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Abstract 

The application of signal-to-noise ratio (SNR) observations from ground-based GNSS Reflectometry is 

becoming an operational tool for coastal sea-level altimetry. As in all data analyses, systematic 

influences must be reduced here too, to achieve reliable results. A prominent influence results from 

atmospheric refraction. Different approaches exist to describe or to correct for this influence. In our 

contribution we will revise the latest developments and suggest a simple atmospheric interferometric 

delay model that takes into account ray bending as well as along-path propagation delay. The model 

takes into account a spherical reflector and can therefore be applied for data from very low elevation 

angles, too. The findings are double-checked by numerical experiments based on a step-by-step 

raytracing procedure. 

 

Keywords 

GNSS; Reflectometry; SNR; Atmospheric Refraction 

 

1. Introduction 

In 1993, Martin-Neira (Martin-Neira 1993) proposed first to use GNSS reflectometry (GNSS-R) for the 

observation of sea surface heights. Since then, the basic concepts have been adopted for ground-based 

applications by many groups, which developed various strategies to analyse in particular the oscillating 

structure of the signal-to-noise ratio (SNR). The wide manifold of approaches to estimate the height of 

a GNSS antenna above a water surface reach from the frequency analysis by means of Lomb-Scargle 

Periodogram (Larson et al. 2013) over Wavelet Analysis Periodogram (Wang et al. 2020) to inverse 

modelling (Strandberg et al. 2016) of full models even for moving platforms (Roggenbuck and Reinking 

2019) or in real-time (Strandberg et al. 2019). 

The latest results from an inter-comparison campaign (Geremia-Nievinski et al. 2020) demonstrated 

an excellent agreement and the capability to derive sea surface heights with a quality of better than 5 

cm. Hence, ground-based GNSS-R by means of SNR-analysis seems to be developing into an 

operational tool for coastal sea-level altimetry, that could possibly reach the quality level of well-

established observation methods used by conventional tide gauges. This goal could only be achieved 

if the full potential of the method can be utilized. For this, it is necessary to take into account as many 

systematic effects as possible. 

The analysis of SNR-data bases on the fact that the direct and the reflected signal from a GNSS satellite 

interfere at the antenna. The relative phase between the direct and the reflected signal yields an 

oscillation of the SNR for a moving satellite, that is a function of the interferometric delay between 

both signals and the wave length of the signal (Axelrad et al. 2005). In most approaches a multipath 

delay model according to (Elósegui et al. 1995) is used (Figure 1). 
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Fig 1 Simple sketch of the interferometric delay geometry. The signal from the satellite is reflected at 

specular point (sp) and received at the antenna together with the direct signal. Dashed lines below the 

water surface represent the mirrored antenna height H and the reflected signal for an elevation angle 

e. The interferometric delay  is derived from the length difference between the reflected signal and 

the orthogonal projection of the direct signal to the reflected signal 

From the geometry of Figure 1 the familiar equation for the relation between the height of an GNSS 

antenna over the water surface, the reflector height H, and the interferometric delay  with respect to 

the elevation angle e can easily be derived  

2Hsin(e)=
  (1) 

The interferometric delay from eq. (1) governs the frequency of the SNR oscillation. Neglecting trends, 

signal amplitudes and attenuations, the oscillation is commonly expressed as a function of a phase 

offset 0 and the wave length of the GNSS signal λ by   

oscillation 0

2
SNR cos( )


= +


  (2) 

It is clear that Figure 1 presents a simplified model of the real geometry. Hence, eq. (1) will only hold 

under the assumption of different approximations that might yield systematic errors in the estimation 

of the reflector height. In the past, some of these approximations were examined and more realistic 

models were derived, yielding an increased quality of the results.  

As one of the major approximations, Figure 1 assumes a horizontal plane reflector. This seems to be 

an adequate approximation for lower reflector heights and larger elevation angles. If low elevation 

angles (for example less than 5°) should be used, at least a spherical reflecting surface should be 

applied (Semmling et al. 2016). In this case, a more realistic grazing angle at the specular point can be 

calculated from an iteration (Roggenbuck and Reinking 2019). 

The interferometric delay is calculated from eq. (1) as the difference of the length of the reflected 

signal path minus the one of the direct signal path, projected orthogonally to the direction of the 

reflected signal. This is only valid under the assumption of parallel signal paths, what would require a 
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satellite at an infinite distance. In reality, the distance is finite and therefore the paths are not parallel. 

Although the elevation angle at the antenna and the grazing angle at the specular point are similar, 

they are not equal even for a plane reflector. The difference might be negligible for many applications 

but it can become important if another major approximation, the assumption of a rectilinear geometry, 

should be overcome. 

Figure 1 shows the geometry under pure vacuum conditions only. In reality, both paths pass through 

the neutral atmosphere and are therefore refracted while the propagation velocity along the paths is 

retarded. Hence, atmospheric corrections are mandatory to derive high-quality results. In the past, 

several studies considered atmospheric corrections in GNSS-R for example by using raytracing 

(Anderson 2000), (Semmling et al. 2012), by application of an adaptive mapping function (Roussel et 

al. 2014) or simply by taking into account the atmospheric effects below the antenna (Fabra et al. 

2012). These corrections are not easy to integrate into the afore mentioned SNR analysis based on eq. 

(2). That might be a reason why some groups using these methods do not consider or even mention 

the atmospheric effect.  

The authors of (Santamaria-Gomez and Watson 2017) suggested to correct for the atmospheric 

influence in a model based on eq. (1) using a correction of the elevation angle due to the bending of 

the refracted ray. In (Williams and Nievinski 2017) it was remarked that this approach does not take 

into account the propagation delay and the authors suggested to use an interferometric atmospheric 

delay derived from mapping functions for the wet and the dry atmosphere together with a 

sophisticated atmospheric model. Lately, the authors of (Nikolaidou et al. 2020b) used a rigorous 

atmospheric raytracing procedure and found that the atmospheric interferometric delay should be 

decomposed into an along-path delay, which results from the propagation delay along the ray paths 

and a geometric atmospheric delay. From numerical simulations, the authors found similar values for 

both components. In order to derive a formalism that could be used in practical SNR analysis, they 

developed a method based on rectilinear approximation of some of the bent ray paths (Nikolaidou et 

al. 2020a).  

The aim of this investigation is to evaluate the latest developments with regard to atmospheric 

corrections for SNR analyses that make use of eq. (2). Based on that, a simple model for the 

atmospheric interferometric delay will be suggested that takes into account ray bending as well as 

along-path propagation delay for a spherical reflector. In Section 2, we will revise the vacuum 

interferometric delay model presented in Figure 1 under the assumption of intersecting direct and 

reflected ray paths. Based on this, we will evaluate the geometric atmospheric delay from (Nikolaidou 

et al. 2020b) in Section 3 by deriving a closed formulation for the bent ray interferometric delay model 

and by comparing it to the vacuum interferometric delay model. A simple interferometric delay model 

that incorporates ray bending and propagation delay will be deduced in Section 4. In Section 5 we will 

extend the model for the use of data from very low elevation angles, assuming a spherical reflector. 

Our model will be tested using numerical experiments by means of a simple raytracing procedure in 

Section 6. Section 7 will conclude our findings. 

2. Vacuum Ray Paths 

To derive the vacuum interferometric delay assuming a satellite at a finite distance, we will keep to 

the idea of signals travelling in a pure vacuum. For the ease of understanding we will examine the 

interferometric delay for ground-based GNSS-R with low reflector heights and elevation angles larger 

than 5°, which allows us to deal with a planar reflector. The case of a spherical reflector will be 

discussed later in Section 5a. Figure 1 must be modified so that the paths of the direct and reflected 

signal intersects at the satellite. It is clear that the elevation angle at the antenna e and the grazing 

angle at the specular point esp are not equal anymore. Therefore, we cannot use the orthogonal 
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projection of the direct single path to that one of the reflected signal to calculate the interferometric 

delay. Instead, we have to rotate the direct signal by the intersecting angle  of the paths (Figure 2), 

that is the difference of esp and e. 

 
Fig 2 In a pure vacuum the signals from the satellite at a finite distance show an intersecting angle of  

, that is the difference between the grazing angle esp at the specular point and the elevation angle e 

at the antenna. The directed signal with length Dd must be rotated by  and subtracted from the length 

Dr of the reflected path. The interferometric delay can also be calculated from the triangle build by the 

chord (green straight line) of the arc (dashed red curve) with the centre at the satellite and radius Dd 

and twice the reflector height. The chord intersects the direct and the reflected path at an angle of  

Due to the rotation, the end point of the direct path at the antenna describes an arc with a radius equal 

to the length of the direct path Dd. This arc intersects with the reflected path with length Dr, and the 

interferometric delay can be calculated from the triangle spanned by the chord of the arc and the 

reflector height H. The intersecting angle  of the chord and the direct or reflected path is derived from 

the intersecting angle of the signal paths at the satellite as 

spe e
90 2 90

2

−
= −  = −   (3) 

Using this angle, the vacuum interferometric delay  is simply calculated by applying the law of sines 

as  

sp

cos(e )
2H

sin( )

e e
2Hsin(e) 1 cot(e)tan

2

−
 =



 − 
=  +  

  

  (4) 

From eq. (4), it is obvious that eq. (1) only holds, if the elevation angle at the antenna and the grazing 

angle at the specular point are equal because only in that case the factor in the bracket becomes 1. 

To quantify the influence of , we can use typical values for the geometric elements. Let us assume a 

satellite at a distance of 25,000 km at an elevation angle of 5° from the antenna and a reflector height 

of 10 m. For these values we calculate an grazing angle esp of about 5.000045662° and from eq. (4) a 

vacuum interferometric delay of 1.743123 m. If we would apply eq. (1), the resulting interferometric 

delay would differ from the correct one by less than 1 m. Even for a reflector height of 100 m and an 
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elevation angle of 1° the difference would be smaller than 1 mm. Therefore, it is reasonable to replace 

eq. (4) by the approximation from eq. (1) in the case of a pure vacuum.    

For further evaluations it might be helpful to split the length of the reflected signal path into 

components above (Dr,a) and below (Dr,b) the horizon of the antenna. From Figure 2 we find 

r,a d

sp

sin(e)
D D

sin(e )
=   (5) 

Here, we cannot neglect the difference between the elevation angle and the grazing angle because the 

relation of the sin would become 1 if both angles would be equal. This could only be the case for an 

satellite at an infinite distance, since only in that case Dr,a would be equal to Dd. For the component 

below the antenna horizon we find  

r,b

sp

1
D 2H

sin(e )
=   (6) 

Hence, we can express the vacuum interferometric delay in very good approximation from eq. (1) and 

eq. (6) as 

r ,b spD sin(e )sin(e) =   (7) 

3. Bent Ray Paths 

The signals do not travel in a vacuum but in an atmosphere with variable density and will therefore 

experience a refraction according to Snell’s law. If we assume a typical atmospheric structure where 

the density decreases with an increasing altitude, the signals will travel along curved paths. The pure 

geometric length of the bent ray paths, neglecting propagation delay along the ray path, could be used 

to define and calculate a bent ray interferometric delay bent, too. The authors of (Nikolaidou et al. 

2020b) defined a geometric atmospheric delay as the difference of the total arc length of the bent ray 

path  and the vacuum distance from which the interferometric geometric atmospheric delay can be 

derived as the difference of the direct and the reflected signal. The equivalent bent ray interferometric 

delay bent can be calculated from eq. (1) and (4). Since we assume an atmosphere for the ray bending 

but no propagation delay along the ray path, a bent ray interferometric delay is physical impossible, 

(Nievinski and Santos 2010), but might be useful in understanding the geometry. 

The geometry of the bent ray paths is presented in Figure 3. The elevation angle and the grazing angle 

refer to the tangent of the bent ray paths as described by (Santamaria-Gomez and Watson 2017), the 

elevation angle is changed with respect to the vacuum conditions by a bending angle e of the direct 

signal. According to (Nikolaidou et al. 2020b), the difference between the bending angle at the antenna 

and the specular point esp is a thousand times smaller than the bending angle itself and might be 

neglected so that esp could possibly be replaced by e.  
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Fig 3 The bent ray paths from the satellite to the antenna and the specular point above the antenna 

horizon are shown in grey dotted lines. For the component below the antenna horizon we assume 

straight lines instead of bent rays since the curvature is very small. The elevation angle e of the direct 

path between the antenna and the satellite differs from the bent ray path by the bending angle e. 

The bent ray path of the reflected signal passes through the specular point and the end of the mirrored 

antenna below the water surface. The bending angle esp at the specular point is spanned by the bent 

ray path of the reflected signal and the connection from the specular point to the satellite. The bent 

ray interferometric delay bent is derived similar to the vacuum case as the difference between the 

lengths of bent ray path of the reflected signal and that of the rotated bent ray path of the direct signal. 

The inlay in lower right corner shows a close-up of the geometry at bent. The arc is shown as a dashed 

red curve and the corresponding chord as a green straight line. The elongation of the chord is plotted 

as a grey straight line 

From Figure 3 it can be seen that the elevation angle e and the grazing angle esp refer to the straight 

lines connecting the satellite with the antenna and the specular point respectively. The bent ray paths 

differ from these angles by the bending angle. We assume that the curvature of the bent rays is rather 

similar because they pass through almost the same part of the atmosphere. The perpendicular distance 

between the pathways is less than twice the antenna height. The horizontal distance between 

intersection points of the raypaths with the same layer of the atmosphere will be about 1 km for an 

antenna height of 10 m and an elevation angle of one degree at the antenna horizon and will decrease 

with increase layer height. 

Hence, we can derive the bent ray interferometric delay from a rotation of the bent ray of the direct 

signal as in the vacuum case. Again, we have to use the intersecting angle  of the straight-line 

connections as the angle of rotation, but the intersection of the arc (dashed red curve in Figure 3) with 

the bent reflected ray path and the straight line differ now. Since the bending angles are small, the 

point of intersection of the arc with the bent reflected ray path can be found in very good 

approximation by the elongation of the chord (grey straight line in Figure 3) to that path line (see close-

up in Figure 3).  

From Figure 3 we can find the angle spanned by the antenna height and the chord at the antenna as

90 ( e)− −  and the angle spanned by the elongation of the chord and the bent ray path of the 

reflected signal at the intersection as sp sp180 (180 ) e e− − − =− . Applying the law of sines gives    
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bent

sp sp

sin(90 e ) cos(e )
2H 2H

sin( e ) sin( e )

+ − −
 = =

− −
  (8) 

The angle  can be replaced using eq. (3) and the relation yields the bent ray interferometric delay as 

sp

bent

sp sp

sp

e e
1 cot(e)tan

2sin(e)
2H

cos( e ) e e
1 tan( e )tan

2

 − 
+  

  
 =

  − 
−   

  

  (9) 

Again, we can state as in the vacuum case that the influence of the difference between e and esp is of 

minor order and the approximated bent ray interferometric delay reads 

bent

sp

sin(e)
2H

cos( e )
 


  (10) 

Here, we can calculate the component of the ray path of the reflected signal below the antenna horizon 

from 

r,b

sp sp

1
D 2H

sin(e e )
=

+
  (11) 

From eq. (10) and eq. (11) we find the relation between this component and the bent ray 

interferometric delay as 

bent r,b sp sp

sp

sin(e)
D sin(e e )

cos( e )
  +


  (12) 

For a numeric evaluation we again use the setting from Section 2 and assume that the bending angle 

esp could possibly be replaced by e. We used Bennett’s formula (Bennett 1982) and calculated the 

bending angle for a temperature of 23° C and a pressure of 1013 hPa as 0.1596° for an elevation angle 

of 5°. With these values, the bent ray interferometric delay from eq. (9) will become 1.743129 m. The 

difference between the vacuum interferometric delay from Section 2 (eq. (4)) and the bent ray 

interferometric delay (eq. (9)) is less than 7 m. A comparison of the interferometric delays from the 

approximation formulae eq. (1) and (9) yields a very similar value. Even for a reflector height of 100 m 

and an elevation angle of 1° the interferometric delay difference from eq. (1) and (9) is less than a 

tenth of a mm. 

We can validate this result by a rough approximation. Let us replace the bent ray paths (grey dotted 

lines in Figure 3) by circular arcs. The arc’s chords should be the direct ray path Dd and the reflected 

ray path Dr respectively from the vacuum case. Let us further assume an angle between the arc’s chord 

and the tangent of the arc of twice the bending angle. The length of these arcs will be much larger than 

that of the bent ray paths due to the larger curvature of the arcs. As defined in (Nikolaidou et al. 

2020b), we calculate the geometric atmospheric delay from the differences of the length of the arc 

and the chord for the direct and likewise for the reflected paths. If we calculate the bent ray 

interferometric delay as the difference of the geometric atmospheric delays for the direct and 

reflected paths, we get about 10 m for an elevation angle of 5° and a reflector height of 10 m and 

less than 1 mm for an elevation angle of 1° and a reflector height of 100 m        

Hence, we cannot confirm the results from (Nikolaidou et al. 2020b) that shows values of about 6.5 cm 

for their geometric atmospheric delay for a reflector height of 10 m and an elevation angle of 5°. It is 
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remarkable that a value of about 5.5 cm results with our setting, if we would apply the aforementioned 

simplification of parallel ray paths. In that inaccurate case, we would have to project the bent ray path 

of the direct signal orthogonal to that one of the reflected signal as shown in (Nikolaidou 2020). To do 

so, we have to apply eq. (1) for e and e+e and build the difference of the results. This is accordance 

with (Nikolaidou 2020). Taking the bending angle of about 0.185° from (Nikolaidou et al. 2020b), we 

end up with a difference of 6.4 cm for parallel ray paths. However, it is important to take into account 

the intersection of the bent ray paths at the satellite, although it has no major impact on the vacuum 

interferometric delay. 

4. Atmospheric Ray Paths 

In Section 3, we derived the component of the bent ray path of the reflected signal below the antenna 

horizon while neglecting the propagation delay. Because the component is commonly small for low 

antenna heights, we already approximated them by a straight line. Hence, we can simply account for 

the retardation of the propagation velocity of radio waves be multiplying this component by an index 

of refraction nb for the atmosphere below the antenna horizon. It should be emphasised here that 

vertical gradients of refractivity might also be considered when determining an appropriate index of 

refraction, in particular for greater antenna heights. In this study, we assume a constant index of 

refraction for simplicity. 

For the component above the antenna horizon as well as for the bent ray path of the direct signal, we 

cannot use this simplification. As can be seen from Figure 3, the piercing point of the vacuum path of 

the reflected signal at the antenna horizon differs from that one of the bent ray path of the reflected 

signal. To avoid a break in the ray path, we have to follow the tangent of the bent ray path of the 

reflected signal until it intersects with the tangent of the bent path of the direct signal. Again, we have 

to project the direct path to the reflected path by a rotation. If we assume that the bending angles at 

the antenna and the specular point are almost equal, we can once more use the intersecting angle  

of the straight-line connections as the angle of rotation, but the centre of rotation differs. Here, we 

have to use the intersection of the tangents of the bent rays rather than the satellite. After that, both 

path lengths might be multiplied by an appropriate index of refraction and used for calculating the 

atmospheric interferometric delay atmo. 

As we have seen from Section 2, for typical geometrical settings in GNSS-R we can map the direct path 

by an orthogonal projection in very good approximation of rotational projection to the reflected path 

and end up with an almost same value for the atmospheric interferometric delay atmo. 

For the geometry below the antenna horizon, the change of the centre of rotation or the orthogonal 

projection is likewise important. Figure 4 shows that we can calculate the interferometric delay in the 

same way as in the vacuum case, but we do have to take into account the change of the elevation 

angle and replace e by e+e and in esp by esp+esp in eq. (4), (6) and (7). 
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Fig 4 Geometry below the antenna horizon. To avoid a break in ray paths above the antenna horizon, 

the bent paths above the antenna horizon have to be rotated, whereby the centre of rotation results 

from the intersection of the tangents of the bent paths. Again, the interferometric delay can be 

calculated from the triangle spanned by the chord (green line) and the reflector height H. It should be 

mentioned, that the propagation delay is still neglected in this figure 

Hence, the atmospheric delay can be expressed by the component below the antenna horizon from 

an adaptation of eq. (7) 

atmo b r,b sp spn D sin(e e )sin(e e) = + +   (13) 

The component below the antenna horizon can likewise be derived from a modification of eq. (6), but 

that was already done in eq. (11) in Section 3. Together with eq. (13) we can finally calculate the 

atmospheric interferometric delay from 

atmo bn 2Hsin(e e) = +   (14) 

This is the well-known formulation from (Santamaria-Gomez and Watson 2017) but accounting for the 

propagation delay in addition to the bending model. The modification might seem small but is 

important. Let us imagine a theoretical observation with an elevation angle of 90°, at which the 

bending angle vanishes. Although we would not observe any reflection in reality, we could calculate 

the theoretical interferometric delays. The formulation from (Santamaria-Gomez and Watson 2017) 

would end up in the vacuum interferometric delay from eq. (1) as simply twice the reflector height. 

Because the reflected signal would pass the atmosphere twice, the atmospheric interferometric delay 

must be twice the reflector height, multiplied by the index of refraction in the lower part of the 

atmosphere. That is exactly what eq. (14) yields. 

5. Atmospheric Ray Paths for a Spherical Reflector  

As mentioned before, the assumption of a plane reflector is no longer acceptable if data from very low 

elevation angles below 5° are used. In many data analyses the restriction of elevation angles above 5° 

might be applicable, but in particular under rough sea state conditions the attenuation of the SNR 

oscillation might become strong, allowing to use data up to an elevation angle of 10° or 15° only. In 

such situations it is necessary also to use low elevation data to provide a sufficient amount of data and 

at least a spherical reflector should be assumed. 

In (Semmling et al. 2016) the application of a spherical reflector was suggested, for which the grazing 

angle at the specular point should be calculated. Figure 5a shows the geometry for the computation 

of the grazing angle at the specular point for a spherical reflector with curvature radius R, reflector 

height H and height of the satellite above the sphere of Hsat. The angles t1 and t2 must be equal for a 

reflected signal and the angle  must calculated while  is known from the satellite and antenna 
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position. The approach presented in (Roggenbuck and Reinking 2019) to derive  is only valid under 

vacuum conditions since the bending angle esp at the specular point was omitted. Figure 5b presents 

the angles t1 and t2 as a combination of the pure geometric part t  and the bending angle esp. 

 

Fig 5 General geometry for reflection at a spherical reflector (5a) and in consideration of the bending 

angle esp at the specular point (5b). The angle t1 and t2 are a combination of the pure geometric 

elevation angle esp and the bending angle esp 

The combination from Figure 5 for both angles i=1,2 is 

i sp sp i spt 90 e e t e= + + = +   (15) 

For the pure geometric part, the formulae from the vacuum approach can be applied 

1

sin
tan t

R
cos

R H


=

− 
+

 , 2

sat

sin( )
tan t

R
cos( )

R H

−
=

− −
+

 (16) 

Using the angle addition theorem for tangent, the unknown angle  can be obtain from an optimisation 

of eq. (17) 

1 sp 2 sp

1 2

1 sp 2 sp

tan t tan e tan t tan e
tant tant 0

1 tan t tan e 1 tan t tan e

+  + 
− = − =

−  − 
 (17) 

  
Fig 6 For a spherical reflector the height correction H must be derived from the angle  and the radius 

of the curvature R. The reflected signal path below the horizon of the antenna Dr,b is derived simply 

from H+H, the angle  and the grazing angle esp plus bending angle esp  

The reflected signal path below the horizon of the antenna Dr,b can now be calculated. Figure 6 shows 

the geometric situation for a spherical reflector. The height correction H is simply obtained from 
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H R(1 cos ) = −   (18) 

From Figure 6 we find for Dr,b 

r,b

sp sp

H H
D 2

sin( e e )

+
=

+ +
 (19) 

The atmospheric interferometric delay for a spherical reflector can now be derived in the same way as 

in the case of a plane reflector by a rotation of the direct signal path. Figure 7 shows that we can 

calculate the delay from the triangle spanned by the chord of rotation arc and the outgoing reflected 

pathway. 

 
Fig 7 The atmospheric interferometric delay for a spherical reflector can be derived again from rotation 

of the direct signal path to the reflected signal path. Using the chord (green straight line) of the arc of 

rotation, the delay can be calculated from the triangle spanned by the cord and the outgoing part of 

Dr,b 

Hence, the atmospheric delay can be expressed in consideration of the index of refraction nb for the 

atmosphere below the antenna horizon by  

( )sp spr,b
atmo,sphere b

sin 2(e e )D
n 1

2 sin

 + +
  = −
 
 

 (20) 

As before we assume that the influence of the difference between e and esp is of minor order and the 

approximated atmospheric interferometric delay reads 

( )r,b
atmo,sphere b sp sp

2
b r,b sp sp

D
n 1 cos2(e e )

2

n D sin (e e )

 = − +

= +

 (21) 

Finally, we can derive the atmospheric interferometric delay for a spherical reflector with eq. (19) from  

2
sp sp

atmo,sphere b

sp sp

sin (e e )
n 2(H H)

sin( e e )

+
 = +

+ +
 (22) 

For increasing elevation angles and grazing angles,  would become very small. Hence, H might 

become negligible and the grazing angle would become equal to the elevation angle. Therefore, eq. 

(22) would end up in eq. (14) for large elevation angle and could be stated as general form of the 

atmospheric interferometric delay for all elevation angles.  
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6. Numerical Experiment 

We examined our findings a by numerical experiment based on a simple step-by-step raytracing 

procedure as described in (Nievinski and Santos 2010).Klicken oder tippen Sie hier, um Text 

einzugeben. We assumed a spherical earth with a radius of 6378137 m and a satellite at an altitude of 

20,000 km above the earth. We defined a 2D coordinate system starting at the centre of the sphere. 

The vertical axis was set to pass through the antenna. The reflector height was set to 10 m and the 

elevation angles range from 1° to 90°. From the altitude of the satellite and the radius of the spherical 

earth we calculated the coordinates of the satellite for all elevation angles. 

The atmosphere was approximated as a layered spherical structure with a layer increment of 10 m. 

The index of refraction was taken from the same CIRA-86 model (Fleming et al. 1990) and calculated 

in the same manner as in (Nikolaidou et al. 2020b), whereby the pressure below 20 km was log-linear 

interpolated, so that it fits to the CIRA-86 value at an altitude of 20 km and to 1013.15 hPa at the 

ground.  

We applied an iterative computation of the raytracing. Here we presented the basics step, a more 

detailed stepwise calculation scheme can be found in the appendix. The rays were calculated in the 

inverse direction, what means that we started at the antenna or specular point and computed step-

by-step the piercing point of the ray with the upper-nearest atmospheric layer, taking into account 

Snell’s law to derive the deflection of the ray at this layer limit. Above the top layer of the atmospheric 

model in an altitude of 120 km we assumed a constant index of refraction of 1, and therefore, a straight 

line as the last ray.  

The initial elevation angle of the bent path was set to the vacuum elevation angle. The perpendicular 

distance of the satellite from the last ray was used to derive a correction for the initial elevation angle 

and applied in the next iteration step. The iteration stopped when the last ray passed the satellite 

within a range of a tenth of a millimetre. 

For the ray path of the reflected signal we calculated the grazing angle according to (Roggenbuck and 

Reinking 2019) and combined it with the bending angle from the raytracing of the direct signal to 

compute the coordinates of the specular point, as suggested by (Nikolaidou et al. 2020b). The 2D 

coordinate system was rotated so that the vertical axis passes through the specular point and the same 

iteration as for the direct signal was conducted. After the raytracing iteration was finished, the 

coordinate system was rotated back. The resulting elevation angle of the bent path of the reflected 

signal was used to recalculate the position of the specular point and the iterative raytracing was 

repeated. The iteration of the coordinates of the specular point was stopped when the change of 

coordinates was smaller than 1 millimetre. 

The raytracing yields the geometric length of the paths. For the computation of the radio length, we 

used the ray parts between two layers as finite differences and the mean index of refraction to derive 

the radio length of the paths from numerical integration. 

Hence, we obtained from the raytracing the bending angle, the vacuum interferometric delay, the bent 

ray interferometric delay and the atmospheric interferometric delay. In a first step, the bending angle 

from our raytracing was compared to that one from Bennett’s formula. Since the input elevation angle 

for the latter is the apparent elevation angle, we used an iteration of Bennett’s formula with the 

vacuum elevation angel as the initial value of the apparent elevation. Figure 8 depicts that the bending 

angles agree very well for elevation angles above 5°. Larger discrepancy for lower elevation angles may 

result from different atmospheric models applied here and in Bennett’s development. Hence, it can be 

stated that the raytracing procedure yields reliable results.  
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Fig 8 Difference of the bending angle from raytracing and from Bennett’s formula plotted over the 

elevation angle 

Next, we compared the bent ray interferometric delay and the vacuum interferometric delay, both 

derived from raytracing. The differences (blue line presented in Figure 9) are less than 1 cm for all 

elevation angles. This comparison confirms our findings from Section 3. For the lowest elevation angle, 

this difference is more than ten times smaller than the difference between atmospheric 

interferometric delay and the vacuum interferometric delay (orange line in Figure 9). The latter can be 

compared to the along-path-delay from (Nikolaidou et al. 2020b). For an elevation angle of 5° the 

authors found an along-path-delay of about 6.9 cm. The difference of the atmospheric interferometric 

delay and the vacuum interferometric delay from our raytracing is about 5.2 cm for that elevation 

angle. The discrepancy results from the difference in the bending angles. From our raytracing we 

derived a bending angle of 0.149°. The bending angle from (Nikolaidou et al. 2020b) is about 0.185°. 

Applying eq. (14) for both bending angles results in a difference of the atmospheric interferometric 

delays of about 1.3 cm.    

 
Fig 9 Differences of the bent ray interferometric delay and atmospheric interferometric delay 

respectively to the vacuum interferometric delay from raytracing 

Finally, we compared the atmospheric interferometric delay from raytracing and that derived from eq. 

(22) for the bending angle from raytracing as well as from Bennett’s formula. Figure 10 demonstrates 

the high quality of eq. (22) even for very low elevation angles since the absolute differences are about 

0.1 mm for all elevation angles if we use the bending angle from raytracing (blue line). The differences 
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for the case when the bending angle from Bennett’s formula is used in eq. (22) are quite large for lower 

elevation angles and result mostly from inaccuracies of that formula. They become less than 1 mm 

only for elevation angles larger than about 12°. 

 
Fig 10 Absolute differences of the atmospheric interferometric delay from raytracing and from the 

approximation from eq. (22) using the bending angle from raytracing and Bennett’s formula 

respectively 

The variation of the index of refraction of the atmosphere below the antenna, though small, is likewise 

important. Figure 11 shows the difference between the atmosphere for an index of refraction from 

the CIRA-96 model and pure vacuum for that part of the atmosphere only. The differences increase 

with an increasing elevation angle with a maximum of 2H(nb-1) for an elevation angle of 90°. In the 

typical range of the elevation angles used in ground-based GNSS-R of about 5° to 30°, the differences 

are almost larger than that from Figure 8 for the bending angle from Bennett’s formula. This leads to 

the conclusion that both the upper and the lower part of the atmosphere should be modelled well. 

However, the values in Figure 10 are much smaller than the differences of atmospheric and vacuum 

interferometric delay in Figure 9 (orange curve). This implies that the major part of these differences 

results from the impact of the bending angle. 

 
Fig 11 Differences of the atmospheric interferometric delay from eq. (22) for indices of refraction from 

the CIRA-96 model and for pure vacuum. 

7. Conclusions 
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We examined the atmospheric modelling in relation to the analysis of SNR data from ground-based 

GNSS-R observations from a geometric point of view. This was completed by a numerical test applying 

a simple raytracing.  

We revised the vacuum interferometric delay model and extended it for intersecting vacuum ray paths. 

The quantification of the influence of the intersecting angle shows that the assumption of parallel rays 

in a vacuum is appropriate for the typical settings of ground-based GNSS-R observations. 

We used the deductions from the vacuum case to evaluate the case of physically impossible refracted 

rays in a vacuum. A closed formula for the bent ray interferometric delay, what is the difference of the 

geometric lengths of the bent ray of direct and the reflected signal, was derived. The comparison with 

the vacuum interferometric delay showed even for larger reflector heights and low elevation angles 

non-significant differences. Hence, we cannot confirm the results from other groups. 

Taking into account the retardation of the propagation velocity of radio waves in non-vacuum 

conditions yields atmospheric ray paths. Based on the preceding findings we derived a relation 

between the atmospheric interferometric delay and the component of the refracted ray path of the 

reflected signal below the antenna horizon. The final formulation of the atmospheric interferometric 

delay is an extension of a well-known formula. 

We compared the theoretical results by calculating the various path lengths and delays from a simple 

raytracing, using a typical atmospheric model. The comparison of the bending angle of the direct signal 

path from this raytracing with a standard formula showed good agreement. Hence, it seems 

reasonable to assume that the results from our raytracing are reliable. The atmospheric 

interferometric delay from our formulation agrees very well with that resulting from the raytracing for 

all elevation angles. 

The evaluation of our formula for the atmospheric interferometric delay shows that both the 

atmospheric layer above and below the antenna horizon should be modelled well. Since the layer 

above the antenna horizon influence only the bending angle, the modelling of that part might be less 

important for larger elevation angles. The layer below the antenna horizon influences the atmospheric 

interferometric delay also for larger elevation angle. Hence, we recommend to include the humidity 

besides temperature and pressure in the computation of the index of refraction similar to (Williams 

and Nievinski 2017) since it might show a strong variability, especially over water. In the future, studies 

on the behaviour of atmosphere over water surface as suggested by (Hobiger et al. 2017) might benefit 

from eq. (14) and eq. (22), too. 

It should be emphasized here that the effects of an incorrect modelling of the atmospheric 

interferometric delay will be a source of smaller errors in altimetry studies as long as other effects have 

minor impact. Signal reflections from other objects near the antenna like passing ships, rough sea state 

conditions or mismodelling of hardware effects could yield much larger errors in the final product. 

Hence, even if a correct atmospheric modelling is applied, a further analysis of the signal structure and 

a rigorous outlier detection is unavoidable. 
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Appendix 

Stepwise calculation scheme for raytracing of the direct and the reflected ray path 

Assumptions: 

- spherical earth with radius R   

- layered atmosphere with layers i 1,2, ,n=  with layer increment of 10 m 

- 2D cartesian coordinate system, origin at the centre of the earth’s sphere, y-axis points to 

antenna 

- antenna height H 10 m above the earth’s sphere 

- satellite at altitude of 20,000 km above the earth’s sphere, elevation angle from 1° to 90° 

at the antenna position 

Raytracing for the direct signal: 

D1. set antenna position as starting point of ray path: start startx 0,  y R H= = +  

D2. calculate satellite position sat satx ,  y  from antenna position, satellite altitude and elevation 

angle 

D3. set initial elevation angle of ray path as vacuum elevation angle 

D4. calculate piercing point of first piece of ray path with the first layer above antenna height 

D5. calculate intersection angle of first piece of ray path with the layer 

D6. calculate incidence angle for the next piece of ray path 

D7. calculate intersection angle of current piece of ray path with the next layer 

D8. repeat steps D6 and 7D until the last layer is reached 

D9. calculate the perpendicular distance of the satellite from the last piece of ray path 

D10. calculate a correction from the perpendicular distance and the vacuum distance between 

antenna and satellite position 

D11. apply correction to the initial elevation angle 

D12. repeat steps D4 through D10 until the perpendicular distance is smaller than a threshold 

D13. calculate the path length from the length of the pieces of the path way and the distance 

from the last piercing point to the satellite 

Raytracing for the reflected signal: 

R1. calculate the position of the specular point sp spx ,  y from the grazing angle and the bending 

angle from the raytracing of the direct signal 

R2. rotate the coordinate system so that the position of the specular point becomes 

sp spx' 0,  y' R= =  

R3. calculate satellite position in the rotated coordinate system as sat satx' ,  y '  

R4. set starting point of reflected ray path: start sp start spx x' ,  y y'= =   

R5. set initial elevation angle of reflected ray path as elevation angle from the raytracing of 

the direct signal 

R6. calculate piercing point of first piece of reflected ray path with the first layer above earth’s 

surface 

R7. calculate intersection angle of first piece of reflected ray path with the layer 

R8. calculate incidence angle for the next piece of reflected ray path 
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R9. calculate intersection angle of current piece of reflected ray path with the next layer 

R10. repeat steps R8 and R9 until the last layer is reached 

R11. calculate the perpendicular distance of the satellite from the last piece of reflected ray 

path 

R12. calculate a correction from the perpendicular distance and the vacuum distance between 

specular and satellite position 

R13. apply correction to the initial elevation angle reflected ray path 

R14. repeat steps R5 through R13 until the perpendicular distance is smaller than a threshold 

R15. replace the bending angle from the raytracing of the direct signal in step 1 by the than 

one from this computation 

R16. repeat steps R1 to R15 until the change of the position of the specular point is smaller 

than a threshold 

R17. calculate the path length from the length of the pieces of the reflected path way and the 

distance from the last piercing point to the satellite and add the distance from the 

specular point to antenna 
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