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Abstract: The evaluation of deforestation by optical remote sensing remains a challenge in the 
humid tropical region due to high cloud cover. This paper develops a simple and reproducible 
method for mapping deforestation of the old-growth forest using open access software. A map of 
old-growth forest depletion was created using composites from three different dates (2003, 2010, 
2016). Four models were tested: the first model using spectral bands (nir, swir1, swir2 and red), the 
second model was based on the association of spectral bands and spectral indices (NDVI, B54R, 
NDWI and NBR), the third model was constructed using spectral bands and geomorphological 
indices (DEM, Slope and Roughness) and the last model combined spectral bands, spectral indices 
and geomorphological indices. The optimal random forest ntrees and Mtry parameters were 
determined for each model to optimize the mapping in each model. The out-of-bag error for these 
four models was 2.15 %, 2.05 %, 1.86 % and 1.85 %, respectively. The fourth model had the lowest 
error and was hence used to predict deforestation of the old-growth forest. The annual rates of 
deforestation amounted 0.26 % (69861 ha) and 0.66 % (145768 ha) between 2003 – 2010 and 2010 – 
2016, respectively. The area of the old-growth forest in 2016 was 3601607 ha and 215629 ha of forest 
lost between 2003 and 2016. These results showed that the Random Forest Classification (RFC) 
model was able to effectively map the reduction of old-growth forests. 

Keywords: Random Forest, machine learning, multispectral imagery, deforestation, PFBC 
landscapes. 

 

1. Introduction 

Equatorial old-growth forests represent a natural ecosystem having the most important quantity 
of biomass and among the highest biodiversity [1-3]. As land use in the world is undergoing 
profound spatial changes, old-growth forests are increasingly subjected to anthropogenic pressure 
[4-5].  
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The methods used to assess Land Use and Cover Change (LUCC) have improved considerably 
in recent decades [6-7; 4]. This assessment requires a rapid and reliable mapping of vegetation cover 
dynamics, theoretically hoping for a sustainable exploitation and management of natural resources. 
If forest inventory is still the main source of LUCC information, remote sensing is a powerful tool for 
the analysis of forest dynamics [8]. Remote sensing observations are an attractive source of 
information for survey and land-use mapping. For example, the global assessment of forest resources 
conducted by the United Nations Food and Agriculture Organization [9] through remote sensing 
estimated the word forest area at 3999 million ha. The same source indicates that global forest loss 
was 192 million ha between 1990 and 2015, that is, a rate of 2.16 million ha per year. 

Much of the world’s old-growth forest is in the tropics. Unfortunately, remote sensing mapping 
in this region remains challenging given the persistently high cloud cover [10-12]. For this reason, a 
deforestation assessment is more often carried out at the national [13], regional [14-15] or global level 
[7; 4]. Many natural resource management institutions rely on these assessments but the map 
products do not always meet managers expectations [16]. Few studies in the Democratic Republic of 
Congo have been undertaken to assess the deforestation at the local level [17]. 

Mapping land use dynamics of complex landscapes is a particularly difficult task as some land 
covers have similar spectral characteristics and some change throughout the season. Thus, a 
multidate analysis is often required for mapping land cover dynamics [18]. However, when two land 
cover maps corresponding to two different dates are combined, the individual error of each land 
cover class is multiplied if one considers that the errors of the two maps are independent [19]. Thus, 
multi-date analysis reduces classification errors compared to comparing independent classifications 
produced for multiple dates [20]. 

In addition to the temporal dimension, studies have shown that auxiliary information can 
improve the accuracy of land cover classification. At the same time, the inclusion of temporal and 
geomorphological observations in the classification process can increase the dimensionality of the 
data. But, the increasing number of input variables to the classification can induce complexity 
resulting in increased computing time.  

The selection of variables is an important step in many machine learning applications. It is not 
only necessary to obtain more accurate maps, but also to understand which variables are most 
relevant in the classification process. In this paper, we consider the application of the Random Forest 
(RF) algorithm for feature selection because of its interesting properties, such as high accuracy and 
robustness against over-fitting of training data [21]. RF is currently proposed and used to improve 
land cover mapping from remote sensing imagery [22]. It provides an approach for assessing the 
importance of characteristics or predictors which can be considered as a useful parameter to study 
the role of each temporal, spectral or thermal feature in the analysis of old-growth forest reduction 
discrimination. The purpose of the study was to develop a simple, fast and reproducible method for 
mapping the deforestation of the old-growth forest using Random Forest. 

2. Materials and Methods 

2.1. Study area 

The study area is the Ituri-Epulu-Aru landscape (IEAL) is located between 2°37’022’’N – 
0°31’030’’N and 27°34’034’’E – 30°00’039’’E, in Democratic Republic of Congo (Fig. 1). Most of the 
landscape is situated in Ituri province (in the administrative territories of Mambasa, Irumu and 
Djugu). Only a smaller portion of the landscape is included in the Haut-Uélé (Wamba and Watsa 
territories) North-Kivu provinces. The average daily temperature is very stable over the year between 
23 and 25.5°C. The average annual rainfall in the landscape fluctuates between 1,600 and 2,000 mm 
[23]. The driest month of the year has an average rainfall of less than 50 mm in some parts of the 
landscape. During the dry period, the sky is absolutely cloudless, the relative humidity is low and 
evapotranspiration is very high [24].  

The IEAL is covered by a dense semi-evergreen open-canopy forest, although there is a semi-
deciduous forest in the far north-east. The IEAL includes the Okapi Wildlife Reserve (OWR) (13720 
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km²), the Mai-Tatu Community Reserve (proposed), Enzyme Refines Association (ENRA) private 
logging concession (520 km²) and three community management areas: Banana (575 Km²), Andekau 
(6973 Km²) and Bakwanza (2181 Km²) [23]. Also, a reducing emissions from deforestation and 
degradation (REDD+) pilot project has been implemented in the Mambasa region. 

 

Figure 1. Location and elevation data of study area. The black lines indicate the limit of the IEAL 

2.2. Methods 

Figure 2 schematically illustrates the methodology used in this study to generate and test the 
algorithm. It presents the data and their preprocessing, the variables used for the construction of the 
model, the random sampling of learning datasets, the random forest classifier (RFC) and four land 
cover classification models. 
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Figure 1. Overview of the analysis framework. 

2.2.1. Remote sensing data and preprocessing 

The satellite images used to map deforestation in the IEAL are annual image composites of 0.025-
degree resolution obtained from the Central Africa Regional Program for the Environment (CARPE). 
The original images are from the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper 
(ETM+) and the Operational Land Imager (OLI) sensors. These composites were formed from four 
spectral bands: nir (0.845-0.885 μm), red (0.630-0.680 μm), SWIR1 (1.560-1.660 μm) and SWIR2 (2.100-
2.300 μm) that had undergone atmospheric, radiometric and geometric corrections. The CARPE 
composites [13] were chosen as they were free of cloud cover, they cover all Congo Basin countries 
and can be downloaded free of charge from the CARPE website (www.carpe.umd.edu/). These 
images are organized in square tiles of one degree by one degree. In this study, we used 10 tiles per 
date. The date range for each composite was less than one year. 

The Congo Basin Forest Partnership (CBFP) landscape was created in 2002 and development 
work began in 2003 in the IEAL [25]. Hence, 2003 was selected as the reference date. In addition, 2016 
is the last year CBFP data are available in the IEAL. To ensure the multi-temporal comparability, the 
images were re-projected in the same reference coordinate system: WGS 84 - UTM zones 35 North. 
Then, for each spectral band, a mosaic of tiles was created for the selected years. Radiometric offsets 
due to differences in acquisition dates were minimized by applying histogram equalization. Finally, 
the mosaics were composited into a single 2003, 2010, 2016 multi-date file containing twelve bands 
(fig. 3). 
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Figure 3. a) The Ituri-Epulu-Aru landscape; (b) Color composition in 2003 (R: swir1 - 2003, G: nir - 2003, B: red - 
2003); (c) Color composition in 2010 (R: swir1 - 2010, G: nir - 2010, B: red - 2010); d) color composition in 2016 (R: 
swir1 - 2016, G: nir - 2016, B: red - 2016); e) Multidate color composition (R: red - 2003, G: red - 2010, B: red - 
2016). 

2.2.2. Spectral and geomorphological indices 

The variables used to improve the mapping of old-growth forest depletion between –years were 
of three types: spectral bands, spectral indices and geomorphological indices. The spectral indices 
were calculated for each date to improve the discrimination of the different classes of vegetation. 
Based on previous studies of land-cover change [26-30], the following spectral indices were 
calculated: normalized difference vegetation index (NDVI), normalized difference moisture index 
(NDMI), Band5 / Band 4 ratio (B54R), normalized burn ratio (NBR) (Table 1). 

Table 1. Spectral indices. 

Spectral Index Formula Reference 
Normalized difference index (NDVI) (ρNIR – ρred)/ (ρNIR + ρred) [31] 

Normalized difference moisture index (NDMI) (ρNIR – ρSWIR1)/ (ρNIR + ρSWIR1) [27] 
Band5/Band4 ratio (B54R) ρSWIR1/ρNIR [30] 

Normalized burn ratio (NBR) (ρNIR – ρSWIR2)/(ρNIR + ρSWIR2) [32] 
ρred= red reflectance, ρNIR= near infrared reflectance, ρSWIR= short–wave infrared reflectance.  
In addition to the spectral indices, geomorphological indices (elevation, slope, and roughness) 

derived from a 30-meter Digital Terrain Model (DEM) were introduced to mitigate the relief effect on 
spectral bands reflectance [33]. 

2.2.3. Random sample 

The training zones were defined on the screen by digitizing several polygons on the multi-date 
color composition for each spectral class. Thirty percent of the pixels from the 483 polygons was 
randomly selected for validation of land cover maps. 
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Table 2. Description of land cover. 

Class name Description 
Class code Number of 

polygons 
Bare ground / Buildings / 

Rocks since 2003 
Bare soil / buildings / rocks unchanged 

over the period of analysis. BSNR 35 

Other vegetal cover 
Secondary forest young and adult / 

Wasteland / Savannah grass / crop and 
area little covered/Agricultural complex. 

OVC 68 

Deforestation between 2003 
and 2010 

Old-growth forests converted to other 
occupations from 2003 to 2010. Df1 133 

Deforestation between 2010 
and 2016 

Primary forests converted to other 
occupations from 2010 to 2016. Df2 145 

Stable old-growth forests 
between 2003 and 2016 

Primary forests intact between 2003 and 
2016. Fp 24 

Water Water plant. W 78 
In this study, we randomly sampled pixels from more than 483 polygons divided into six classes 

(an average of 81). These samples represented more than 53995 ha and were distributed in the studied 
landscape space. The number of training pixels has been fixed at 3500 pixels per class (i.e., 21000 
pixels). This number is sufficient to represent variation throughout the image [34]. 

2.2.4. Classification algorithm for mapping the deforestation 

We used the Random Forest classification algorithm [35] available in the randomForest package 
[36] of the R software [37]. Random Forest (RF) is a non-parametric classification algorithm that 
combines the decision tree algorithm, bagging, and a model aggregation technique [22]. The samples 
omitted from the bootstrap sample are called samples out of bag (OOB). Out-of-bag samples help to 
evaluate classification error and the variable significance estimate. 

In the RF classifier, two parameters must be defined [38]: the number of decision trees (Ntree) 
and the number of variables to select for the best distribution during tree growth (Mtry). The 
literature recommends that Ntree be defined at 500 or greater because the errors tend to stabilize 
before this number of trees is reached [39]. In this project we set Ntree to 2000. Moreover, the optimal 
Mtry was defined using the function “train” of the CARET package [40]. 

2.2.5. Land cover classification models and validation 

To map the land use of the area, four models were tested: (i) the first model built on the basis of 
the image channels (red, nir, swir1 and swir2), (ii) the second model was constructed using image 
channels and vegetation indices (NDVI, B54R, NDWI, NBR), (iii) the third model was constructed 
using image channels and geomorphological indices (DEM, Slope and Roughnesses) and (iiii) the 
forth model combined image channels, vegetative indices and geomorphological indices (Table 3). 

Table 3. Models of land cover classification. 

Variables Model 1 Model 2 Model 3 Model 4 

Spectral bands 
red, nir, swir1, 

swir2 
red, nir, swir1, 

swir2 
red, nir, swir1, 

swir2 
red, nir,  

swir1, swir2 

Spectral index  
NDVI, B54R, 
NDWI, NBR 

 NDVI, B54R, NDWI, 
NBR,  

Geomorphological index  
 DEM, Slope, 

Roughnesses 
DEM, Slope, 
Roughnesses 

The performance of each model was calculated using out-of-the-bag (OOB) error [41]. The closer 
the OOB error value is to zero, the better the model [20]. In addition, a confusion matrix was produced 
to evaluate the quality of learning. The confusion matrix estimates errors of omission and 
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commission. It also validates the land cover map by means of the Kappa coefficient and the estimation 
of the overall accuracy [42; 43]. 
The post-classification majority filter (3x3 pixel size) was applied to the land cover maps of each 
model. This majority filter has been applied to eliminate occurrences of isolated pixels and to avoid 
the "pixelated" effect (pepper and salt). 

2.2.6. The annual deforestation rate 

The annual deforestation rate is calculated as the ratio of area cleared over a period, divided by 
the initial forest area and the number of years of the period [44; 45]. However, several publications 
have recently highlighted that the evolution of forest loss cannot be obtained with this simple report 
[46]. The standardized formula proposed by Puyravaud [46] was adopted to calculate the annual 
deforestation rate for this study. 

𝜃 =
−1

𝑡ଶ − 𝑡ଵ
𝑙𝑛 ൬

𝐴ଶ

𝐴ଵ
൰ ∗ 100 

(1) 

Where A1= forest area in the initial year; A2= forest area in the final year; t1 = initial year; t2 = 
final year. ln = natural logarithm 

3. Results 

3.1. Optimization and validation of classification models 

3.1.1. Number of trees and Mtry optimization 

The evolution of the OOB error was a function of the increase in the number of trees (Fig. 4). For 
all models, the OOB error decreases with increasing number of trees and stabilized before the number 
of trees reaches 500.  

 

Figure 4. Evolution of OOB according to the increase of the number of trees. 

Also, the four models showed the same behavior when it comes to optimizing the number of 
variables to select for the best distribution during tree growth. All the models proposed three 
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different optimal Mtry values (Table 4). The best OOB errror for all four models was obtained when 
the Mtry value was 2. Models 2 and 4 presented the smallest values of the OOB error (0.021). The 
largest OOB error was obtained in the model 1 (0.028, with Mtry equal to 12) (Table 4). 

Table 4. Mtry opimization. 

Model Mtry Accuracy OOB Kappa 

Model 1 
2 0.976 0.024 0.971 
7 0.974 0.026 0.969 
12 0.972 0.028 0.966 

Model 2 
2 0.979 0.021 0.975 
8 0.978 0.022 0.974 
15 0.975 0.025 0.97 

Model 3 
2 0.977 0.023 0.973 
13 0.976 0.024 0.971 
24 0.973 0.027 0.967 

Model 4 
2 0.979 0.021 0.974 
14 0.978 0.022 0.974 
27 0.975 0.025 0.97 

3.1.2. Validation of classification models of land cover 

The results of the various tests performed on three groups of variables are presented in Table 5. 
The conclusion was that model 1 created using only spectral bands had a larger OOB error (2.15%). 
When we combined the spectral bands with the radiometric indices (NDVI, NIRI and NDWI), the 
model improved very slightly by 2.05%. The same was true when we combined the spectral bands 
with the geomorphological indices (1.86%). In addition, the comparison of model 2 and model 3 
revealed that the information from geomorphological indices improved the model more than those 
from spectral indices. Model 4 had the lowest OOB error (1.85%). Therefore, model 4 was selected to 
map the dynamics of deforestation in the study period 2003 – 2009 and 2009 - 2016. 

Table 5. OOB and kappa of each model. 

 Model 1 Model 2 Model 3 Model 4 

Variables 

Spectral bands 
red, nir, 

swir1, swir2 
red, nir, swir1, 

swir2 
red, nir, swir1, 

swir2 
red, nir,  

swir1, swir2 

Spectral index  
NDVI, B54R, 
NDWI, NBR 

 NDVI, B54R, NDWI, 
NBR,  

Geomorphological 
index  

 DEM, Slope, 
Roughnesses 

DEM, Slope, 
Roughnesses 

OOB 2.15 2.05 1.86 1.85 
Kappa coefficient  0.9784 0.9795 0.9814 0.9815 

Table 6 presents model 4 validation using the confusion matrix. The Kappa coefficient was 
98.15% and the overall accuracy was 98.15%. 
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Table 6. Matrix of confusion of Model 4. 

Model 4 
Ground Truth ROIs 

User Accuracy (%) 
OVC BSNR Df1 Df2 Fp Water 

C
la

ss
if

ic
at

io
n

 
OVC 3374 3 57 19 47 0 96.40 

BSNR 7 3491 2 0 0 0 99.74 

Df1 36 1 3363 82 18 0 96.09 

Df2 13 1 48 3426 12 0 97.89 

Fp 30 0 3 0 3466 1 99.03 

Water 0 1 0 1 6 3492 99.77 

Producer Accuracy 

(%) 
97.51 99.83 96.83 97.11 97.66 99.97 

Kappa coefficient =0.9778 

Overall Accuracy= 98.15% 

OVC: Other vegetal cover; BSNR: Bare ground / Buildings / Rocks since 2003; Df1: Deforestation between 2003 and 2010; 

Df2: Deforestation between 2010 and 2016; Fp: Stable old-growth forests between 2003 and 2016; Water: Water. 

3.2. Deforestation trends in the IEAL 

Statistics on forest cover trends are presented in Figure 5. The landscape was dominated by old-
growth forests. They account for over 87.67% of the total landscape in 2016. Other stable vegetal 
covers accounted for almost 6.31% representing more than 259032 ha. The Bare ground / Buildings / 
Rocks land cover since 2003 represented less than one percent (16.2 ha). Water accounted for 0.38% 
of the studied landscape (15662 ha). 

 

Figure 5. Land cover composition between 2003 – 2010 and 2010– 2016. OVC: Other vegetal cover; BSNR: Bare 
ground / Buildings / Rocks since 2003; Df1: Deforestation between 2003 and 2010; Df2: Deforestation between 
2010 and 2016; Fp: Stable old-growth forests between 2003 and 2016; Water: Water. 

Table 7 presents the area of old-growth forest cover and deforestation rates observed in the IEAL 
and in the neighboring eastern highlands. These results suggest that the total area of the old-growth 
forests in 2016 was 3601608 ha. In the whole, more than 69861 ha were lost during the 2003-2010 
period, i.e, 9980 ha per year and approximately 145768 ha for the 2010-2016 period, i.e., 24295 ha per 
year. This result showed that the annual rate of deforestation increased from 0.03% –in the first period 
to 0.66% in the second. However, this forest loss was differently distributed within the IEAL. The 
Banana Community Management area had a relatively constant annual deforestation rate over the 
two studied periods (0.54%), in contrast with the sharp increase for the other macro zones and in the 
REDD + Mambasa intervention zone as shown in Table 7. While the ENRA and secondly the REDD 
+ intervention zone had already a high deforestation rate for the 2003-2010 period (3.05% and 0.70% 
respectively to compare with 0.02%, 0.07% and 0.54% for the three community areas, Andikau, 
Bakwanza and Banana respectively), the first two communities of Andikau and Bakwanza did see 
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important relative growth for the 2010-2016 period with a multiplicative factor of 41.5 and 5.1 
respectively only to join the average growth of the area (ENRA: 3.20%, REDD+: 1.23%; Andikau: 
0.83%; Bakwanza: 0.36%; Banana: 0.54% stable). 

Table 7. Area and annual rates of deforestation by macro-zones for the two periods observed: 2003 - 2010 and 2010 - 2016. 

Location 
Area of old-growth forests 

Annual rate of deforestation 
% (deforested area in ha) 

2003 2010 2016 2003 – 2010 2010 – 2016 
Andikau 613751 612876 583046 0.02 (874) 0.83 (29830) 

Bakwanza 210350 209310 204868 0.07 (1040) 0.36 (4442) 
Banana 50752 48855 47285 0.54 (1896) 0.54 (1570) 
ENRA 76974 62171 51319 3.05 (14803) 3.20 (10851) 
Redd+1 792437 754560 700857 0.70 (37877) 1.23 (53702) 
OWR 1350113 1344970 1337097 0.05 (5143) 0.10 (7872) 
Total 3817237 3747376 3601607 0.26 (69861) 0.66 (145768) 

4. Discussion 

4.1. Adjustment of models and importance of variables 

For all models designed in this study, the Kappa coefficient is greater than 80% and the OOB 
does not reach 2.2% [47]. The four tested models showed little difference in value of the Kappa 
coefficient and the OOB error (a difference of 0.3% and 0.0031, respectively). 

Many studies found that land cover classes can be confounded. For example, Kabuanga [48] 
showed that the young secondary forest can easily be confounded with the brownfields and old 
fallows. Elsewhere, AECOM [49] showed some possible confounding between savanna vegetation, 
areas with little vegetation and crop areas. In our study, however, the obtained results showed that 
the six land cover classes were not confounded. These results are corroborated by those by Mikwa et 
al. [50] who found that although the old-growth forests are spectrally similar to secondary forests, 
their respective discrimination is still possible if the sampling effort is substantial. Thus, merging of 
secondary forests, wastelands, savannas and agricultural complexes into one class has eliminated the 
confounding between classes, which in the end impacted the classification model of land use. In the 
same way, the built-up areas showed spectral signatures close to those of rocks. For this reason, these 
two classes have been merged. As usual, the water class was clearly distinguishable from other 
classes [20]. 

The temporal aspect also played a clear role. More than 90% of the landscape remained stable 
over the entire observation period. Of the selected six classes, only two (Df1 and Df2) showed spatio-
temporal changes expressing deforestation of the old-growth forests. These two classes stood out 
clearly on the colorful multi-date composition. Image-to-image rectification allowed an objective 
analysis of the same objects. 

Variable importance is presented in Figure 6. The results show that in all four models, the 
spectral bands play a large role in the mapping of land use. The swir1, swir2, nir and red domains 
are widely used in land cover mapping [51; 26-30]. The SWIR domain plays a leading role in 
improving classification models. From a temporal point of view, the 2016 bands occupy the first 
position in terms of importance. SWIR2 seems to play first in models where geomorphological indices 
are absent. 

The addition of geomorphological indices provided supplementary information and changes 
the influence of the variables. Indeed, in models made up of geomorphological indices, SWIR1 took 
the first place in terms of importance. In contrast, in models where the spectral indices are absent, the 
nir was less important. Also, the geomorphological indices seemed to play a less important role. They 
improved the total performance of the models by bringing non-redundant information to the models 
as earlier found by Huo et al. [51] and Oeser et al. [26]. The unique aspect of this study lies in the use 
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of topography information which mitigates the relief effect on the spectral bands reflectance [33]. In 
this regard, the DEM was the most important geomorphological variable. 

 

Figure 6. Importance of the variables in each model. 

4.2. History of deforestation in the IEAL 

The comparison of the results obtained in this study with those of other similar studies should 
be carried out with caution since the methodologies and data are not compatible (data, methodology, 
observation periods, post-classification treatments). Lusana et al. [16] estimated the old-growth 
forests area as 40,492 km² in 2003 and 39,977 km² in 2010, meaning a loss of 51,514 ha between 2003 
and 2010, including secondary forest, which explains why their estimations are higher to ours for the 
same dates. The FACET [52] estimates it as 38,432 km² for 2010. However, both studies unravel rising 
rates of deforestation. 

5. Conclusions 

This paper assessed the potential of multi-spectral remote sensing observations for the 
classification of land use using RFC technique. The study area presents specific characteristics and 
various types of natural and artificial surfaces. The key lesson learnt from of our study is that the 
combination of several types of information (spectral, temporal and topographic data) improves the 
results. RFC offers a wide range of possibilities regarding variable significance which guides users to 
important variables or features. Using the RFC importance measures reduces the dimensionality of 
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the input features. RFC importance variables showed how multi-date spectral and topographic 
characteristics have the greatest influence on class separability in the studied area. 

These results showed that the RFC model was able to effectively map the reduction of old-
growth forests. This study also highlighted the importance of topographic data in addition to 
multispectral imagery for the purpose of land cover classification. Measuring the importance of 
variables was another advantage of random forests that was successfully applied in this study. The 
optimization of the RF was relatively easy because it considers only two parameters (ntrees and 
Mtry). 

In developing countries, several constraints make it difficult to study changes in land use. The 
use of open access software can allow the reproduction of this method without legal constraints. For 
this reason, the script used is detailed and entirely reproduced in the supplemental material to 
facilitate the implementation of RFC. 
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