
string theory, which represented particles as extended strings. Gravitational black holes
(BH) have been considered as candidates for elementary particles repeatedly since 1980,
and since the 1990s, they have also attracted attention in the theory of superstrings.

However, as one of its founders, John Schwartz, noted,”... Since 1974, superstring

Citation: Burinskii, A. Dirac Elec- theory has ceased to be regarded as particle physics... " and "... a realistic model of
tron in Proper Kerr-Newman Grav- elementary particles still seems a distant dream ..." [1].
ity. Preprints 2021, 1, 0. Meanwhile, a renewed interest to relationships between black holes and elementary
https:/ /dx.doi.org/ particles has been obtained recently in the works [2-5].

Formation of BHs is related with gravitational effect of frame-dragging. In the
rotating Kerr-Newman BH solution, with parameters |, m, a corresponding to spin, mass
and Kerr’s rotational parameter a of elementary particle, spin creates a giant over-
rotating dragging of space, which is directed along of direction of rotation, leading to
a new important effect, formation of the closed Wilson loop, which never was used in
particle physics before.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0003-4771-1427
https://dx.doi.org/10.3390/1010000
https://doi.org/10.20944/preprints202012.0758.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2020 d0i:10.20944/preprints202012.0758.v1

20f 14

In contrast to considered earlier cases of the Schwarzschild or Reissner-Nordstrom
gravity, the characteristic scale of the KN gravity is essentially increases, because it is
determined by radius of the Kerr singular ring

J
= 1
a=-- 1)
which corresponds to the reduced Compton wave length of the particle.
This fact, established already in the first models of an electron based on the Kerr
geometry [6-12] was remarkable itself, because it was known, but was not timely es-
timated as one of the first evidences of the correspondence between KN particle and

quantum theory.

Figure 1. Kerr congruence and Kerr singular ring generated by null congruence k.

The gigantic ratio between the spin and mass values for elementary particles in KN
geometry violated the generally accepted concept of the weakness of gravity, based on
the earlier estimations of gravitational radius of the Schwarzschild solution

re =2Gm. )

Gravitational field of an electron corresponding to the Kerr-Newman solution was
singular and changed topology of space at the Compton distance.

In 1968, Carter obtained that the Kerr-Newman (KN) solution for a charged and
rotating black hole (BH) has gyromagnetic ratio g = 2 —just the same as that of the Dirac
electron [6]. It gave rise to study of the electron model based on the KN solution, see
[6~14] and so on.

It should be noted that the KN electron model is not actually a black hole, because
taking the parameters of KN solution in correspondence with parameters of an electron,
mass m, charge e and angular momentum | = ma ~ h/2, we obtain the relation
a* > (m? + %) which shows that the rotation parameter a is so large, that all horizons
of the BH solution disappear. There appears the Kerr singular ring, which was hidden
earlier behind the horizon of the KN solution. This ring forms a type of the door that
opens the way to another sheet of the Kerr space. The space becomes two-sheeted,
having the basic background and some kind of the mirror Alice world behind the Kerr
ring.

In previous papers [15-17] we developed the line started by W. Israel [8], who
suggested to truncate the second sheet of the Kerr geometry along the disk spanned by
the Kerr singular ring. After analysis of the Israel source by Hamity [9], a modified
disk-like source was suggested by C. L6épez [10] as an ellipsoidal vacuum bubble — a thin
shell covering the Kerr singular ring and matching with the external KN solution.

In the papers [15-17] we considered a generalization of the Lépez model, in which
the KN bubble is formed of the Higgs field, which is in a superconducting vacuum state.
The thin shell of bubble is replaced by a domain-wall solution, which is described by the
Landau-Ginzburg (LG) supersymmetric model of phase transition. Domain Wall (DW)
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Figure 2. Disk-like source of the regularized solution of KN as a bag model. Deformation of the
disk at different ratios of parameters R = r, and a. For r, = e2/2m disk is very thin, and 7, /a = «
corresponds to the fine structure const.

interpolates between the superconducting (and supersymmetric) internal vacuum state
and the external exact gravitational KN solution.

The obtained by C.Lopez bubble source of the KN geometry [10] (see Fig.2) was
presented in our works as a supersymmetric and superconducting bag model. The
reason for interpretation of the KN source as a bag model, is their ability to elasticity and
deformations under influence of external conditions, which is known from the behavior
of the well-known MIT and SLAC bag models [18,19]. It was assumed also that bags are
similar to strings and can turn into strings under strong deformations [20,21].

Meanwhile, one feature of the KN bag significantly distinguishes it from the MIT
and SLAC bag models — the usual bag models form a cavity in superconductor, while
the KN bag must have an internal superconducing state. This feature is the source of
problems, that force us to use a supersymmetric LG field model of phase transition.

The corresponding Hamiltonian was reduced to Bogomolnyi form, and it was
shown that this soliton forms a supersymmetric, PBS saturated state. In this letter we
would like pay attention to the used intricate method reduction to Bogomolnyi form,
which was apparently first suggested in [22] for a two-dimensional kink solution, and
then successfully used for the planar DW in [23-27]. We generalize this method to
the much more complex case of the Kerr geometry, in which the source is spinning
and bounded by the DW of ellipsoidal form. Besides, it is formed by the system of
chiral fields, when one of them depends on the Kerr angular coordinate and time. With
respect to previous treatment [15,16], we obtain new very important feature of the DW
source — formation of the DW-antiDW (breather) structure, which is very essential for
the discussed here solutions of the Dirac equations.

Our task here is to obtain a self-consistent solution of the Dirac equation embedded
in the proper gravitational and electromagnetic field of the electron corresponding to
Kerr-Newman solution. By solving this problem, we obtain that Kerr-Schild coordinate
system is unique, in the sense that it allows us to use y - matrices of the auxiliary
Minkowski space, where the Dirac equations in proper gravitational and electromagnetic
field are linearized.

We obtain that solutions of the Dirac equations take the form of a massless rel-
ativistic string based on an orientifold structure discussed in one of our old works
[28].

2. Kerr-Schild geometry and structure of KN solution

Specific feature of the Kerr-Schild approach is the use of the auxiliary Minkowski
space M*, (signature (— + ++)), with Cartesian coordinates x = x* = (t,x,y,z).
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In these coordinates, metric of the KN solutions is [7]
Suv = Ny + 2Hkyky, 3)

where 7,y is flat metric of the auxiliary Minkowski space, and H is the scalar function
which for the KN solution takes the form

mr — e*/2
Hxny = ————. 4
KN 2 a2 cos? @)
The KN vector potential is given as
—er
Ay = 5————=ku 5
7 (r2 +a2cos?0) ©)

The field k* (x) forms a Principal Null Congruence (PNC), k,,k* = 0, shown on Fig.1.
In terms of BH geometry this field shows a local direction of dragging the frame, that
in the case of overrotating HB solutions produces closed Wilson lines surrounding the
source of KN geometry, see Fig.3.

2" string

singular ring

real slice of
somplex string

Figure 3. Deformations of the Kerr coordinate ¢ = const. caused by dragging of space in angular
direction near the Kerr singular ring.

Kerr’s congruence can be represented as an electromagnetic radiation which propa-
gates (with twist) from infinity towards the Kerr ring, penetrates it, and coming out on
the other sheet of the Kerr geometry goes out again to infinity. In Cartesian coordinates
x# € M*, the form k;,dx" shows local direction of frame-dragging.

In the Kerr angular coordinates PNC is presented in [7] by the form

kudx! = dr — dt — asin® fd¢x. (6)
The relation between Cartesian coordinates and Kerr’s angular coordinates is the follow-
ing
x+iy = (r+ia)exp{i¢k}siné,
z = rcost, p=r—t, )

The incoming PNC is directed to the Kerr ring. Rays lying in equatorial plane (cos § = 0)
focus on the Kerr singular ring. Other incoming rays, passing trough the ring, turn into
out-going rays propagating on another (say "negative") sheet of the Kerr space. Thus,
the Kerr solution in the KS form describes two different sheets of space-time with two
different congruences

kydx!* = £dr — dt — asin® 6d¢y (8)
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and two different metrics
gk, = +2HK KE )

on the same Minkowski background x* € M*. Working with outgoing Kerr field corre-
sponding to retarded potentials, we choose sign plus in (8), and following [7] we take
ky = k.
The Kerr theorem.

Kerr theorem defines two fields of PNC, k* (x) and k™ (x), in terms of Penrose’s
twistor theory [29-31]. Kerr theorem presents two complex analytic solutions Y* of the

equation
F(T4) =0, (10)

where F is quadratic holomorphic function of the projective twistor coordinates
TA={Y,{-Yo,u+Y{}, A=123
and

NI—

2%§ = x+iy, 2
21y = z4t 2

g_:x_iyr
v=2z—1t, (11)

NI—=

are the null Cartesian coordinates of the auxiliary Minkowski space x# € M*.

In the class of quadratic in Y functions F(T#), the Kerr theorem gives two ana-
lytic solutions Y= (x#), of the equation (10), which correspond to two projective spinor
coordinates

Yt =¢/e% Yo =m/n, (12)

which are antipodically conjucate
Yt=-1/Y", (13)

and the corresponding Weyl spinors ¢* and 7, define two antipodal fields of the principal
null directions ‘ )
K = Ehal e, KT = a0ty (14)

3. Shape of the KN bag model and Wilson loop

The Lopez boundary of the bubble, where the KN space can be matched continu-
ously with the flat internal metric 77,1, is unambiguously determined by the Kerr-Shild
metric form (3), as the surface where H = 0. Setting Hxy = 0 we obtain

r=re=¢€/2m, (15)

that gives us the “classical” electron radius.

Since r is the Kerr radial coordinate, we obtain that the bag boundary represents
indeed an oblate ellipsoidal surface — a thin disk of the radius a, which is about the
reduced Compton wave length, and the thickness of the disk r,, which is equal to
classical electron radius. One sees that degree of oblateness of the disk is r,/a = 1/137
that corresponds to the fine structure constant «.

Therefore, the Kerr-Newman spin parameter 4 leads to a strong deformation of the
shape of the bag model, and this deformation of the bag leads to the appearance of a
relativistic string at the sharp edge of the KN disk (see Fig.4).

The existence of this string is evidenced by the Wilson loop of the vector potential
placed along border of the bag, which was obtained first in [32] and then discussed in
[15,33,34].
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From (5) and (6) we obtain that vector-potential of the regularized KN solution
takes its maximal value in the equatorial plane (cos & = 0) at the bag border r = r,,

Aytrdxt = —27m(dr — dt —ad¢y). (16)

This potential is tangent to the bag border v = r,, and for the fixed time ¢ = const., it
forms the closed Wilson loop C : ¢x € [0,271], so that the loop integral
W(C) = Pexpe §- A" dxt, gives the following incursion of the potential

6 = ¢ . A dgy. (17)
Integration gives 6¢ = 47tma, and using relation | = ma we obtain
op = 4rm]. (18)
Definiteness of potential requires d¢ = 47], leading to quantum condition | = %

4. String structure and superficial currents on the border of KN bag
4.1. Scattering process and orientation of the Kerr disk

On the initially two-sheeted KN space-time, the directed in future vortex field of
the Kerr congruence k™ forms an in-going on the negative sheet of the Kerr space r~ < 0,
where it is directed towards the Kerr singular ring. Penetrating through the ring, this
field continues analytically on the second sheet r* > 0, turning into an out-going where
another coordinate system is used, (7).

Although, in the regularized KN solution, the passage to the r~ sheet is closed,
consideration of the analog of this sheet is relevant in the scattering process, when we
observe the in-going field incident on the source of the KN solution before the scattering,
and then the signal reflected in the scattering process in the form of an out-going field.

In contrast to the case with the negative sheet of the Kerr solution, in this case we
use the same Kerr’s coordinate system (7) for both in-going and out-going fields, in
which we do a replacement of r — —7, getting an equivalent coordinate transformation
for the in-going field on 7~

x+iy = (r—ia)exp{—i¢k}siné,
z = —rcosb, p=-—-r—t, (19)
compatible with metric

and with in-going Kerr congruence k; .

-10
-15 -10 -5 0 5 10 15

Figure 4. Disk-like shape of the Kerr-Newman bag model. Border of the superconducting bag
ends with Wilson loop forming a closed circular string.
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This process shows that disk-like source of KN field has two faces: one from the
side of the in-going fields k,;, and the other from the side of the out-going fields ki
These two sides are related with reverse sign of the disk rotation 2 — —a, and change
the orientation angle ¢y — —¢y for the incoming field.

The corresponding string-like structure, was suggested in [28] as an orientifold
string. This string forms the Kerr’s light-like world-sheet X = X| (7 + ¢), containing
only the left modes on the fundamental interval [0, 7t]. For a static picture of the Kerr
disk at t = 0, the orientifold string is formed as a parity operator Q) : [c — 27 — 7],
which covers the string world sheet twice: first time on the interval [O, 7r], and second
time on the interval [271 — o] in opposite direction.

The full orientifold world-sheet is formed as a folded string on the doubled interval
o € [0,27], and contains the sum of the left and right modes X = X (T +0) + Xg(T —0).

The orientifold string is left-right symmetric in the static representation, ¢ = const.,
which in quantum theory is called as Heisenberg picture, however the symmetry () is
broken on the rotating disk.

4.2. Surface currents caused by Wilson loop, Higgs phases and stringy parametrization

The Kerr-Newman solution demonstrates an intrinsic connection to string theory.
The role of the string is played by the singular ring of the Kerr solution [12,13]. A
regularized version of this string occurs at the sharp edge of the disk-like boundary of
the ellipsoidal bag forming the regular source of the Kerr-Newman solution.

' NULL RAY OF KERR

CONGRUENCE r
c e

0.5

SINGULAR RING

15 I I I I I
-35 -3 -25 -2 -15 -1 -0.5

Figure 5. KN disk as a carrier of the orientifold string in the static t = const. picture. Kinematic
relations in the equatorial plane of KN disk. The shown out-going light-like beam of the Kerr
congruence k¥ is tangent to Kerr singular ring and crosses the edge of the disk at the angle
0, = arctanr./a ~ « .

As is known, the Higgs field model coincides with the Landau-Ginzburg (LG) model
for a phase transition in a superconducting medium [35]. Similarly, the supersymmetric
Higgs model is described by a supersymmetric (or generalized) Landau-Ginzburg (LG)
model, [22,26].

The corresponding supersymmetric bag model is formed by the Domain Wall (DW),
which separates the external gravitational field KN from the flat inner space filled with
supersymmetric vacuum of the Higgs field.

Although the consistent description of this phase transition requires a supersym-
metric scheme of phase transition with several chiral fields, [15-17], the simple LG field
model with one chiral field can describe each separate process of the phase transition
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with creation superficial currents on the boundary of the bag. Corresponding Lagrangian
with one Higgs fields is, [35],

1 1
L= _ZLFP“’FW - E(Dﬁb)(D”@)* - V(|®|), (21)
where D, = V, +ieA, are covariant derivatives with vector-potencial Ay, F,, =
Apy — Ay, and

V = MDD —52)?, (22)

where 77 is the v.e.v. of the Higgs field ®, 7 =< |®| >.
Superconducting vacuum state of the Higgs field inside the Bag leads to equations

DAH = II/I = e|q>|2(X/]/l +€Ay)/ (23)

which shows that inside the superconductor current I, is pushed out, I, = 0, and is
concentrated in a surface layer with a depth of penetration J, [36]). Potential of the KN
field (5) increases near the bag boundary, and takes maximum in the equatorial plane,
near the bag boundary r = R = ¢?/2m, cosf = 0.

According the Wess-Zumino model, the supersymmetric QED is described by two
Higgs fields @ = |®, [e X+ and ®_ = |®_e/®X~, [37], and the equation (23) allows
us to connect two phases of the Higgs fields x+ and y_— with two boundaries of the KN
bag model A; and A}, which where obtained in the double-face structure of the KN
disk [17], related with congruences kT and k—, and forming a DW-AntiDW structure,
know also as "breather" [38].

Integration of the LG equations for out-going phase of the Higgs field, placed on
the boundary r = T, gives x|+ = 2m(t + apg),
while for the in-going Higgs phase, placed on the boundary » = r~, we obtain
X~ =2m(t - WPK)/
where we tuck also into account the change of charge sign by the transition a — —a.

Therefore, on the boundary r = r+ we obtain the potential eAg = 2m, eAy, = 2ma,
and on the bounday r = r~ - the potential eAg = —2m, eAp, = —2ma.

Applying these solutions to the out-going vector field A;{(rj) on the boundary
r = rS, which is dragged by gravitational field of the Kerr congruence, forming the
closed Wilson loop C™ : t = const. on the border r = r; we obtain:

1) incursion of the potential A; along the loop C™ is controlled by the Higgs phase
X", and integration of the equations I} =0 = x,u +eA} = 0 gives

Xt bt =2m(t" + agy), (24)

2) similarly, the out-going potential A]j, acting on the boundary r~ gives

K-l = —2m(t —apg), 25)

and therefore, the phases of the Higgs fields (t* + a¢{) and (t~ — a¢y ) behave like
parametrization of the left and right modes of a relativistic string, see [17,34].

The formation of a Wilson loop around a singular ring is a characteristic feature of
the string models with a tension mechanism in the form of a tube of force lines,[39].

The singular ring of the Kerr solution is a light-like line, since the light direction of
the Kerr congruence k¥ touches the singular ring. Note, that the existence of "right" and
"left" excitation modes is an indispensable condition for the formation of a string as a
world sheet. A string described by only one mode, say the right one, turns into world line
that depends on only one parameter. For this reason, a simple light -like Kerr’s singular
ring does not form a world sheet, and strictly speaking is not a string, but a world line.
In the regularized Kerr solution, string is formed on the border of disk, where the null
line of the Kerr congruence crosses the string at an angle 6. = arctanr,/a, and kinematic


https://doi.org/10.20944/preprints202012.0758.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2020 d0i:10.20944/preprints202012.0758.v1

9of 14

relations show (see Fig.5) that the speed at the edge of the disk is only slightly less than
the speed of light, v = ccos6; < c. A simple null-string is replaced by a string of the
‘orientifold” type considered in [28]. Two-faced structure of the KN disk is analogous
to the DW-AntiDW field model of the KN source considered in [17], i.e. an oscillating
solution of the type ‘breather’ [38].

5. The Dirac equations for an electron interacting with its own gravitational and
electromagnetic field

We come to the main part of our consideration — the solutions of the Dirac equations
for fermionic string which emerge on the border of the regularized KN disk interacting
with the consistent gravitational and electromagnetic KN field.

We see that our analysis unavoidably leads us to the typical features of the quantum
considerations: importance of the separable analysis of the Heisenberg and Schrodinger
pictures, the corresponding state vectors, unitary transformation, plane waves and the
scattering process.

5.1. The KN disk-like source as electron in the Heisenberg picture.

The KN gravitational field can only be consistent with one of two types of the Kerr
congruence, either in-going or out-going, [46], and we choose the out-going variant, that
is consistent with the retarded electromagnetic fields.

Out-going Kerr congruence

kfdx! = dr — dt — asin® 0dgy. (26)

propagates from the both sides of the disk 7™ and ~ towards direction +oco. The in-going
congruence
k;dx” = —dr — dt — asin? 8d¢y (27)

propagates from —oo towards the disk and focus at the both sides of the disk r* and r~.

The transition from out-going picture to in-going is connected with the replacement
r — —r, that in the coordinate transformation (7) corresponds to the replacement
pT — p~, changing in the direction of rotation 2 — —a, and in the orientation angle ¢x.

The Kerr disk is located at the scattering boundary ¢ = 0, which corresponds to
the state vector in the Heisenberg picture. Orientation of the disk is changed under
transition from r — —0 to r — 40, and the string on the border of KN disk acquires the
properties of the orientifold string with two faces r* and r.

The regularized Kerr’s disk has a finite thickness |r| = r, which is determined by
the physics of scattering process.

The role of the equations of motion in the Heisenberg picture, is played by the Dirac
equations.

5.2. Uniqueness of the Kerr-Schild coordinates

The Dirac equation in the Kerr-Newman gravitational field was studied in many
works, in particular in [40-45]. The freedom to choice a coordinate system is an important
aspect of general relativity.

It should be particularly noted the uniqueness of the description of the KN solution in the
Kerr-Schild coordinate system, which allows us to linearize both electromagnetic and gravitational
equations on the background of the KN solution.

The Dirac operator in the charged and curved space-time is defined by the replace-
ment

Y (pu —eAy) = v (py —eAy) + B, (28)

where B = JV,7" can be represented in the form

1
B=——0,(y/ "), (29)
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and is canceled because |g| = 1.

As a consequence, y-matrices of the auxiliary Minkowski space can be used in the Dirac
equation.

The same argument leads also to the linearization of the electromagnetic field by
the use of the Kerr-Schild coordinates in the KN solution, [12].

5.3. The Dirac equations in the Weyl representation
The Dirac equations in the Weyl representation decompose into two equations

(pp —eAD) 0SS = mi, (30)
(pu — €A, )T e = mg*, (31)
where 7 = ¢0, and 713 = —¢123, or 7 = o123,

Where the Wilson loop potential eAfde = 2m(dr* — dt F ad¢k) acts on both r*-
boundaries (faces) of the KN disk.

In the considered earlier analogous physical model of the rotating KN disk-like
source, the in-going and out-going Kerr congruences are controlled by two related
phases of the Higgs field, x© = —x~, and the momentum p,, of the string solution must
be completed by an "internal" angular momentum of two semi-strings p® = p** + p*~,
associated with rotation of the KN disk under its evolution in time,

Py = Pu+ Py (32)

According (14), the spinors ¢* and 7, have different helicities with respect to helicity
operator 1 (k&), and the Weyl spinor ¢* is aligned with out-going direction k* = (1,k),
while the spinor 7, is aligned with in-going direction k= = (1, —k). The sign of p° is
already taken into account in the Dirac equations (30) and (31).

In the same time, the both vector fields of the Wilson lines eAffdx" are out-going
and, being emanated from the boundaries rtandr™, they are related with spinors of
different chirality. As a result, the electromagnetic contribution from Wilson line eA,, dx*
should change the sign in the equation (31).

The spinor string is formed of two semi-strings of opposite helicities ¢* and 7,
which have the unique common point corresponding to the point where the orientation
of the string changes, a — —a.

Integrating the Ginzburg-Landau equations for the out-going phase of the Higgs
field and r = r*, we obtained x|+ = 2m(t + a¢), which for | = ma = 1/2 gives
Pilr+ = (2m, ¢, ). The corresponding vector potential is eA, = (2m,eAg, ).

For the boundary r = r~, we have the opposite sign of charge, which corresponds
to the Wess-Zumino supersmmetric QED model, and also corresponds to integration of
the BPS equations considered in [17]. The change of orientation, 2 — —a, is accompanied
by the potential of the Wilson line in the form —eAy = —2m, —eAy, = 2ma.

To simplify notations we will omit further the index K in the Kerr angular coordinate ¢x.

5.4. The Dirac equations in the Heisenberg picture for t = const.

Taking the Weyl representation for y-matrices, we can write the Dirac equations in
Heisenberg picture for t = const..

Setting p,, = (€, p + p°) with € = py, and p = 0, we obtain the Dirac equations in
the rest frame,

(po — 2m)0°g* + (p — 2mag)FE* = my, (33)

(po +2m)c s — (py + 2mad)dn. = mee. (34)

Where ¢* and 7, are normalized spinors ¢I¢ = 771 = —1, and I is unit matrix.
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For any ¢%, 17, and m = 0, the first equation is identically satisfied when
po—eAg =0, py—eAy=0, (35)
and the second equation is identically satisfied when
po+eAg =0, py+eAy=0. (36)

&
Spinors |u, >= ( 6 > are normalized as < 1, |uy >= 2m.
Na

In the Heisenberg picture presenting the KN string at fixed time ¢ = const. we have:

1) the spinor string ¢%(¢) which is a massless half-string, created by the out-going
light-like directions k* = (1, k) and emanated from Wilson’s counter ¢ € [0, 277] placed
atr = r;, and also the one more massless half-string, created by the out-going light-like
directions kT = (1, k) emanated from Wilson’s counter ¢ € [—27,0] placed atr = r, .

2) the spinor string 77, (¢) representing the second massless half-string, created by
the in-going light-like directions k= = (1, —k) towards the Wilson counter ¢ € [—27,0]
placed atr =71, .

Since m = 0, is everywhere, for exclusion of singular point ¢ = 0 where the
oppositely directed semi-strings are joined, the both half-strings are massless and do not
interact, except for the point ¢ = 0, where a — —a, and the mass term is presented as a
delta-function m = md(¢).

The potential energy of the semi-strings tension is determined by the Wilson loop
at the boundaries r+,
eAg = £2m, eAp = +2ma, (37)

and the full energy of the semi-strings is cancelled, as it was shown when integrating
the BPS equations for the DW-AntiDW (breather) source of the KN solution, [17].

In the Weyl representation for matrices ¢, the out-going and in-going fields are
ordered in time, and the fields with negative frequencies do not arise.

5.5. The Schrodinger picture, plane waves and string in the Kerr-Schild coordinates

In the Schrodinger picture the plane waves and in the Kerr-Schild coordinates are
described by wave function [47]

Lo i
= ——uye P, 38
Yo = 5t (38)

where —px = —p,x" = poxo — px,and x* = (t,x), p' = (1%, p), € = po = ++/p? + mZ.
The spinor ), satisfies the Dirac equations

W’ai, - m)ip, = 0. (39)

In the rest system, € = m, p = 0, functions ¥, and u, are connected by unitary
transformation U = ¢~'H!, where H = m is the Hamiltonian of the system.
i
We consider U as operator acting on a state vector |u, >= ( g ), in the static
4
Heisenberg picture, while the plane wave
. e
p = Uup = e’mt< ), (40)
Ha

represents the state vector |1, > in the dynamic Schrodinger picture.
In the Schrodinger picture the string turns out to be asymmetric:
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. the semi-string ¢%(¢) covering the interval ¢ € [0,27] gives eAJ = m, eA$ = ma,
an

semi-string 77, (¢) covering the interval ¢ € [-27,0] gives eA; = —3m, eA, =
—3ma.

When ¢ = 0, the semi-strings are joined, &*(0) = +7,(0).

6. Conclusion

This preliminary analysis shows that, following to pioneering works by Carter,
Israel and Lpez, the Dirac electron can be described as an over-rotating KN gravitating
BH solution described by the Dirac equations interacting with its proper gravitational
and electromagnetic field in the Kerr-Schild coordinate system.

Such description in important both from point of view of the unification gravity
with quantum theory, from point of view of the nonperturbative model of the extended
electron based on the Higgs mechanism of the spontaneously broken gauge theory.

This treatment shows that the existing theories and models of elementary particles
are at least incomplete, and do not take into account a number of important effects asso-
ciated with the gravitational process of the frame-dragging in the spinning gravitational
space-time, in particular, the strong influence of the Wilson loop in the Kerr-Newman
gravitational field.

The main new lessons that this model provides are as follows:

1. The gravitational field of a particle with spin must be described by the regularized
Kerr-Newman solution, which distorts space on the Compton scale, and increases the
zone of influence of gravity by about 22 orders of magnitude.

2. The supersymmetric Higgs model (Landau-Ginzburg field model) allows us to
resolve the known conflict between gravity and quantum theory without changes of the
Einstein equations.

3. The regularized electron model takes the form of a superconducting disk-like a
bag formed from the Higgs field in a supersymmetric vacuum state.

4. The Kerr-Schild coordinates are exceptional, since the Dirac and Maxwell equa-
tions are linearized in these coordinates on the gravitational KN background.

5. The Wilson loop, formed by gravitational dragging of the vector potential, gives
an important nonlinear contribution to the electron self-energy.

6. The Dirac equations in the KN gravitational field take a stringy form, and the
corresponding electron’s dynamics reproduces the dynamics of a massless relativistic
string.

When this paper was finished, I found the work by Ahmed Alharthy and Vladimir
V. Kassandrov [48] which overlaps with main theme of our work. The work by these
authors is very interesting and based on the old works by F.Edjo Ovono, V. Kassandrov
and Ya. Terletsky which develops the works and ideas of Natan Rosen. Although
it seems that these works are very far from the KN electron model, we find that the
inrtoduced by Rosen scalar potential is prototype of the considered in our work the
Higgs field. The authors come to similar conclusions with our own that gravity has a
strong influence on the formation of elementary particles, and although authors do not
come to our direct statement that gravity works on the Compton scale, it seems natural,
because they do not take into account the influence of spin, i.e. the frame-dragging of
the KN solution.

The fact that the core of an electron takes the form of a relativistic string is very
important, as it can explain some of the striking properties of the electron that are
known from scattering experiments, where the electron exhibits its seemingly point-like
structure.
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