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Abstract: Understanding swash zone dynamics is of crucial importance for coastal management as the

swash motion, consisting of the uprush of the wave on the beach face and the subsequent downrush,

is responsible for driving changes the beach morphology trough sediment exchanges between the

sub-aerial and sub-aqueous beach. Improved understanding of the probabilistic characteristics of

these motions has the potential to allow coastal engineers to develop improved sediment transport

models which, in turn, can be further developed into coastal management tools. In this paper,

novel descriptors of swash motions are obtained by combining field data and statistical modelling.

Our results indicate that the probability distribution function (PDF) of shoreline height (p(ζ)) and

trough-to-peak swash heights (p(ρ)) measured at a high energy, sandy beach were both inherently

multimodal. Based on the observed multimodality of these PDFs, Gaussian Mixtures are shown to be

the best method to statistically model them. Further, our results show that both offshore and surf

zone dynamics are responsible for driving swash zone dynamics, which indicates unsaturated swash.

The novel methods and results developed in this paper, both data collection and analysis, could aid

coastal managers to develop improved swash zone models in the future.
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1. Introduction

The swash zone encompasses the transition region between the sub-aqueous and the sub-aerial

beach [1]. It is a highly dynamic environment with alternating wet and dry conditions. Over the past

five decades, this region has attracted increased research interest due to the significant role it plays in

sediment dynamics and beach erosion [2]. The cross-shore shoreline oscillation, globally referred as to

swash, can be divided into two main components: the uprush of the wave on the beach face and the

subsequent downrush. Each of these two divisions can be described by their horizontal and vertical

(height) components (Figure 1). A large proportion of swash zone research has focused on obtaining
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empirical parametric formulae to describe extreme runup heights (see Atkinson et al. [3] and Power

et al. [4] for recent reviews), however, as highlighted by Hughes et al. [5], this approach may not be

fully satisfactory to provide information to coastal managers to develop operational tools other than

inundation models.

The natural variability of the probability distribution functions (PDFs) of swash motions has

received little research attention to date. To the authors’ knowledge, only two studies have attempted

to describe the variability of these PDFs in detail [5,6] both of which focused on comparing measured

shoreline elevation height PDFs (p(ζ)) to Cartwright and Longuet-Higgins’ [7] theoretical PDF of a

random variable. This theoretical PDF is a direct function of the spectral width (ϕ) of the analysed

timeseries and reduces to the Rayleigh PDF for narrow bandwidth processes (ϕ=0) or to the Gaussian

PDF for wide bandwidth processes (ϕ=1). Holland and Holman [6] found that their measured shoreline

height PDFs matched Cartwright and Longuet-Higgins’[7] PDF for some values of ϕ, but they could

not correlate the variability in their PDFs to environmental parameters. More recently, Hughes et al.

[5] showed that both their shoreline height PDFs (p(ζ)) and trough-to-peak swash height PDFs (p(ρ))

resembled, but were not statistically similar, to Cartwright and Longuet-Higgins’ [7] theoretical PDFs.

Hughes et al. [5] observed that, on aveage, PDFs were consistently right skewed when compared to

the theory possibly due to the broad-band wave spectrum observed on natural beaches. It has been

observed [8], however, that the spectral width parameter ϕ does not correlate with wave height PDFs

in the surf zone and, by induction, should not correlate with swash heights either.

Figure 1. Swash zone definitions. Note that runup is defined relative to the still water level (SWL),
the shoreline height (or elevation, ζ) is defined centered on the mean water level (MWL), and the
trough-to-peak swash height (ρ) is defined for each swash cycle. Here, each swash cycle was defined
by a local minima analysis.

In this paper, we provide novel field observations of swash motion PDFs obtained from a high

resolution LiDAR system deployed at a high energy sandy beach. Specifically, the statistical properties
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of shoreline height (ζ) and trough-to-peak swash heights (ρ) are investigated in detail. In addition,

detailed surf zone and offshore data are used to the assess the patterns observed in the swash zone.

The results obtained here deviate significantly from the theoretical predictions from Cartwright and

Longuet-Higgins [7] and do not support the concept of swash saturation [9]. The present data indicate

that a combination of surf zone and offshore forcing control swash zone dynamics. Finally, an

approach that does not require prior knowledge of ϕ is investigated to predict the characteristics

of swash motion PDFs. This paper is organised as follows. Section 2 describes the data collection

methods and pre-processing, Section 3 presents the results of the field data collection with a focus on

probabilistic descriptors for swash, Section 4 discusses the results, and Section 5 concludes.

2. Materials and Methods

2.1. Data Collection

Data were collected at at Seven Mile Beach, Gerroa, New South Wales, Australia, hereafter SMB.

This beach is classed as modally dissipative in the Australian morphodynamic beach model [10,11]

and for the duration of the present experiment, was characterised by a gently sloping profile (with

slope β = 0.03) with no significant barred morphology, beach cusps, or alongshore variability. Video

imagery, Pressure Transducer (PT), offshore spectral wave, Light imaging Detection And Ranging

(LiDAR), Acoustic Doppler Velocimeter (ADV), and topographic data were collected during a field

data collection experiment over six days in June 2018. In this paper, the focus will be on the LiDAR and

offshore data. The experimental design is shown in Figure 2 and is summarised below. See Stringari

et al. [12] and Stringari and Power [13] for further details.

The PT data collection consisted of 30 PTs (RBR Solo and INW P2X) deployed on the seabed in a

cross-shore orientation. The LiDAR (SiCK LMS511) was mounted on a scaffold frame and recorded in

the same cross-shore orientation as the PT transect (see Figure 2-a and b). A Datawell waverider buoy

was deployed offshore of the transect line at the 10m isobath. The beach was surveyed several times

each day using a Trimble S5 total station and a Trimble R4 RTK GPS, and representative beach profile

is shown in Figure 2-c. Figure 3 shows the offshore conditions for the duration of the field campaign.

This dataset was ultimately chosen for the analyses presented in this paper because it overcomes the

limitations of classical remote-sensing datasets (e.g., pixel miss-registration; see Vousdoukaset al.’s

[14] Figure 7), it has precise and unique offshore conditions, and it has a high degree of offshore wave

variability for comparable tidal water levels and beach slopes.
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Figure 2. a) Experiment location. The red line shows the instrumentation transect. b) Photo of the
experimental setup (19/06/2018). c) Representative beach profile (16/08/2018).

Figure 3. Offshore data (spectral significant wave heights, Hm0∞ , and periods, Tm01∞ ), for the duration
of the field campaign. The filled blue regions indicate periods of simultaneous offshore, LiDAR, and
PT data collection.
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2.2. Data Processing

From the raw LiDAR data (Figure 4-a), timeseries of the cross-shore evolution of the water surface

elevation were extracted at 10Hz and stacked in time, resulting a dataset similar to a video-derived

timestack [15] (Figure 4-b, color scale). Incoming waves were tracked using a modified version of the

method from Stringari, Harris and Power [12]. For each LIDAR timestack, the vertical Sobel [16] edge

detector was applied to the timestack, pixel intensity peaks in the resulting image were extracted and

then clustered using the DBSCAN algorithm [17]. Unlike the original method, no color-based machine

learning was applied to the dataset. The absence of the color-learning step resulted in a significant

increase in the number of false-positive cases of wave crests being detected. These erroneous wave

crests were manually corrected in QGIS to ensure that no errors were propagated into subsequent

analyses. Optimal wave paths were then obtained as per the original tracking algorithm [12]. The

tracking algorithm was set to stop tracking waves if the water elevation above the bed was less than

0.015m, which is significantly lower than other recent works [18,19].

The temporal evolution of the shoreline position was obtained in three steps: 1) the uprush was

obtained from the tracked wave paths as described above, 2) the downrush was obtained via edge

detection using the horizontal Sobel [16] operator and, 3) the continuous shoreline timeseries was

obtained by combining the results of steps 1) and 2) and interpolating the data a to regular time vector

with sample frequency of 5Hz using a Gaussian Radial Basis Function (RBF) interpolation. Finally,

horizontal shoreline excursion timeseries were converted to shoreline height (ζ) timeseries and to

trough-to-peak swash heights (ρ) using the measured beach profiles and a local minima analysis (see

Figure 1 for definitions). The Australian Height Datum (AHD, [20]) was used as the vertical reference.

3. Results

3.1. Surf Zone Dynamics

The cross-shore variation of surf zone significant wave heights (Hm0) and the fraction of broken

waves (Qb) were used to assess the surf zone dynamics (Figure 5). In this paper, Qb was calculated

as follows: for each data run in which there were unique offshore, surf zone, and swash zone data

available, 10 minutes of PT data were extracted from the raw records and, from these records, individual

waves were extracted using a local minima analysis as per Power et al. [21] and classified as broken or

unbroken using the neural network from Stringari and Power [13]. The neural network was updated

with field data from Seven Mile Beach to increase the classification performance for the present dataset.

The updated neural network accuracy score reached 95% when classifying waves in a test dataset

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2020                   doi:10.20944/preprints202012.0538.v1

https://doi.org/10.20944/preprints202012.0538.v1


6 of 18

Figure 4. a) Raw LiDAR data showing a bore running up the beach profile. b) Example of LiDAR
timestack showing the tracked wave paths (coloured dashed lines) and the resulting time-varying
shoreline position (thick red line). The grey scale indicates the bore height (that is, water depth) in
relation to the measured profile in a).
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(that is, data that the neural network had never seen) and correlation scores (r2) were >0.95 for Qb

predictions (not shown).

Data from each Qb curve were segmented into three clusters using the k-means algorithm (Figure

5-a): one cluster that was representative of the outer surf zone, one cluster representative of the mid

surf zone, and one cluster representative of the inner surf zone. The probability distribution of Qb

(p(Qb)) was then calculated for each class (Figure 5-b) which showed that in the outer surf zone,

most of the waves were unbroken (p(Qb) < 0.2), in the mid surf zone, about half of the waves were

broken (p(Qb) ≈ 0.5), and in the inner surf zone, most waves were broken (p(Qb) > 0.8). This result is

consistent with the conceptual hydro-kinematic model for gently sloping beaches [22]. Interestingly,

Qb values close to the surf-swash boundary were never Qb = 1, which indicates that small unbroken

waves reach the swash zone, even on a dissipative beach such as SMB (average Iribarren Number

[23] ξ∞ = tan β√
Hm0∞ L∞

= 1.21, where L∞ is the wave length calculated as L∞ = g
2π T2

m01∞
, and averaged

Ω∞ =
Hm0∞

Tm01∞ Ws
= 3.77, where Ws is the sediment fall velocity). Based on the observed distributions of

Qb, three locations in the surf zone were chosen to assess wave heights: Qb = 0.95 (inner surf zone),

Qb = 0.50 (mid surf zone), and Qb = 0.05 (outer surf zone).

The analysis of the correlation between offshore (Hm0∞ ) and surf zone (Hm0 ) wave heights showed

that there was a direct correlation between Hm0 and Hm0∞ across the full width of the surf zone

(Figure 5-c to f). Following the definition of surf zone saturation from Power et al. [24], the observed

correlations strongly suggest that the surf zone was unsaturated during experiment, despite the

dissipative nature of the beach. Finally, the wave height to water depth ratio (γsig) was compared

to the offshore wave height normalised by averaged water depth for each 10-min data run (Hm0∞ /h)

(Figure 5-g). The results from this analysis are analogous to Figure 11 in Power et al. [21] and indicate

that: 1) the surf zone was unsaturated, and 2) there was a terminal bore height reaching the surf-swash

boundary. Following from the analysis in Figure 5-a that Qb 6= 1, this terminal bore height could

represent either broken or unbroken waves. These results are significant because if the surf zone is

unsaturated, it is probable that the swash zone is also unsaturated. This is discussed further in Section

4.

3.2. Shoreline Height PDFs

For each data run in which there were unique offshore and LiDAR data, 10-minute timeseries

were extracted from the raw LiDAR record and the time-varying shoreline was obtained using the

method described in Section 2.2. The PDFs of normalised (p((ζ − µ)/σ)) and non-normalised (p(ζ))

shoreline height were then obtained via histograms and kernel density estimations (KDEs). The use of

KDEs to obtain PDFs is advantageous over more traditional histogram methods because: 1) they are a
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fully non-parametric approach, and 2) they are able to identify fluctuations in the data’s distribution

that are usually not seen when using histograms with potentially non-ideal bin sizes.

Analysis of individual normalised shoreline height PDFs indicated a high degree of variability

between runs and that the majority of PDFs were multimodal (97.5%). The Shapiro and Wilk [27] test at

the 95% confidence interval confirmed that none of the analysed timeseries were normally distributed.

The observed PDFs were then grouped into three clusters based on the observed offshore conditions

(Figure 6-a). Cluster A represents average wave heights conditions with short periods, Cluster B

represents calm conditions (low wave heights and short wave periods), and cluster C represents calm

conditions with long wave periods. Figure 6-b shows the PDFs for cluster A, Figure 6-c shows the

PDFs for cluster B and Figure 6-d shows the PDFs for cluster C. By averaging the PDFs in each cluster,

a right-skewed PDF similar to Hughes et al.’s [5] ensemble PDF was observed (see their Figure 2). To

assess the effect of the normalisation strategy and offshore conditions on the shape of the shoreline

height PDFs, each PDF was compared to every other PDF in the same cluster, and then to every PDF in

each of the other two clusters using the Kullback and Leibler [28] divergence as similarity measurement.

The results from this analysis indicated that: 1) non-normalised PDFs (p(ζ)) are dissimilar within and

between clusters (Figure 6-h), except PDFs in cluster C which were strongly similar to each other, and

2) normalised PDFs (p((ζ − µ)/σ)) are strongly similar within and between clusters (Figure 6-i). For

further discussion see Section 4.

Two other methods were assessed for obtaining a function (or combination of functions) to

describe the observed PDFs. This was done because KDE is a non-parametric method that requires

prior knowledge of the input timeseries, thus preventing an assessment of correlations between

descriptors of the analysed PDFs and environmental parameters. Note that the results presented below

were invariant regardless of which PDF (p((ζ − µ)/σ) or p(ζ)) was being modelled. The first method

consisted of fitting all PDFs available in the SciPy library [29] to the observed data (96 PDFs were

available as of December 2020) and using three metrics to evaluate the fitted PDFs: the sum of squared

errors, the Akaike information criterion [30], and the Kullback-Leibler divergence [28]. The results

from these analyses indicated that none of the best-fit PDFs were able to statistically satisfactorily

describe the majority (> 50%) of the observed PDFs, regardless of the metric adopted to rank them.

The analytical PDF that best fitted the greatest number of observed PDFs (≈ 35%) was the non-central

Student’s T (NCT) PDF, which is a complicated four-parameter function [31] and thus is impractical.

Examples of the NCT fit to the data are shown in Figure 6-e to g (blue lines). Given the poor overall

performance of the NCT and given that this PDF cannot describe the multimodal characteristics of the

data, this strategy was not pursued further.
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To account for the multimodality observed in the data, a second approach to obtain analytical

descriptions of p(ζ) and p((ζ−µ)/σ) was used. In this method, the analysed PDFs were approximated

by the sum of a number of Gaussian PDFs, each described individually by their mean (µ), standard

deviation (σ) and mixing weight (α), that is, a Gaussian Mixture Model (GMM) [32]. This approach

was able to precisely reproduce the observed multimodality in all the shoreline height PDFs (see

Figure 5-e to g, for example) and the Kolmogorov–Smirnov test confirmed that the PDFs predicted

by the GMMs were statistically similar to the observed PDFs at the 95% confidence level (which

is expected, given the characteristics of the method). A Gaussian mixture model is, however, a

parametric method that requires prior knowledge of the number of mixtures to be used. By using

the Akaike Information Criterion [30] as an evaluation metric, a mixture with three components was

found to be the optimal value to statistically satisfactorily represent the majority of the observed

data (≥90%) whilst maintaining model simplicity. As GMMs provide the parameters µ, σ, α and

the optimal number of mixtures (Nmix), it becomes possible to correlate these parameters to known

variables in a predictive way, thus overcoming the major limitation of KDEs and methods such as

Cartwright and Longuet-Higgins’ [7]. A model using surf zone and offshore parameters to assess

the variability observed in p(ζ), assuming that such variability is directly correlated to the optimal

number of Gaussian mixtures (Nmix) for each PDF, is discussed in Section 4.

3.3. Trough-to-peak Swash Height PDFs

In the previous section, p(ζ) was observed to be multimodally distributed and, consequently,

to deviated from the expected theoretical PDFs. Based on this, it is therefore reasonable to assume

that PDFs derived from a swash-by-swash analysis would follow a similar pattern. In this section,

the trough-to-peak swash height (ρ) was used as proxy variable for such analysis (see Figure 1 for

definitions). By applying the wavelet decomposition method detailed in Stringari and Power [33]

(see their Appendix A) it was possible to classify each swash event as occurring under infragravity

or sea-swell wave dominant forcing. For each timestack, ρ was calculated for each individual swash

cycle and compared to the time-varying infragravity and sea-swell energy levels obtained using data

from the PT in the surf zone that was closest to the surf-swash boundary in each data run. If energy in

the infragravity band was greater than energy in the sea-swell band (that is, Eig(t) > Esw(t)) during

the time of swash excursion, the swash event was considered to be dominated by an infragravity

wave, otherwise, the swash event was considered to be dominated by a sea-swell wave. Due to

the characteristic long-period of infragravity motions, there was no need to account for time offsets

between the shoreline and nearest surf zone PT timeseries. Finally, it is worth noting that the approach
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used here is equivalent to Guza and Thornton’s [9] classical approach, only more robust, as it considers

both time and frequency domains whereas the classical approach only works in the frequency domain.

As with the analyses shown in Section 3.1, both p(ρ) and (p((ρ − µ)/σ)) in both frequency

bands presented great variability, were mostly multimodal (>95%), and were significantly statistically

different (p < 0.05 using the Kolmogorov–Smirnov test) from the theoretical PDFs predicted by

Cartwright and Longuet-Higgins [7]. To be in accordance with the theory, the observed PDFs should

have collapsed to a Rayleigh PDF for non-normalised PDFs (p(ρ), Figure 7-a to c), or to a Gaussian

PDF for normalised PDFs (p((ρ− µ)/σ), Figure 7-d to f), but this was not observed. The mean PDF

for each frequency band in each cluster was also obtained (black lines in Figure 7-a to f) and these

mean PDFs also deviated from the PDFs predicted by the theory. It is worth noting, however, that

non-normalised PDFs (p(ρ)) in cluster C closely approached but were not statistically similar to a

Rayleigh PDF as assessed by the Kolmogorov–Smirnov test (p ≈ 0.05). Further, when all the data

in each frequency band were aggregated (Figure 7-g and f), the observed PDF did not collapse into

the expected Gaussian PDF either, with the observed aggregated PDFs in both the sea-swell and

infragravity bands being right-skewed and statistically similar to the Beta PDF, consistent with Hughes

et al.’s [5] results (their Figure 7). Similar results to Figure 7-g and f were observed when aggregating

the data in each frequency band based on the offshore clusters (not shown). See Section 4 for further

discussion on the correlation between offshore parameters and the observed swash height PDFs.

Finally, Figure 7-i shows an analysis similar to that of Guza and Thornton’s [9] (their Figure

7) which has been widely used in the literature to support the concept of swash saturation in the

sea-swell frequency band. For each data run, the trough-to-peak significant swash height (ρsig) in each

frequency band was calculated and compared to the observed offshore wave height. In contrast to

Guza and Thornton’s [9] data, the data analysed here showed a correlation between increases in the

offshore wave height and increases in the significant trough-to-peak swash height in both the sea-swell

and infragravity frequency bands. These results do not support, therefore, the assumption of swash

saturation in the sea-swell band. For further discussion on swash saturation, see Section 4.

4. Discussion

This paper has presented a novel, data-driven approach for analysing the probability distribution

functions of swash motions. Both shoreline height (ζ) and trough-to-peak swash height (ρ) PDFs were

observed to be strongly multimodal, highly variable, and systematically statistically different from

expected theoretical PDFs. Previous previous research [5,6] has shown that PDFs of different swash

motions can deviate from Cartwright and Longuet-Higgins’ [7] theory but, to the authors’ knowledge,

multimodal p(ζ) and p(ρ) have not been reported before. Given the observed multimodality of
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shoreline height PDFs, Gaussian Mixture Models (GMMs) were shown to be the best method to

approximate p((ζ − µ)/σ) (e.g., Figure 6), which are easily transferable to model p(ζ), p(ρ), and

p((ρ− µ)/σ). Interestingly, when the data were normalised, the shoreline height PDFs (p((ζ − µ)/σ))

collapsed into very similar PDFs, indicating that environmental forcing directly correlates with the

shape of the non-normalised PDFs, further supporting the clustering approach based on offshore

conditions. The influence of offshore wave conditions on swash motion PDFs is further supported

by three other observations: 1) that shoreline height PDFs in cluster C which had a narrow offshore

wave height band were very similar to each other regardless of data normalisation (see Figure 6-h); 2)

that the width of p(ρ) directly increased with increasing offshore height in both frequency bands; and

3) that the mean p(ρ) PDFs in cluster C were only marginally statistically different to the predicted

Rayleigh PDF (see Figure 7-c) which is consistent with the narrow offshore wave height band of this

cluster. Ultimately, these results suggest that the swash zone was unsaturated in both infragravity and

sea-swell frequency bands for the data analysed here.

The multimodality observed in both shoreline height and trough-to-peak swash height PDFs can

theoretically be linked to the observation by Guza and Thornton [9] that energy in different frequency

bands will result in distinct density peaks at different swash height elevations. This assumption is

consistent with the analysis presented in Section 3.3, in which clear density peaks in p(ρ) are observed

at different frequency bands (e.g., note the separation between the mean PDFs in Figure 7-d to f).

Therefore, the fact that GMMs were the only method that satisfactorily reproduced the observed

PDFs may be a direct consequence of this (physical) phenomenon and not necessarily a result of pure

statistical inference. In contrast to the observations of Guza and Thornton [9], however, the data

analysed here does not support swash saturation in the sea-swell frequency band (see Figure 7-f). It is

worth nothing, however, that Guza and Thornton’s (1982) data were from a beach more dissipative

than SMB and, therefore, the present results may not be directly comparable to theirs. The results in

this paper showed, nonetheless, that as a consequence of the surf zone being unsaturated, the swash

zone was also unsaturated, which is supported by the correlations between the offshore clusters and

swash motion PDFs. This result is consistent with recent results from Hughes et al. [34] who also

showed that swash saturation is not always the case on natural beaches.

Finally, an investigation of which environmental parameters best explained the variability seen in

p(ζ) was conducted. Assuming that optimal number of mixtures (Nmix) is a direct proxy for the degree

of variability and, consequently, the complexity of p(ζ), a model that ranks which environmental

parameters best explained Nmix was constructed. This analysis provides an initial insight into which

variables are most important for describing the trends seen in the data and aims to further support

our observations that the observed surf zone dynamics were directly controlling the swash zone. A
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random forest model was chosen to accomplish this task (see Appendix 1 for details). Note that, in

contrast to Section 3.2, the maximum number of mixtures was not restricted to three and was, therefore,

chosen based on the lowest AIC for each 10 minute data run (although the Nmix is unbounded here,

the highest number of optimal mixtures observed was six because models with a too large number of

mixtures gets heavily penalized by AIC). As inputs for the model, wave heights and periods at four

cross-shore locations were used (offshore, Qb=0.05, Qb=0.50 and Qb=0.95). The model was trained one

hundred times to account for statistical variability and the feature importance for each variable was

obtained. The same approach can be used to predict which parameters best explain µ, σ and α but

this was not attempted here due to the small size of the dataset (see Section 6.4 in Stringari [35] for

an attempt at this using model data). The results shown in Figure 8 indicate that a combination of

several parameters were responsible for best explaining Nmix, with the wave height at seaward end of

the surf zone (Hm05% ) consistently being the most important parameter for the model. In general, this

result agress with the results from Section 3.1 as Nmix directly correlates with surf zone wave heights

which implies that, as a consequence of the surf zone being unsaturated, the swash zone is unsaturated

and, therefore, driven by incoming bores with non-negative terminal heights, as previously shown by

two recent studies [19,21]. As more data become available in the future, models based on the present

approach could provide a robust predictor for shoreline statistical properties based solely on known

parameters, which will be valuable tools for coastal managers.

5. Conclusions

In this paper, analysis of swash motions from a gently sloping sandy beach under varying offshore

forcing showed that the majority of observed PDFs (both p(ζ) and p(ρ)) were multimodally distributed

and were statistically different from the PDFs predicted by the theory. Hence, Gaussian Mixtures were

shown to be the best approach to model p((ρ− µ)/σ), which could be easily extended to other swash

processes. The parameters of the Gaussian Mixtures that described these swash motions were closely

correlated to wave conditions in the surf zone and further offshore, which is indicative of unsaturated

swash. Analysis of the correlation between significant trough-to-peak swash heights (ρsig) and offshore

wave heights further confirmed unsaturated swash in both short and long wave frequency bands. The

field data collection and statistical methods used in this paper were shown to overcome the limitations

of more traditional methods and allowed for a novel statistical descriptions of swash motions. These

approaches, although preliminary and limited by a small dataset, should provide a robust basis for

coastal managers when developing improved swash zone models in the future.
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Figure 8. Feature importance of the random forest model. In this plot, Hm0∞ and Tm01∞ are the
significant wave height and significant wave period offshore of the surf zone, Hm05% , Tm015% , Hm050% ,
Tm0150% , Hm095% , and Tm0195% are the significant wave height and significant wave period at the Qb
value indicated by indexes where Qb = 5% is representative of the outer surf zone, Qb = 50% is
representative of the mid surf zone and Qb = 95% is representative of the inner surf zone.

Appendix A

This appendix describes the predictor for the optimal number of Gaussian Mixtures for a given

sea-state. The eXtreme Gradient Boost (XGB) model [36] was chosen as the classifier. The goal was to

obtain a non-linear function that maps input features into the predicted number of Gaussian Mixtures.

Mathematically, this relationship can be written as:

ˆNmix ' f
(

Hm0∞ , Tm01∞ , Hm05% , Tm015% , Hm050% , Tm0150% , Hm095% , Tm0195%

)
(A1)

in which Hm0∞ and Tm01∞ are the significant wave height and significant wave period offshore of the

surf zone respectively and, Hm05% , Tm015% , Hm050% , Tm0150% , Hm095% , and Tm0195% are the significant wave

heights and significant wave periods at the Qb value indicated by the subscripts. These features were

chosen based on the results results from Sections 3.1, 3.2, and 3.3.

The model is then defined as:

ˆNmix =
K

∑
k=1

fk(Xi), fK ∈ G (A2)
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where ˆNmix is the predicted number of mixtures, f (Xi) is a function (in this case, a decision tree) that

takes input training samples (Xi), and G is the space of functions containing all decision trees. The

objective (obj) of the model is to learn the best function(s) that minimises a loss function (l) while,

at the same time, keeping the model ensemble as simple as possible. This is done by considering a

regularisation parameter (ωr):

obj =
N

∑
i

l(y, ŷ) +
K

∑
k=1

ωr( fk) (A3)

The model is then trained using the greedy algorithm know as adaptive training [37]. The loss function

for the model was the mean absolute error (MAE):

MAE =
∑n

i=1 |yi − xi|
n

(A4)

where yi is the predicted number of mixtures and xi is the observed number of mixtures. For the

training step, the data were randomly split into training (70%) and testing (30%) datasets and the

model was run 100 hundred times for each combination to account for statistical variability. The R2 for

all models always reached values greater than 95%.
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