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Abstract: Metal exposure has been associated with a wide range of adverse birth outcomes and 

oxidative stress is a leading hypothesis of the mechanism of action of metal toxicity. We assessed 

the relationship between maternal exposure to essential and non-essential metals and metalloids in 

pregnancy and oxidative stress markers, and sought to identify windows of vulnerability and effect 

modification by fetal sex. In our analysis of 215 women from the PROTECT birth cohort study, we 

measured 14 essential and non-essential metals in urine samples at three time points during preg-

nancy. The oxidative stress marker 8-iso-prostaglandin F2α (8-iso-PGF2α) and its metabolite 2,3-

dinor-5,6-dihydro-15-15-F2t-IsoP, as well as prostaglandin F2α (PGF2α), were also measured in the 

same urine samples. Using linear mixed models, we examined the main effects of metals on markers 

of oxidative stress as well as the visit-specific and fetal sex-specific effects. After adjustment for co-

variates, we found that a few urinary metal concentrations, most notably cesium (Cs) and copper 

(Cu), were associated with higher 8-iso-PGF2α with effect estimates ranging from 7.3 to 14.9 % for 

each interquartile range, increase in the metal concentration. The effect estimates were generally in 

the same direction at the three visits and a few were significant only among women carrying a male 

fetus. Our data show that higher urinary metal concentrations were associated with elevated bi-

omarkers of oxidative stress. Our results also indicate a potential vulnerability of women carrying 

a male fetus. 
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1. Introduction 

Metals are environmental contaminants with the potential to impact biological 

pathways that contribute to preterm delivery [1-5]. One of the leading proposed mecha-

nisms for metal toxicity is oxidative stress, defined as the homeostatic imbalance be-

tween cellular oxidants and availability of antioxidants to favor oxidation [6]. Oxidative 

stress plays an important role in the development of many adverse birth outcomes, in-

cluding preeclampsia, preterm birth, and intrauterine growth restriction [7-11]. The lev-

els of oxidative stress biomarkers, such as 8-iso-prostaglandin F2α (8-iso-PGF2α), in-

crease during pregnancy and peak at delivery [12], suggesting that this mechanism plays 

an important role in normal childbirth. Previous human studies have shown positive 
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associations between higher levels of oxidative stress biomarkers (8-iso-PGF2α) and pre-

term birth [13-17]. A recent analysis in the Puerto Rico Testsite for Exploring Contamina-

tion Threats (PROTECT) cohort study also suggested that elevated levels of 8-iso-PGF2α 

and its metabolite are associated with higher odds of overall preterm birth and particu-

larly spontaneous preterm birth [18].  

Several in vivo and in vitro studies have linked metal exposure with increased for-

mation of reactive oxygen species (ROS) [19, 20]. The excessive ROS can induce oxida-

tive stress and cause damage to cells, leading to the release of lipid peroxidation prod-

ucts into circulation [21]. Elevated biomarkers of oxidative stress in association with ex-

posure to heavy metals, including lead (Pb), arsenic (As) and cadmium (Cd), have been 

reported [22-26]. These non-essential metals have no known physiologic role in the hu-

man body and can be toxic if present even at low concentrations [1, 27, 28]. Moreover, 

they have been associated with preterm birth in epidemiological studies [29-37], includ-

ing studies in the PROTECT cohort [38]. However, essential metals, such as copper (Cu), 

iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se) and zinc (Zn), which are 

important for human health, as well as other metals, such as cesium (Cs) and antimony 

(Sb), that are not classified as essential or non-essential, remain understudied [39, 40]. 

Most metals, including essential metals, are redox-active and therefore have the poten-

tial to increase production of ROS and enhance lipid peroxidation [41, 42]. To our 

knowledge, two prior studies explored the direct effects of essential and non-essential 

trace metals on oxidative stress biomarkers during pregnancy [26, 43]. Dashner-Titus et 

al. reported that As is associated with increased levels of urinary 8-iso-PGF2α [26] and 

Kim et al. found positive associations of urinary Se and Cu with oxidative stress markers 

[43]. Whereas both prior studies were cross-sectional, the PROTECT study provided an 

opportunity to explore the longitudinal effect of various essential and non-essential met-

als on oxidative stress. The objective of this study was to explore the association between 

urinary metals and oxidative stress biomarkers, as well to identify windows of vulnera-

bility and effect modification by fetal sex, by utilizing repeated measures of biomarkers 

among pregnant women participating in PROTECT. 

2. Materials and Methods 

2.1. Study Population 

This study used data collected from women participating in the PROTECT study, an 

ongoing, prospective birth cohort [44-47]. The PROTECT study launched in 2010 with 

funding from the National Institute of Environmental Health Sciences (NIEHS) Superfund 

Research Program and is conducted in Puerto Rico because of its high preterm birth rate 

and the extent of hazardous waste contamination on the island. PROTECT aims to explore 

environmental exposures and other factors contributing to preterm birth risk and other 

adverse birth outcomes in Puerto Rico.   

Study participants were recruited at approximately 14 ± 2 weeks of gestation at seven 

prenatal clinics and hospitals throughout Northern Puerto Rico and followed until deliv-

ery. [44, 45]. Inclusion criteria for this study were: maternal age between 18 to 40 years; 

residence inside of the Northern Karst aquifer region; disuse of oral contraceptives during 

the three months prior to pregnancy; disuse of in vitro fertilization to become pregnant; 

and free of any major medical or obstetrical complications, including pre-existing diabe-

tes. Each woman participated in a total of up to three study visits (18 ± 2 weeks, 22 ± 2 

weeks, and 26 ± 2 weeks of gestation). Detailed information on medical and pregnancy 

history were collected at the initial visit. During an in-home visit (second visit), nurse-

administered questionnaires were used to gather information on housing characteristics, 

employment status, and family situation. Spot urine samples were collected from women 
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at up to three visits. The present analysis reflects 337 urine samples from 215 women with 

measured metal(loid) and oxidative stress biomarker concentrations. 

The research protocol was approved by the Ethics and Research Committees of the 

University of Puerto Rico and participating clinics, the University of Michigan, Northeast-

ern University, and the University of Georgia. The study was described in detail to all 

participants, and informed consent was obtained prior to study enrollment. 

2.2. Measurement of Metals 

Spot urine was collected in sterile polypropylene cups and aliquoted within one hour 

after collection. All samples were frozen and stored at -80°C and shipped on dry ice. Anal-

ysis was performed at NSF International (Ann Arbor, MI, USA), where concentrations of 

21 metals and metalloids were measured: As, barium (Ba), beryllium (Be), Cd, cobalt (Co), 

chromium (Cr), Cs, Cu, mercury (Hg), Mn, molybdenum (Mo), nickel (Ni), Pb, platinum 

(Pt), Sb, tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), and Zn. 

Metal(loid) concentrations were measured using inductively coupled plasma mass spec-

trometry (ICPMS) as described previously [48]. Considering that biological samples have 

high levels of carbon and chloride in the matrix, the laboratory selected the appropriate 

isotopes for the requested elements to best avoid interferences where possible. The ICPMS 

was calibrated with a blank and a minimum of 4 standards for each element of interest. 

An R2 value of >0.995 was the minimum criteria for an acceptable calibration curve. The 

calibration curves were verified by initial checks at three calibration points within the 

curve. Continuing calibration checks and blanks after every 10 samples were also utilized 

throughout the analytical run to ensure the ICPMS system was maintaining acceptable 

performance. Urinary specific gravity was measured at the University of Puerto Rico 

Medical Sciences Campus using a hand-held digital refractometer (Atago Co., Ltd., Tokyo, 

Japan) as an indicator of urine dilution.  

2.3. Measurement of Oxidative Stress Biomarkers 

Urine samples were collected in polypropylene containers, divided into aliquots, and 

frozen at −80 °C until analysis [47]. To assess oxidative stress, the following prostanoids 

were measured in urine samples: 8-iso-PGF2α, the 8-iso-PGF2α major metabolite 2,3-di-

nor-5,6-dihydro-15-15-F2t-IsoP, and PGF2α. Analyses were performed by the Eicosanoid 

Core Laboratories at the Vanderbilt University Medical Center (Nashville, TN). All three 

prostanoids were quantified using the GC/NICI-MS on an Agilent 5973 Inert Mass Selec-

tive Detector that is coupled with an Agilent 6890n Network GC system (Agilent Labs, 

Torrance, CA) [49-51]. The precision of this assay in biological fluids is +6% and the accu-

racy is 94%. Further details describing the measurement of oxidative stress biomarker 

concentrations are available elsewhere [52].  

Although 8-iso-PGF2α has been used as a biomarker of oxidative stress and its re-

lease attributed to chemical (nonenzymatic) lipid peroxidation [53, 54], it may not solely 

be a biomarker of oxidative stress because 8-iso-PGF2α is also produced by prostaglandin-

endoperoxide synthases (PGHS)-mediated enzymatic lipid peroxidation [55, 56]. Enzy-

matic lipid peroxidation is significantly induced in inflammation, which can occur as a 

consequence or stimulator of oxidative stress [57, 58]. Thus, the fractions of 8-iso-PGF2α 

contributed from chemical lipid peroxidation and enzymatic lipid peroxidation were used 

to distinguish and quantify the contribution of the two pathways [18, 26, 59]. This method 

was previously introduced and described in detail by van ‘t Erve et al. [55] and has been 

supported in an animal model to distinguish biomarker synthesis pathways [56]. There-

fore, in this analysis, we additionally examined the hypothesized chemical fraction of 8-

iso-PGF2α, which reflects the amount of 8-iso-PGF2α attributable to chemical lipid perox-

idation, as well as the hypothesized enzymatic fraction of 8-iso-PGF2α, the amount 
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attributable to inflammation induced enzymatic lipid peroxidation. The fractions were 

calculated using the ratio of 8-iso-PGF2α to PGF2α as described in detail by van‘t Erve et 

al. [55]. 

2.4. Statistical Methods 

Metal and oxidative stress biomarker concentrations below the limit of detection 

(LOD) were replaced by LOD/√2. For statistical analysis, we included metal(loid)s with at 

least 70% of samples having concentrations above the LOD as continuous variables. Sam-

ples with very low detection rates (<30%) of metals, including the metals Be, Cr, Ti, U, V, 

Pt, and W, were excluded from the analyses. Descriptive statistics were calculated for all 

exposure and outcome variables. Distributions of all urinary metals and oxidative stress 

biomarkers were right skewed and thus were natural log transformed for all analyses. 

We used linear mixed models (LMM) with a random intercept for subject ID to model 

each prostanoid measure as the dependent variable, with separate models for each expo-

sure biomarker. The crude models included the metal concentration as the exposure and 

specific gravity as a covariate to adjust for urinary dilution [43, 60, 61]. The final set of 

covariates were selected based on a priori knowledge and if their inclusion appreciably 

changed the effect estimates of metal exposure. The covariates considered were study 

visit, maternal age, insurance type, maternal education level (an indicator of socioeco-

nomic status), marital status, employment status, gravidity, pre-pregnancy body mass in-

dex (BMI), smoking, exposure to second-hand smoking, alcohol consumption and gesta-

tional age at the time of sample collection. The final models were controlled for study visit, 

maternal age, maternal education level, marital status, pre-pregnancy BMI, and exposure 

to second-hand smoking. 

We conducted additional analyses to assess potential windows of vulnerability in 

pregnancy. We included interaction terms between metal concentrations and each visit 

indicator separately into the LMMs to obtain visit-specific metal effect estimates. In these 

separate models the effect estimates of the covariates were still assessed using the whole 

dataset with the LMM structures rather than a subset of the dataset as in a stratified anal-

ysis. Furthermore, we considered the possibility of differential vulnerability among preg-

nant women carrying a male fetus vs a female fetus. Therefore, to understand whether the 

effect estimates for metals on maternal oxidative stress differed according to infant sex, 

all single-pollutant models were refitted with the addition of an interaction term between 

metal concentrations and infant sex indicator, and the interaction term coefficient was 

tested for significance. 

Finally, we used adjusted generalized additive mixed models (GAMM) to graph-

ically depict the relationship between metal concentrations and oxidative stress markers. 

The results were presented as change in oxidative stress biomarkers (95% confidence in-

tervals per interquartile range (IQR) increase in metal concentrations. We also considered 

significance after adjusting for multiple testing using the Benjamini-Hochberg method 

[62]. Because oxidative stress biomarkers were correlated, we calculated q values (ad-

justed p values) treating each outcome as a family of tests (14 tests per outcome). A cutoff 

of 0.05 for q value was used to further interpret main results with greater confidence. Data 

were analyzed using R version 3.6.2 [63]. 

3. Results 

3.1. Demographics 

Demographic characteristics of 215 women in this analysis are summarized in Table 

1 and were described previously [46, 64]. Briefly, the cohort included primarily non-
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smokers (81%) in their late 20s (median = 27 years) with half of the women having a BMI 

less than 25 kg/m2 prior to pregnancy. The majority of women (58%) had private medical 

insurance and were employed. More than half of them had annual household incomes 

less than $30,000 while 76% had reported graduating from college or higher. Very few 

(6%) of the women reported consumption of alcohol within the last few months.  

Table 1. Demographic Characteristics of n = 215 Pregnant Women from Puerto Rico. 

Variable Mean (SD) 

maternal age 26.7 (5.5) 

Characteristic category count 

(percent) 

Insurance type 

private 124 (57.7%) 

public (mi salud) 80 (37.2%) 

missing 11 (5.1%) 

maternal education 

≤high school/ged 50 (23.3%) 

some college or technical school 73 (34%) 

college degree 64 (29.8%) 

master’s degree or higher 26 (12.1%) 

missing 2 (0.9%) 

household income 

<$10,000  59 (27.4%) 

≥$10,000 to <$30,000  60 (27.9%) 

≥$30,000 to <$50,000  42 (19.5%) 

≥$50,000  25 (11.6%) 

missing 29 (13.5%) 

marital status 

single  51 (23.7%) 

married or living together 162 (75.3%) 

missing 2 (0.9%) 

parity (# birth) 

0 84 (39.1%) 

1 77 (35.8%) 

>1 52 (24.2%) 

missing 2 (0.9%) 

infant sex 

female 88 (76.5%) 

male 14 (12.2%) 

missing 13 (11.3%) 

prepregnancy BMI (kg m−2) 

≤25 105 (48.8%) 

>25 to ≤30 66 (30.7%) 

>30 33 (15.3%) 

missing 11 (5.1%) 

employment status 

employed 123 (57.2%) 

unemployed 90 (41.9%) 

missing 2 (0.9%) 

smoking 
never 174 (80.9%) 

ever 36 (16.7%) 
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current 3 (1.4%) 

missing 2 (0.9%) 

exposure to secondhand 

smoking 

none 186 (86.5%) 

up to 1 hour 8 (3.7%) 

more than 1 hour 14 (6.5%) 

missing 7 (3.3%) 

alcohol consumption 

none 92 (42.8%) 

before pregnancy 109 (50.7%) 

 within the last few months 12 (5.6%) 

missing 2 (0.9%) 

 

3.2. Descriptive statistics 

Descriptive statistics (geometric mean, geometric standard deviation, select percen-

tiles) of urinary metals and markers of oxidative stress are presented in Table 2. Urinary 

metals and oxidative stress biomarkers were measured among 215 women in up to three 

repeated urine samples (visit 1=124, visit 2=123, visit 3=91). Spearman correlations be-

tween different metals [65] and distribution of oxidative stress markers [18] were previ-

ously reported in detail. Briefly, levels of most urinary metals in pregnant Puerto Rican 

women were higher than levels observed in nonpregnant women ages 18–40 in the gen-

eral U.S. population [65]. A few moderate to strong correlations between urinary metals 

(Pb and Ba, R=0.47; Cd and Pb, R=0.55, Ni and Co, R=0.55; Ni and Ba, R= 0.59). The geo-

metric mean concentrations of 8-iso-PGF2α and the 8-iso-PGF2α metabolite were 1.8 

ng/mL and 0.91 ng/mL, respectively, and were moderately correlated (Spearman R = 0.67, 

p-value <0.01). PGF2α had a geometric mean concentration of 2.8 ng/mL and was also 

moderately associated with 8-iso-PGF2α (Spearman R = 0.74, p-value <0.01) and the 8-iso-

PGF2α metabolite (Spearman R = 0.56, p-value <0.01). 

Table 2. Urinary concentrations of metal(loid)s (ng/ml) and oxidative stress biomarkers (ng/ml) in 

215 pregnant women from Puerto Rico1. 

Metal(loid)2 LOD % >LOD GM GSD 25% 50% 75% 95% Max 

Co 0.05 100 1.1 1.6 0.80 1.0 1.4 2.6 8.2 

Cs 0.01 100 5.4 1.4 4.3 5.3 6.6 10.0 18.4 

Cu 2.5 99.3 15.3 1.5 11.9 14.9 18.7 32.0 149 

Mn 0.08 100 1.4 1.6 1.08 1.4 1.7 3.1 31.6 

Mo 0.3 100 61.9 1.7 44.7 63.3 84.3 147.6 307 

Sb 0.04 90 0.09 1.8 0.07 0.09 0.13 0.23 1.2 

Sn 0.1 100 2.0 2.6 1.0 1.7 3.2 11.2 81.4 

Zn 2 100 301 1.9 203 327 481 798 2136 

As 0.3 100 11.3 2.2 6.6 10.9 17.8 43.1 128 

Ba 0.1 99.3 2.4 2.4 1.4 2.4 4.4 10.2 35 

Cd 0.06 74.5 0.13 2.3 0.07 0.12 0.20 0.59 7.6 

Hg 0.05 98.6 0.56 2.7 0.30 0.58 1.1 2.8 13.6 

Ni 0.8 98.9 5.1 1.7 3.8 5.2 7.1 12.3 32 
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Pb 0.1 72.1 0.24 2.4 0.1 0.26 0.41 1.0 4.6 

Oxidative stress  

Biomarkers2 

 % >LOD GM GSD 25% 50% 75% 95% Max 

8-iso-PGF2α    100 1.8 1.9 1.3 2.0 2.9 4.6 11.7 

8-iso-PGF2α metabolite  100 0.91 1.8 0.62 0.93 1.4 2.2 7.1 

PGF2α    100 2.8 2.1 1.9 2.9 4.5 8.3 40.8 

1 Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); molybdenum (Mo); anti-

mony (Sb); tin (Sn); zinc (Zn); arsenic (As); barium (Ba); cadmium (Cd); mercury (Hg); nickel (Ni); 

lead (Pb); limit of detection (LOD); geometric mean (GM); geometric standard deviation (GSD). 
2 Includes specific gravity-corrected urinary metal and oxidative stress biomarkers concentrations 

for up to 3 repeated samples per woman (n = 337 samples). 

3.3. Urinary Metals and Prostanoids 

The full models included 314 samples which had complete data on the adjusted co-

variates (study visit, maternal age, maternal education level, marital status, pre-preg-

nancy BMI, and exposure to second-hand smoking). Figure 1 presents the associations 

between urinary metal concentrations and prostanoid markers, and effect estimates, con-

fidence intervals, and p values are also given in Supplemental Table 1. 

 

 
Figure 1. Percent change in prostanoids associated with urinary metal concentrations. Effect estimates presented as 

percent change (%) for interquartile range (IQR) increase in exposure biomarker concentration. Models were adjusted 

for study visit, maternal age, maternal education, marital status, pre-pregnancy BMI, and exposure to secondhand 

smoking. Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); molybdenum (Mo); antimony (Sb); tin 

(Sn); zinc (Zn); arsenic (As); barium (Ba); cadmium (Cd); mercury (Hg); nickel (Ni); lead (Pb). White shading indicates 

essential metals and grey shading indicates non-essential metals. Because Cs is not regarded as essential to the health of 

plants or animals nor does it present a hazard to them, Cs was considered as essential metal for the analysis. Black * 

denotes p value <0.05; red * denotes p value <0.05 & q value (false discovery rate) <0.05. 

As presented in Figure 1, the effect estimates from most models on urinary metals 

were positive. In adjusted models, several urinary metals, including, the essential metals 

Co, Cu, and Zn, the non-essential metal Ni, and Cs and Sb (not classified as essential or 

non-essential) were significantly associated with increased 8-iso-PGF2α, the effect esti-

mates ranging from 7.3 to 14.9 % increased 8-iso-PGF2α levels per IQR increase in the 

metal concentration. When we examined these associations for the enzymatic and chemi-

cal fractions of 8-iso-PGF2α, similar significant positive associations remained for the met-

als and the chemical fraction of 8-iso-PGF2α. The enzymatic fraction of 8-iso-PGF2α was 

only associated with Cs (%Δ= 41.6, 95% CI: 2.5, 95.7) and Zn (%Δ=53.6, 95% CI: 7.4, 119.6), 

with wide confidence intervals. Urinary Cu and Zn concentrations were also associated 
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with 9.4% (95% CI: 1.1, 18.3) and 8.2% (95% CI: 0.3, 16.7) increases in 8-iso-PGF2α level, 

respectively. The IQR increases in Cs and Zn were associated with a 9.4% and 13.1% 

higher PGF2α levels (Cs 95% CI: 0.8, 18.7; Zn 95% CI: 3.4, 23.7). After adjusting for multiple 

comparisons, relationships of urinary Cu and Cs, with 8-iso-PGF2α, as well as the chemi-

cal fraction of the 8-iso-PGF2α, remained statistically significant. Results from GAMM in-

cluding metals concentrations as splines and the GAMM output graphics showed that the 

observed associations are significant and linear, after adjusting for covariates.  

3.4. Windows of vulnerability analysis 

The visit-specific associations between urinary metals and prostanoid markers are 

shown in Figure 2, and all visit specific estimates, confidence intervals and p values are 

presented in Supplemental Tables 2. The effect estimates were generally in the same di-

rection when comparing the three visits. One exception is that Ba at visit 3 was negatively 

associated with 8-iso-PGF2α metabolite concentration (%Δ/IQR= -14.4, 95% CI: -24.9, -2.4) 

while the association wass null at visit 1 and 2. A few associations at visit 1 were more 

robust compared to the other two visits. For example, a significant 20% and 21% increase 

in the chemical fraction of 8-iso-PGF2α per IQR increase in Cu (%Δ= 19.9, 95% CI: 6.5, 35.0) 

and Sb (%Δ= 20.6, 95% CI: 6.2, 36.9) were observed at visit 1 and the associations were still 

significant after correction for multiple testing.  

 
Figure 2. Percent change in prostanoids associated with urinary metal concentrations by study visit. Effect estimates 

presented as percent changes (%) for interquartile range (IQR) increase in exposure biomarker concentration. Models 

were adjusted for study visit, maternal age, maternal education, marital status, pre-pregnancy BMI, and exposure to 

secondhand smoking. Abbreviations: cobalt (Co); cesium (Cs); copper (Cu); manganese (Mn); molybdenum (Mo); anti-

mony (Sb); tin (Sn); zinc (Zn); arsenic (As); barium (Ba); cadmium (Cd); mercury (Hg); nickel (Ni); lead (Pb). White 

shading indicates essential metals and grey shading indicates non-essential metals. Because Cs is not regarded as essen-

tial to the health of plants or animals nor does it present a hazard to them, Cs was considered as essential metal for the 

analysis. Black * denotes p value <0.05; red * denotes p value <0.05 & q value (false discovery rate) <0.05. 

3.5. Sex-specific analysis 

Models with interaction terms between infant sex and metals suggested differences 

in susceptibility by infant sex for the effects of urinary concentrations of Co, Cs, Cu, and 

Ni on 8-iso-PGF2α (interaction p value= 0.05, 0.05, 0.02, 0.02) and the chemical fraction of 

the 8-iso-PGF2α (interaction p value=0.03, 0.01, 0.02, 0.01); the associations were only 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 December 2020                   doi:10.20944/preprints202012.0550.v1

https://doi.org/10.20944/preprints202012.0550.v1


 

significant among male infants (p=0.003, <0.001, <0.001, 0.001) but not female infants 

(p=0.71, 0.47, 0.19, 0.99). 14-21% increases in 8-iso-PGF2α associated with one IQR increase 

in Co (%Δ= 14.3, 95% CI: 4.8, 24.6), Cs (%Δ= 14.4, 95% CI: 6.5, 22.9), Cu (%Δ= 21.2, 95% CI: 

11.4, 31.8), and Ni (%Δ= 14.6, 95% CI: 5.5, 24.4) were observed among women who deliv-

ered male infants. Figure 3 depicts the modifying effect of infant sex on the association 

between these metals and 8-iso-PGF2α. Similar differences were observed for the chemical 

fraction of 8-iso-PGF2α (data not shown).  

 
Figure 2. Interaction effect of infant sex on the association between the urinary Cs, Co, Cu, and Ni 

concentration and 8-iso-PGF2α. Models were adjusted for specific gravity, study visit, maternal age, 

maternal education, marital status, pre-pregnancy BMI, and exposure to secondhand smoking. Ab-

breviations: cobalt (Co); cesium (Cs); copper (Cu); nickel (Ni). Lines indicate dose-response curve 

and shading indicates 95% confidence intervals. 

4. Discussion 

In this study, we evaluated relationships between urinary concentrations of various 

metal(loid)s and markers of oxidative stress during pregnancy among Puerto Rican 

women.  The most robust associations found in this study were between urinary Cs, Cu 

and increased 8-iso-PGF2α, respectively, with 15% and 11% increases for each IQR in-

crease in Cs and Cu. The additional analysis of fractions thought to reflect 8-iso-

PGF2α chemical and enzymatic fractions showed that the magnitude and the significance 

of the associations with the chemical fraction of the 8-iso-PGF2α is in concordance with 8-

iso-PGF2α associations, which suggest that the effect of 8-iso-PGF2α may be primarily 

attributable to the chemical lipid peroxidation pathway. Although the chemical and en-

zymatic fractions have been hypothesized to distinguish the contribution of 8-iso-

PGF2α from two pathways, it is worth noting that both inflammation or oxidative stress 

can lead to the changes in the other as they are interrelated [66, 67]. 

Among women in this study, urinary Cs were higher compared to US women aged 

18-40 reported from the National Health and Nutrition Examination Survey (NHANES) 

[65] but lower than the levels reported among pregnant women in Australia and Spain 

[68, 69].  Cs is an alkali metal that naturally occurs in the environment. Typically, human 

exposure is low, through inhalation of Cs in the air and/or ingestion of water and food 
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containing Cs [70]. Little is known regarding the health impact of excess Cs exposure. Cs 

is not regarded as essential to the health of animals or plants, nor is it toxic to them. To 

our knowledge, no human or animal studies have examined associations between Cs and 

oxidative stress. However, our findings of urinary Cs associated with higher levels of 8-

iso-PGF2α are in line with plant studies that show Cs can induce the formation of ROS 

and oxidative stress [71, 72]. Further studies are needed to assess the mechanisms through 

which Cs can impact oxidative state in the human body.  

Urinary concentrations of Cu among this population were higher compared to 

NHANES participants [65], but are within the range reported in previous studies of preg-

nant women in Australia, Spain, and Japan [68, 73, 74]. Cu plays an essential role in many 

aspects of human physiology, including acting as cofactor of antioxidant enzymes [75, 76]. 

However, cellular toxicity due to oxidative damage has been linked to excess Cu  expo-

sure [77], and some people have increased genetic susceptibility to Cu toxicity (Wilson’s 

Disease) [78]. Consistent with our findings on Cu, a number of animal and human studies 

found a relationship between elevated Cu levels and biomarkers of oxidative stress [43, 

79]. Two different mechanisms have been proposed to explain Cu-induced oxidative dam-

age in the human body: 1) free Cu can catalyze the formation of hydroxyl radicals - pow-

erful reactive oxygen species (ROS) that can damage cellular DNA, membranes and pro-

teins [42, 80, 81]; and 2) increased levels of Cu may suppress the availability of glutathione, 

a highly abundant cellular antioxidant [82]. Cu was also associated with higher odds of 

preterm birth in the Puerto Rican population in our study [38] and in a pregnant women 

cohort in Boston [48]., and it is possible that Cu impacted the early parturition through 

pathways including oxidative damage.  

Our sensitivity analysis of infant sex-specific effects revealed that associations of met-

als with oxidative stress markers maybe different between women carrying male or fe-

male infants. Urinary Co, Cs, Cu, and Ni concentrations measured among pregnant 

women who delivered male infants were significantly and positively associated with ele-

vated 8-iso-PGF2α levels, whereas the associations were null among women who deliv-

ered female infants (Figure 3). Although the differential impact of metals on levels of oxi-

dative stress during pregnancy by fetal sex has not been previously reported, the influ-

ences of fetal sex on adverse birth outcomes and the health of pregnant women are be-

coming better understood. Pregnancy with a male fetus has been associated with higher 

risk of maternal diabetes, pregnancy complications, maternal sympathetic activation, and 

placental inflammation [83, 84]. There is also evidence for a heightened vulnerability to 

maternal and/or environmental exposure for male fetuses compared with female fetuses 

[85-88]. The sex differential impacts of metals on oxidative stress observed in this study 

may be attributed, in part, to 1) enzymatic, metabolic, epigenetic differences between male 

and female fetuses and their interrelation with the maternal environment [83, 89] or 2) 

differences in the hormonal pathways and inflammatory responses involved in mediating 

effects of infant sex [90, 91]. Although the biological mechanisms for these well-docu-

mented vulnerabilities remain largely unknown and need further investigation, our find-

ings are suggestive of sex differences in the impact of metals on maternal oxidative stress 

during pregnancy. 

Our study is the first to assess the impact of metals on oxidative stress biomarkers 

among pregnant women in Puerto Rico. The repeated collection of biological samples en-

abled us to examine the associations with oxidative stress markers at different times dur-

ing pregnancy which provided greater statistical power to assess longitudinal associations 

and potential susceptible windows during pregnancy. While most previous studies eval-

uated total 8-iso-PGF2α as a biomarker of oxidative stress, we additionally calculated the 

fraction of chemically-derived 8-iso-PGF2α and enzymatically-derived fraction of 8-iso-

PGF2α to distinguish the contribution of the two pathways. The present study does have 

some limitations. Oxidative stress biomarkers have short half-lives and the levels change 
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over the course of pregnancy [92, 93]. However, we did measure markers of both metals 

and oxidative stress markers at multiple points during pregnancy, increasing the assess-

ment accuracy. While measuring 8-iso PGF2a in the urine provides insight into the sys-

temic state of oxidative stress, it may not represent the redox stress at the placental level 

where effects from the environmental toxicants may be acting causing preterm birth. 

Measurement of 8-iso PGF2a at the tissue level may provide more information on the spe-

cific oxidative stress occurring here. In this analysis, one of the major assumptions is that 

metals induce oxidative stress. If oxidative stress causes an increase in urine excretion (i.e., 

reverse causation), the interpretation of these results would be different. Additionally, the 

findings may not be generalizable to other pregnant women or populations of women 

who are not pregnant.  

5. Conclusions 

We examined the effect of essential and non-essential metal(loid)s on markers of ox-

idative stress among pregnant women in Northern Puerto Rico. Results from our study 

contribute to the growing body of literature suggesting that urinary concentrations of cer-

tain metals are associated with elevated levels of oxidative stress during pregnancy, and 

there is effect modification by fetus sex. This study further highlights the need for future 

research in this area to examine potential sex-specific effects of environmental exposures 

on oxidative stress during pregnancy. 
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S2: Percent change in 8-iso-PGF2α, 8-iso-PGF2α metabolite, PGF2α, 8-iso-PGF2α chemical fraction, 

and 8-iso-PGF2α enzymatic fraction associated with urinary metal biomarker concentration at each 

visit during pregnancy. 
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