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Abstract

In this paper, we present a technique to unify the Reissner–Nordström metric

and the Kerr–Newman metric. We construct a specific model and calculate the

entanglement entropy of black horizon. We are interested in the entangled particle

and antiparticle spinning on the black hole horizon. The two Reissner-Nordström

horizons r±, are the results of the rotation of several entangled particle-antiparticle

on the real horizon. The energy absorbed by a black hole is transformed into a

kinetic energy of the entangled particle-antiparticles. This study provides a new

type of black hole metric. We show that the rotation of an entangled system of

a particle and an antiparticle can create a extremal black hole. We also explore

some of the implications of this point of view for the black hole entanglement.

Keywords: black hole, entanglement, entropy.

1 Introduction

Juan Maldacena and Leonard Susskind, devised a theory linking two phenomena both

discovered by Einstein: “Einstein-Rosen bridges” (or wormholes) and quantum entan-

glement. According to them, if we move the two entangled particles apart would in

fact amount to digging an ER bridge around a single particle which would manifest its

properties in several places in space-time. This theory sheds light on a problem called

the EPR paradox which highlights the non-locality of quantum mechanics, Which he op-

poses to the principle of locality which is the basis of the theory of relativity. However,
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this ER=EPR correspondence is only demonstrated in a very simplified universe model,

where gravity is generated in the absence of mass [1]. The Hawking radiation of a black

hole is a scrambled cloud of radiation entangled with the black hole [1]. In this paper, we

are interested in studying a two entangled particles on the black hole horizon. It is well

known that the ”Kerr metric”[2] is a metric that describes a rotating black hole, which is

static and axisymmetric. When the black hole has an electric charge, the Schwarzschild

solution is no longer valid. A non-rotating black hole corresponds to an isotropic black

hole of mass M and charge Q, which described by the ”Reissner–Nordström metric”

[3, 4]. For a charged black holes with |Q| ≪ M , are similar to Schwarzschild black

holes. The Reissner-Nordström black holes have two horizon, the innermost is a Cauchy

horizon. It is believed that black holes with |Q| ≻ M don’t exist in nature, since they

would contain a naked singularity. Their existence would be in contradiction with the

principle of cosmic censorship of the Roger Penrose [5].

The present paper is organized as follows: The second section introduces a concept

Entanglement on the horizon. Section 3 involves the ntangled particle and antiparticles

system on the horizon. In section 4 we introduce a unique description of the Reissner–

Nordström metric and the Kerr–Newman metric. Section 5, is devoted to calculate the

geodesic of a new metric which describes the entangled system on the horizon. We will

conclude in the last section.

2 Entanglement on the horizon

We consider a C,auchy slice Σ of the black hole spacetime with Minkowski coordinates

(t, x⃗) is divided into two parts Σ+ and Σ−. We assume that the “horizon” is at x =

−a, the thin region (of the order of the Planck length) near the horizon becomes is at

x = −a + ϵ, where ϵ ∼ 0. The absolute value function χ −→ |χ| is continuous but is

not differentiable in 0. We will use this property of the absolute function to describe the

entangled states in the black hole horizon. We define a general field |χ| as a component

of two fields:

|χ| = (−χ or χ) (2.1)

we consider that |χ| is free scalar field in a background spacetime. Next, we considere the

entanglement entropy between the outside and the thin region of the inside the horizon,

based on the new field |χ|

∂χ |χ| = (−1 or 1) (2.2)

this the derivative of |χ|, seems to describe a two entangled states. It is possible to find

both cases −1 and 1 at the same time at point O, i.e. we can find two states at a single
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point on the surface Σ.

∂χ |χ| ≡ (−1)δ (2.3)

there is a different tangent to the left and a tangent to the right at the point O, when

δ = {2k, 2k + 1} of k ∈ Z. We can represent the creation of a right particle and a left

particle in the horizon by the lines |χ|. In this case, Eq.(2.3) also has a T -symmetry, For

spin systems, the Eq.(2.3) obeys ∂χ |χ| ⊂ exp (i4πs), where s is the spin of the state in

the defect Hilbert space [7]. We suppose that a field χ describes a particle which creates

outside the horizon, and that −χ describes the particle created inside. While the field

|χ| can describe both particles at the same time. The field |χ| seems classical to on the

parts ΣL and ΣR. But in the point O, |χ| becomes a quantum field. we associate to

the field −χ and χ a state |Ψ+⟩ and |Ψ−⟩ respectively, in the basis {|−⟩ , |+⟩}. The

entanglement between the two states does not describe the complete field. Firstly, we

associate with the field |χ|O in the point O by entangled states:

|Ψ±⟩ ∼ |+⟩ |−⟩ ± |−⟩ |+⟩ (2.4)

this state is invariant under the Z2 symmetry: |+⟩ −→ (−1)δ |+⟩ and |−⟩ −→ (−1)−δ |−⟩.
The two states (2.4) exist at the same time on O, which means that we can replace the

term ± by (−1)δ.

Figure 1: We can’t distinguish between the two entangled states |Ψ±⟩ at a point O of

horizon. When separating two states, the state|Ψ−⟩ enters to the black hole singularity,

and the state |Ψ+⟩ exits black hole. The two states are still entangled.

Next, we assume that there is an infinity of tangents in the point O, i.e. the creation

of particles in horizon propagates with a spherical forms in all directions. So we replace

πδ by a temporal or spatial parameter θ ∈ R.

∂χ |χ| ⊂ eiθ ∈ U (1) (2.5)
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In this case we generalize Eq.(2.4) by the created hybrid-entangled bi-particles state

shared between Alice and Bob reads as follows

|Ψθ⟩ ∼ |+⟩ |−⟩+ eiθ |−⟩ |+⟩ (2.6)

the states |Ψθ⟩ and e−iθ |Ψθ⟩ describe the same physical quantum state. |Ψθ⟩ and |Ψ+⟩
will not correspond to the same physical state. Let H be a fixed observable (Hermitian

operator) on some Hilbert space of quantum states representing a certain conserved

quantity. Let ρθ = e−iθHρeiθH be the evolution of density operatorρ generated by H.

Clearly, ρθ satisfies the von Neumann-Landau equation

i∂θρθ = Hρθ − ρθH = [H, ρθ] (2.7)

in terms of the eigenvectors |Ψθ⟩ and the associated eigen values λθ depend on θ, there-

fore, the quantum Fisher information is zero. We propose that the particles created with

θ = 0, don’t escape the horizon but are trapped. We propose that these particles which

corresponds to θ = 0, spins on the black hole horizon [10].

|Ψ0⟩ ∼ |+⟩ |−⟩+ |−⟩ |+⟩ (2.8)

the entangled states {|Ψ0⟩} are trapped on the horizon. Our goal is to compute the

angular momentum in the classical frame and then in the quantum frame, to describe

both the classical and quantum nature of a black hole. The dynamics of the particles

rotating on the horizon, requires to calculate the orbital angular momentum vector of

the entangled particles in the horizon.

Figure 2: particles in state |Ψ+⟩ go out of the horizon on the other hand particles in

state |Ψ−⟩ directs to the singular. And particles in the states |Ψ0⟩ are trapped on the

horizon.

The orbital angular momentum operator of a particle in the horizon can then be

defined as the vector operator L = −ixµ × ∂µ. Moreover, we assume that we can’t
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distinguish between the two particles χ and −χ, during the rotation in the horizon.

We propose that that the orbital angular momentum of the particles which turn in the

horizon, has a quantum and classical aspect at the same time we start with the classical

orbital angular momentum

LzC = pyx
d

dy
y − pxy

d

dx
x (2.9a)

in the quantum frame the eigenvalue of the orbital angular momentum operator LzQ in

the state
∣∣∣Ψ̃0

〉
is expressed as below〈

Ψ̃0

∣∣∣LzQ

∣∣∣Ψ̃0

〉
= −i

〈
Ψ̃0

∣∣∣x d

dy

∣∣∣Ψ̃0

〉
+ i
〈
Ψ̃0

∣∣∣ y d

dx

∣∣∣Ψ̃0

〉
(2.10)

we compare the two orbital angular momentums (2.9a) and (2.10), we obtain a new state∣∣∣Ψ̃0

〉
, is a conformal transformation of vaccum state |Ψ0⟩ as∣∣∣Ψ̃0(t)

〉
≡ eix

µpµ(t) |Ψ0⟩ (2.11)

to obtain a classical and quantum description of horizon particles (θ = 0), the state |Ψ0⟩
changes to new vacuum state

∣∣∣Ψ̃0(t)
〉

by the phase exp ixµpµ(t). We propose a new

notation of the conformal state of vacuum |φ+⟩ :=
∣∣∣Ψ̃0(t)

〉
and |φ−⟩ :=

∣∣∣Ψ̃∗
0(t)
〉
, we will

use this notation later. To study the behavior of particles spinning on the horizon, we

propose to start studying first the rotation of the Kerr Newman black hole.

3 Entangled particle and antiparticle on the horizon

In spherical coordinates (t, r, θ, φ), the Kerr–Newman metric is

ds2 = −∆

ρ2
(
dt− J/M sin2 θdϕ

)2
+ (3.1)

sin2 θ

ρ2
[(
r2 + J2/M2

)
dϕ− J/Mdt

]2
+

ρ2

∆
dr2 + ρ2dθ2

where

∆ ≡ r2 − rsr + J2/M2 +Q2/4 (3.2)

ρ2 = r2 + J2/M2 cos2 θ (3.3)

with rs = 2M is the Schwarzschild radius. We take the speed of light c = the gravitational

constant GN = the vacuum permittivity 4πε0 = 1.

The Kerr-Newman metric [8] describes a black hole if and only if

J2 ≼
(
M2 −Q2

)
M2 (3.4)
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where M is the mass of the black hole, Q is the electric charge and J is the angular

momentum. The case J2 ≼ M4 − Q2M2 describes an extremal black hole. In the case

where (Q = 0, J ̸= 0), we will have a Kerr black metric. For (Q ̸= 0, J ̸= 0), we get

a Kerr–Newman black hole. For (Q ̸= 0, J = 0), we get a Reissner–Nordström black

hole. Finally for (Q = 0, J = 0), we obtain a Schwarzschild metric. We know that the

Schwarzschild radius is written as rs = 2M . We can rewrite Eq.(3.4) by a more general

form:

J2 . −r2s
4
Q2e

− r2s
4Q2 (3.5)

the objective behind this general form, is to make appear the Kruskal–Szekeres coordi-

nates to cover the entire spacetime manifold around the horizon. We take u = − r2s
4Q2 ,

one cane obtain

J2/Q4 . ueu (3.6)

the term ueu is the lightlike Kruskal coordinate, where

u = −M2/Q2 ≡ −r/2M (3.7)

this last equation makes it possible to find the charge of the particles rotating in the

horizon

Q± = ±M (3.8)

every particle on the horizon, has a charge which depends directly on the black hole mass;

if the black hole mass larger, the charge of a horizon particle will be more important.

This equation shows that there are two types of spinning particles in the horizon. And

each particle of the charge Q+ = +M , is entangled with another antiparticle of the

charge Q− = −M . The particle and antiparticle have opposite electric charges Q+ and

Q−,i.e. CPT anticommutes with the charges. The sum of all the charges of the horizon

particles is zero. If the number of particles N on the horizon is limited, the horizon

charge will be QH = 0. If we take that the number of horizon particles N −→ ∞, we’ll

have
∑

Qrs = M
∑∞

n=0 (−1)n = M/2. Then the charge of the black hole horizon is

QH = M/2 (3.9)

this charge corresponds exactly with a physical event horizon, because (3.9) check the

condition of existence of the event horizon: 2QH ≺ rs. The notion of an electrically

charged black hole horizon, is already found by [9]. Therefore the Eq.(3.4) becomes

J2 ≼ 3

4
M4 (3.10)

the term J in the last equation represents a classical state. In the quatique framework,

we take Ĵ as an operator on the other hand J are its eigenvalues in the states {|φ±⟩}
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|J | ≼
√
3

2
M2 (3.11)

according to Eq.(2.1), the field |χ| describe the particles which escape from black hole

horizon, and |J | describe the spinning particles that trapped on the horizon, in this case

we take |χ| (θ = 0) = |J |. For a extremal 4d Kerr black hole, the Eq.(3.11) become a

two equations, are given by

J− = −
√
3

2
M2 or J+ = +

√
3

2
M2 (3.12)

which induces that the extremal black hole is a set of two entangled particles with the

low mass M . This equation indicate that the two entangled particles on the horizon,are

created from the point O, and rotate in opposite directions then it is particle-antiparticle

annihilation on another point O′ on the horizon. Therefore, the extremal black hole is

considered like a particle accelerator. The rotation of the two entangled particles (particle

and antiparticle) creates a black hole is equivalent to the pair production. This requires

there is a enough energy available in the center of mass to create the pair. In this case

we suppose that all the energy absorbed by a black hole is transformed to kinetic energy

of the particles-antiparticles in the horizon.

the ADM mass and angular momentum are function of the horizon size a

M ≡ a (3.13)

The black hole has a Bekenstein-Hawking entropy checked

SBH ≽ 4π√
3
|J | (3.14)

this relation presents a minimum value for the entropy of a black hole. We will use this

entropy in the next section.

4 Mirage horizon of the entangled particle-antiparticle

In this section, we want to find a unique description for the Reissner–Nordström metric

and the Kerr–Newman metric. The Reissner–Nordström metric [12] reads

ds2 = −
(
1− rs

r
+

Q2

r2

)
dt2 +

(
1− rs

r
+

Q2

r2

)−1

dr2 + r2dω2 (4.1)

where dω2 = dθ2 + sin2 θdφ2.

The event horizons for the spacetime are located where 1
grr

= 0, which gives two solutions,

i.e. we will have two event horizons are located in

r± = M ±
√

M2 −Q2 (4.2)
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these concentric event horizons become degenerate for (3.8), which corresponds to an

extremal black hole, which explains the result found by (3.12), i.e. the black hole is a set

of two entangled particles, one rotates with respect to the other. This comparison opens

a description of a black hole with entangled particles (particule and antiparticule) (3.8)

on the horizon (3.9) by two the metrics Eq.(3.1) and Eq.(4.1). But we have a problem,

the Kerr- Newman metric Eq.(3.1) describes a rotating black hole, on the other hand,

the Reissner- Nordström metric Eq.(4.1) describes a black hole without rotation. To

unify the two metrics without a generalization, we propose that the concentric event

horizons described by the horizon angular momentum JH = 0 and angular momentum

J± ̸= 0 of the entangled particle-antiparticle system on the horizon. The set {JH , J±}
is described by Reissner-Nordström metric and the Kerr–Newman metric at the same

time. When we have an annihilation between particle and antiparticle in the horizon,

therefore, JH = 0. On the other hand J± describes the horizon with the creation of

these entangled particles. Which means that the geometry of the space-time close to

the horizon changes according to the dynamics of the entangled particles. which means

that the two horizons r± are a mirage created by the particle-antiparticle system. In this

case we propose that the singularity does not rotate. The rotation and the load present

only on the horizon. To find the intersection between these two metrics we will use a

technique. For Q = QH (3.9), we can use the two angular momentum (3.12) in (4.2),

and we obtain

r± = M +
J±
M

(4.3)

r± are two Reissner-Nordström horizons, it depends on J±. According to our model,

r± are a virtual horizons or mirage horizons, because there are a results of rotation of a

several entangled particles-antiparticles on the real horizon (QH = M/2, JH = 0, r = rs).

Since r± depends on J±, then, r± describe the two particles. Therefore, we propose to

replace rs in Eq.(4.1) by the last values of |r±|. To find a metric which describe the

space-time around the horizon with the presence of the entangled particles, wepropose

first this new metric

ds2 = −
(
1− M

r
+

M2

r2
− |J±|

rM

)
dt2 +

(
1− M

r
+

M2

r2
− |J±|

rM

)−1

dr2 + r2dω2 (4.4)

we start with a region near to singularity 0 - r ≼ rs, in this case we propose to use the

Taylor series for this metric:

|J±| ≡
M4

r2
− M5

r3
+ ...+O

(
±Mn+2

rn

)
(4.5)

this last expression explains the presence of the entanglement in the horizon. When

n −→ ∞, we can’t separate precisely between two cases; when n even or odd. Clearer,
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for n −→ ∞, n will be even and odd at the same time. In the case where r = rs, one can

obtain |J±| = M2

6
, this value verifies the condition (3.11), and they are different from the

values (3.12), which shows that the unification between Reissner–Nordström metric and

the Kerr–Newman metric is done for a non-extemal black hole. The term O
(
±M∞

r∞

)
⊂

J±, where ∞+(2k) = ∞+(2k + 1), k ∈ N, is a little negligible, but his effect on particle

and antiparticle is very strong, he represents the entanglement of this two particles

O

(
±M∞

r∞

)
≡ (−1)∞ O

(
M∞

r∞

)
(4.6)

indeed, this equation shows that we can have (−1)∞ = {−1, 1}, which is equivalent with

Eq.(2.2), which really describes the entangled particle-antiparticle by the two angular

momentums J±. We remark that (−1)∞ becomes an operator which has eigenvalues in

the base {|φ±⟩}, which describes the state of an entangled particle and antiparticle

(−1)∞ =

(
−1 0

0 1

)
(4.7)

we compare Eq.(2.3) with Eq.(4.7) we find

∂J+ |J±| = (−1)∞ (4.8)

The term Eq.(4.6) is essential, for these the entangled particle-antiparticle create a ex-

tremal black hole, because this term is a responsible in (4.5), which creates a rotation

between the entangled particles on the horizon.

SBH ≽ 4π√
3

∣∣∣∣(−1)2
M4

r2
+ (−1)3

M5

r3
+ ...+ (−1)∞ O

(
Mn+2

rn

)∣∣∣∣ (4.9)

this relation describes a minimal entropy SBH ≽ Smin for a black hole:

Smin =
4π√
3

M4

r2
1

1 + M
r

r ̸= 0 (4.10)

for r = rs, we get Smin,H = 2π
3
√
3
M2.

5 Geodesic of the two entangled particle-antiparticle

In what follows, we want to determine a metric which describes the entangled system of

a particle and antiparticle. Taking into account Eq.(4.5), we obtain a new metric which

is written

ds2 =
−1

1 + M
r

dt2 +

(
1 +

M

r

)
dr2 + r2dω2 (5.1)
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Substituting Eqs.(3.8,4.5) into Eq.(5.1) one can obtain

ds2 = −|J±|
Q4

±
r2dt2 +

1

r2
Q4

±

|J±|
dr2 + r2dω2 (5.2)

where dω2 = dθ2 + sin2 θdφ2.

we first provided the equations of motion of the particle-antiparticle system. Now, we

consider the spherical coordinates xµ = (x0 = t, x1 = r, x2 = θ, x3 = φ): the Christoffel

symbols are

Γα
µν =

1

2
gασ

(
∂gσν
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

)
(5.3)

one can compute the geodesics of a two-entangled particles system |J±|. The Euler–

Lagrange equations of motion for |J±| are then given in local coordinates by

d2xα

dt2
+ Γα

µν ẋ
µẋν = 0 (5.4)

we find differential equations, (see appendix), then we calculate their solution

θ (t) = ± cos−1 ω (t− t0)

where ω is the angular frequency for both particles, the rotation of the two particles

begins at time t0. For t = t0, we obtain θ (t0) = ±1; this result is equivalent to the rest

of particle-antiparticle.

Figure 3: Some curves of the variation of θ as a function of t.

we also calculate the parameter φ and we find

φ(t) = −Cϖ ln (csc (ωt− ωt0) + cot (ωt− ωt0))

+Cϖ cos (ωt− ωt0) + φ0

where ϖ = tan(ωt−ωt0)
ω|tan(ωt−ωt0)| , C is a constant and φ0 is a constant of integration.
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Figure 4: A possible curves of the variation of φ as a function of t.

The local velocity is therefore

v(r, t) = ±
√

ω |J±|
Q2

±

tanω (t− t0)

cosω (t− t0)
r2

for t = t0, the velocity of the entangled particles will be zero. If |J±| = 0, v(r, t) will be

zero, which implies that the entanglement between the particle and the antiparticle is

essentially to generate by the angular momentum.

6 Conclusion

In the present work, we used an absolute field to describe two entangled states in the

horizon. Then we studied the entangled particle-antiparticle that revolve around on the

horizon. We have studied these particles for Kerr Newman black hole. We have shown

that the rotation of an entangled system of a particle and an antiparticle, can create a

extremal black hole. The present study was designed to determine the black hole effect

on entangled particles on the horizon. This study has shown that the system of two en-

tangled particles has a single metric, which derives the motion of the electrically charged

particle and antiparticle on the horizon. This study has raised important questions about

the nature of the entanglement, since we have shown that the two angular momentums of

the two entangled particles are perfectly connected with a Taylor by an operator (−1)∞

at infinite. This connection leaves the two entangled particles in rotation between them.

The analysis of the entangled particles geodesic, has extended our knowledge of more

about the rotations of the entangled particle-antiparticle.
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Appendix

the metric (5.2) is written as

gµν =


− |J±|

Q4
±
r2 0 0 0

0 1
r2

Q4
±

|J±| 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


the nonvanishing components of the Christoffel symbols Γα

µν are given by

Γ0
01 =

1

2
g00

∂g00
∂x1

=
1

r
(6.1)

Γ1
00 = −1

2
g11

∂g00
∂x1

=
|J±|2

Q8
±

r3 (6.2)

Γ1
11 =

1

2
g11

∂g11
∂x1

= − 1

r
(6.3)

Γ1
22 = −1

2
g11

∂g22
∂x1

= −|J±|
Q4

±
r3 (6.4)

Γ1
33 = −1

2
g11

∂g33
∂x1

=
|J±|
Q4

±
r3 sin2 θ (6.5)

Γ2
21 =

1

2
g22

∂g22
∂x1

=
1

r
(6.6)

Γ2
33 = −1

2
g22

∂g33
∂x2

= − sin θ cos θ (6.7)

Γ3
31 =

1

2
g33

∂g33
∂x1

=
1

r
(6.8)

Γ3
32 =

1

2
g33

∂g33
∂x2

= cot θ (6.9)

therefore, the Euler–Lagrange equations are given by

r̈ +
|J±|2

Q8
±

r3 = 0 (6.10)

r̈ − 1

r
ṙ2 = 0 (6.11)

r̈ − |J±|
Q4

±
θ̇
2
r3 = 0 (6.12)

r̈ +
|J±|
Q4

±
sin2 θφ̇2r3 = 0 (6.13)

θ̈ +
ṙ

r
θ̇ = 0 (6.14)

θ̈ − sin θ cos θφ̇2 = 0 (6.15)
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φ̈+
ṙ

r
φ̇ = 0 (6.16)

φ̈+ cot θθ̇φ̇ = 0 (6.17)

by the comparison between Eqs.(6.10,6.11,6.12,6.13), one eliminates Eqs.(6.10,6.13), it

is to have real values for the physical quantities. According to Eqs.(6.14,6.15,6.16,6.17),

we find this differential equation,

θ̈ + θ̇
2
cot θ = 0 (6.18)

its solution is of the form

θ (t) = ± cos−1 ω (t− t0) (6.19)

from Eqs.(6.14,6.16,6.19), we find the solution for φ

φ̈+
ω

cosω (t− t0)

(
1

sinω (t− t0)
+ sinω (t− t0)

)
φ̇ = 0

φ(t) = C

∫
e−F (t)dt+B

F (t) =

∫ t

f(ζ)dζ

=

∫ t

dζ
ω

cosω (ζ − t0)

(
1

sinω (ζ − t0)
+ sinω (ζ − t0)

)
= ln |tan (ωt− ωt0)| − ln (cos (ωt− ωt0)) +D

φ(t) = C

∫
cos (ωt− ωt0)

|tan (ωt− ωt0)|
dt+B

φ(t) = −Cϖ ln (csc (ωt− ωt0) + cot (ωt− ωt0)) (6.20)

+Cϖ cos (ωt− ωt0) + φ0 (6.21)

where ϖ = tan(ωt−ωt0)
ω|tan(ωt−ωt0)| . For the square of the speed in Eq.(6.11), is positive, we choose

only

v2 = ω
|J±|
Q4

±

tan2 ω (t− t0)

cos2 ω (t− t0)
r4 (6.22)

therefore, the specific orbital energy is

E = ω
|J±|
2Q4

±

tan2 ω (t− t0)

cos2 ω (t− t0)
r4 − M

r
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