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Simple Summary: Aedes scapularis is an important mosquito species capable of transmitting viruses 
and parasites to humans and animals. Aedes scapularis was previously known to occur throughout 
large portions of the Americas, from the lower Rio Grande Valley of southern Texas to Argentina 
and on several Caribbean Islands. Recently, this mosquito became established in southern Florida, 
marking the first time Ae. scapularis was found on the Florida Peninsula. Now that Ae. scapularis has 
reached the Florida Peninsula, it is expected to continue to expand its geographic distribution to fill 
contiguous areas with suitable environments. Here, we use a modeling approach that correlates 
environmental variables with known geographic collection locations of Ae. scapularis to predict the 
potential distribution of this species. The output of this model provides new information for 
mosquito control and public health agencies to help monitor the spread of this exotic vector 
mosquito and suggests a need for vigilance for the expansion of this mosquito in many of Florida’s 
coastal counties. 

 

Abstract: Aedes scapularis is a neotropical mosquito known to transmit pathogens of medical and 
veterinary importance. Its recent establishment in southeastern Florida has potential public health 
implications. We used an ecological niche modeling approach to predict the abiotic environmental 
suitability for Ae. scapularis across much of the Americas and Caribbean Islands. Georeferenced 
occurrence data obtained from the Global Biodiversity Inventory Facility and recent collection 
records of Ae. scapularis from southern Florida served as input for model calibration. Environmental 
layers included bioclimatic variables provided in 2000 to 2010 average Modern Era Retrospective-
analysis for Research and Applications climatic (MERRAclim) data. Models were run in the 
software program Maxent. Isothermality values found often in costal environments contributed 
strongest to model performance. Model projections suggested areas predicted suitable for Ae. 
scapularis across portions of the Amazon Basin, the Yucatán Peninsula, the Florida Peninsula, and 
multiple Caribbean Islands. Additionally, model predictions suggested connectivity of highly 
suitable or relatively suitable environments spanning the United States Gulf Coast, which may 
facilitate geographic expansion of this species. At least sixteen Florida counties were predicted 
highly suitable for Ae. scapularis, suggesting vigilance is needed by vector control and public health 
agencies to recognize further spread of this vector.  

Keywords: invasive species; ecological niche models; species distribution models; vector 
surveillance  
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1. Introduction 

Changes in the geographic distributions of medically important vector mosquitoes can result 
in broad-scale negative impacts on human and veterinary health [1,2]. Most notable, is the human-
mediated dispersal and subsequent establishment of Aedes aegypti L. and Aedes albopictus Skuse in 
multiple regions of the world facilitating the spread of dengue, yellow fever, chikungunya, and Zika 
viruses into new geographic areas [1,3-7]. Although often overlooked, finer scale changes in the 
geographic distributions of mosquito vectors can also alter transmission risk, warranting close 
monitoring of local mosquito faunas for introductions of non-native mosquito species, and for the 
potential of introduced species to contribute to the transmission of mosquito-borne pathogens [8]. 
Further, anticipated changes in global climate may lead to shifts in the geographic, elevational, or 
seasonal occurrence of mosquito species, prompting concerns of increased uncertainty in potential 

transmission risks of mosquito-vectored pathogens [9].  
Several factors facilitate or constrain geographic distributions of mosquito vector species 

[10,11]. Importantly, biotic variables including competition, predation, and resource availability in a 
specific area can influence species distributions at relatively fine scales, while abiotic climatic values 
can serve as broader scale constraints from which to characterize the potential distribution of a 
species [12-15]. Mosquitoes, as insects, are ectotherms, making them sensitive to temperature, while 
their small body size makes them vulnerable to low humidity. As such, abiotic climate variables have 
been used extensively to predict potential distributions and changes in distributions of medically 
important vector arthropod species and pathogens [16-22].  

The geographic location of mainland Florida, USA, spanning multiple ecoregions and 
climatic gradients [23], along with its proximity to several Caribbean islands and high levels of trade 
and tourism, makes this area a prime candidate for the invasion and establishment of mosquito vector 
species from the Neotropics and elsewhere [24]. Importantly, of Florida’s 16 non-native and 
suspected non-native mosquito species, 13 (81.3%) were first detected in the state since 1985, and 10 
(62.5%) were first detected in the last 20 years.  

The recent expansion in the geographic distribution of Aedes scapularis Rondoni onto 
peninsular Florida presents a new challenge to vector management and mosquito control programs 
[25]. Aedes scapularis is an important vector mosquito in the American Tropics [26]. A diverse 
assemblage of arboviruses and parasites have been detected in wild females, including flaviviruses 
(yellow fever, Rocio, and Ilhéus viruses [27-30]), an alphavirus (Venezuelan equine encephalitis virus 
[31-34]), an orbivirus (Yunnan orbivirus [35]) and filarial nematodes (Dirofilaria immitis [36] and 
Wuchereria bancrofti [37]). Prior to its recent range expansion into the Florida Peninsula, the known 
geographic distribution of Ae. scapularis comprised large portions of South and Central America, 
southern and eastern Mexico, and several Caribbean islands, outlined in a map produced by Arnell 
[26] plotting the approximate collection locations of examined Ae. scapularis specimens. Because the 
recent observations of Ae. scapularis indicate a northward expansion in the geographic distribution of 
this species onto the contiguous US mainland, a need exists to update and to characterize its potential 
distribution to help inform future veterinary and public health surveillance and control efforts. 

In Florida, Ae. scapularis is currently established in Miami-Dade and Broward Counties [25]. 
Mark-recapture studies indicate that adult female Ae. scapularis can disperse relatively large 
distances, up to 4.1 km [38], making it likely that the geographic distribution of Ae. scapularis on the 
Florida Peninsula will expand to fill adjacent suitable environments over time. Ecological niche 
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modeling, or species distribution modeling, is a correlative modeling approach that utilizes 
environmental data collected at georeferenced locations where a species has been observed to predict 
where similar combinations of environments occur across a broader geographic area [39]. Predicting 
the potential distribution of vector species provides a useful tool to help target monitoring and 
surveillance efforts, contributing to more efficient vector control and public health management 
strategies [40]. Here, we use ecological niche modeling to predict the potential distribution of Ae. 
scapularis incorporating recently published georeferenced records from the southern Florida 
Peninsula. 

2. Materials and Methods  

Georeferenced Ae. scapularis occurrence data were downloaded from the Global Biodiversity 
Inventory Facility (GBIF) (https://www.gbif.org/) and combined with Ae. scapularis records collected 
in southern Florida [25]. Data without geographic coordinates and occurrence records for which the 
precision of the decimal degree was less than three decimal places were removed from the data set. 
Georeferenced occurrence data were then mapped and thinned spatially at a 0.25 decimal degree 
distance to help prevent overrepresentation of environmental combinations owing to sampling bias 
and to help reduce potential impacts from spatial autocorrelation on model calibration [41].  

Calibration Area 

A major component in ecological niche modeling is delineation of the model calibration region 
(M-calibration region) [42]. The M-calibration region included the geographic region available to Ae. 
scapularis with a limiting boundary in the north based on a general transition to colder environments; 
transitions to colder environments also served as the limiting boundary at the southern end of the 
calibration region in South America. The resulting M-calibration region encompassed a large portion 
of South America, all of Central America, multiple Caribbean islands, Mexico, and a portion of the 
southern United States in North America (Figure 1).  

Environmental Data 

Combinations of bioclimatic variables derived from average temperature and specific humidity 
variables were acquired at a 2.5’ spatial resolution (~ 5 km) for the years 2000 to 2010 from the Modern 
Era Retrospective-analysis for Research and Applications climatic data set (MERRAclim) [43]. The 
MERRAclim data consists of bioclimatic variables derived from satellite-based temperature and 
specific humidity data collections at an hourly time interval from 1981 to 2010 [43]. The MERRAclim 
bioclimatic variables served as environmental variables in model calibration. Bioclimatic layers were 
masked to the M-calibration region using the ‘raster’ package in R v3.6 [44].  

Correlation between environmental variables is common when using bioclimatic layers, which 
can result in redundancy and highly complex models that produce interpretation challenges [45]. We 
calculated a Pearson’s correlation matrix using environmental values obtained within the M-
calibration region to identify pairwise correlations between each environmental variable and 
generated five candidate sets that included variables that were not highly correlated (Figure S1 & 
Table S1, Table1).  
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Table 1. Bioclimatic variables included in candidate environmental data sets used to develop a model 
predicting the potential geographic distribution of Ae. scapularis in North and South America. 

Bio1 Average Annual Temperature 

Bio3 Average Isothermality (mean diurnal range/temperature annual range) 

Bio5 Average Maximum Temperature of the Warmest Month 
Bio6 Average Minimum Temperature of the Coldest Month 

Bio12 Average Annual Specific Humidity 

Bio16 Average Specific Humidity of the Wettest Quarter 
Bio17 Average Specific Humidity of the Driest Quarter 

Model Calibration 

Ecological niche models were generated using a maximum entropy algorithm in the Maxent 3.41 
software package [46], executed within the ‘kuenm’ package in R [47]. The Maxent software package 
discriminates the range of environments at georeferenced occurrence locations (i.e. presence 
locations) with the range of environments found at a set of ‘background’ locations, distributed 
randomly across the calibration area [48,49]. A regularization multiplier helps to control for 
overfitting, which can reduce predictive performance, and contributes to the variable selection 
process [50]. Models were run using a random subset of 70% of the occurrence data with the 
remaining 30% of the data withheld for model evaluation. Candidate models were generated for each 
of the five environmental data sets, using a combination of feature classes (i.e., linear [l], quadratic 
[q], product [p], linear+quadratic [lq], linear+product [lp], quadratic+product [qp], 
linear+quadratic+product [lqp]) and regularization multipliers ranging between 0.1 and 10. Initial 
model runs included an internal 50% random subset for training and testing with 10 bootstrap 
replicates at 500 iterations each, and 10,000 background points.  

Model Evaluation 

Model evaluation followed a three-step process outlined in Cobos et al. [47]. Calibration results 
were filtered first to identify models with statistically significant partial area under the curve of the 
receiver operating characteristic values (pROC) [51], and only models with omission rates < 5% were 
retained. Filtered calibration results were ranked from lowest to highest using Akaike’s information 
criterion scores corrected for small sample sizes (AICc) to identify a final candidate set of models [52]. 
Model projections were then generated from the best performing model identified in the model 
evaluation process using the joint occurrence data, and the median of 100 bootstrap replicates served 
as the final model projection using Maxent’s ‘cloglog’ output [53]. Visual inspection of model 
predictions from the best performing model were compared to the relative locations described in 
Arnell [26] to identify outstanding distribution questions, gaps in model predictions, and to target 
future priority sampling areas. 
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3. Results 

A total of 781 georeferenced occurrence 
points were acquired for ecological niche 
models. After removing duplicates and 
spatially thinning the data, 97 occurrence 
points remained (Fig 1). Of these 97 
occurrence points, 61 were used for model 
training and 36 were used for model 
evaluation. A total of 595 candidate models 
were generated across the five 
environmental data sets (Table S2). Model 
evaluation indicated that two models met 
the criteria of statistical significance (Table 
S3), with omission rates <5%, and the model 
with the lowest AICc score was chosen as the 
final model. The best performing model 
included four bioclimatic data layers, 
included quadratic and product features, 
and a regularization multiplier of 0.3 (Figure 
2), and an AUC value of 0.80 (Figure S2).   

Environmental variables in the final 
model included Bio1 (mean annual 
temperature), Bio3 (average isothermality 
(mean diurnal range/temperature annual 
range)), Bio5 (mean maximum temperature 
of the warmest month), and Bio17 (average specific humidity of the driest quarter). Of these variables, 
Bio3 contributed the greatest to model performance with 48.6% contribution, followed by Bio17 
(22.3% contribution), Bio1 (15.6% contribution), and Bio5 (13.5% contribution).  

Marginal response curves for Bio3 indicated that environmental suitability decreased as average 
isothermality increased. For Bio17, results indicated that predicted environmental suitability was 
optimal at a value of approximately 1,000 for average specific humidity of the driest quarter, and 
results suggested an increase in suitability with increases of Bio1 (average annual temperatures). 
Response curves for Bio5 indicated a slight decrease in predicted suitability when mean maximum 
temperature of the warmest month reach approximately 35° C. 

 

Fig 1. Distribution of Aedes scapularis 

georeferenced occurrence points used in model 

calibration and evaluation (yellow points); red 

polygon represents the M calibration region. Blue, 

hashed-line polygon indicates previously 

recognized distribution of Ae. scapularis, redrawn 

from Arnell (1976). Base map provided by ESRI. 
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The model projection predicted several 

regions to be highly suitable for Ae. 

scapularis across the study region (Figures 

3A & 4A). Regions where predicted 

environmental suitability for Ae. scapularis 

were highest included the Pacific coastline of 

the Americas, from northern Chile to 

southern Sonora, Mexico, a broad 

longitudinal belt across much of South 

America, along the southern side of the 

Amazon River, from coastal Brazil west to 

northern Peru, the llanos of Venezuela 

around the Orinoco River, the Yucatán 

Peninsula, southern and Central Nicaragua 

and the Nicoya Peninsula of Costa Rica, 

most Caribbean Islands with the exception 

of the interior of Hispaniola, the Florida Peninsula, and along the Gulf Coast of the United States 

between Texas and the Florida Panhandle. 
Plots of the standard deviation of the 100 replicates indicated relatively low variation across the 

model outputs for the majority of the study area. Areas with higher standard deviation values 
included the southwestern tip of Chile in South America, a portion of the Amazon Rainforest in Pará 
and Amazonas States in Brazil, in Colombia, where elevation values increase at Pico Cristóbal Colón, 

 
Figure 2. Response curves of bioclimatic variables 

included in the final model. Bio3, Bio1, and Bio5 

values are in units of degrees Celsius; Bio17 specific 

humidity values are units of 100,000 * kg of water/kg 

of air. 

 
Figure 3. A) Model prediction; red areas indicate high predicted suitability and blue areas 

indicate low predicted suitability; B) standard deviation of predicted suitability values across 

100 bootstrap replicates; light blue areas indicate higher standard deviation values and dark blue 

areas indicate low standard deviation values. 
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and then more generally, in the southeastern United States, beginning in central Florida and moving 
north- and westward (Figure 3B). 

Other than the southern Florida Peninsula, and areas predicted highly suitable along the coast 
of the Gulf of Mexico from Florida to Texas and Mexico’s Pacific coast, areas predicted highly suitable 

were within the previously reported distribution of Ae. scapularis (see Figure 1 & Figure 4A) [26]. 
Comparison of Ae. scapularis collection records described in Arnell 1976 (Figure 4A) with model 
predictions (Figure 4B) indicated a discrepancy in southern South America, where georeferenced 
occurrence data were not available for our model calibration. Model outputs suggested unsuitable 
environments for Ae. scapularis in this region, but observations were described in Arnell [26]. 
Additionally, model outputs predicted unsuitable environments in French Guiana, even though 
Arnell [26] described Ae. scapularis in this area and a georeferenced occurrence point was available 
for model calibration. 

Observations of predicted values in North America, beginning in the Yucatán Peninsula and 
moving northward around the Gulf Coast into the states of Texas, Louisiana, Mississippi, Alabama, 
and Florida indicated relative connectivity of suitable environments across this region, with areas 
predicted highly suitable in the Yucatán Peninsula, through Tabasco and Veracruz to Tamaulipas 
(Figure 5A). Additional areas predicted highly suitable were located along the Gulf Coast of the 

 

Figure 4. A) Aedes scapularis collection records (yellow triangles) reported in and 

adapted from Arnell 1976. B) Aedes scapularis model output. Red squares indicate 

areas of discrepancy where Ae. scapularis collections were reported and examined 

by Arnell (1976) and where model outputs did not predict suitable environments 

for Ae. scapularis. 
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United States at the southern tip of Texas, 
across the southern coastal edge of 
Louisiana including the City of New 
Orleans, in Gulf County in the Panhandle of 
Florida, and then along the Gulf Coast of 
the Florida Peninsula. Areas predicted to be 
moderately suitable for Ae. scapularis are 
located throughout portions of eastern 
Texas, Louisiana, inland in Mississippi, 
southern Georgia, South Carolina, and 
nearly the entirety of Florida; although, 
standard deviation values across these 
areas suggest, in general, relatively high 
variability in model outputs in these areas 
(Figure 5B). 

Model outputs predicted that much of 
the Florida Peninsula and Florida 
Panhandle were relatively suitable for Ae. 
scapularis, with suitability decreasing 
northward onto the Atlantic Coastal Plain 
of the United States, with a narrow band of 
high suitability along much of the United 
States’ Gulf of Mexico coastline (Figure 6A). 
Specifically, several 
Florida counties 
contained areas 
predicted highly su-
itable for Ae. scapularis, 
including Miami-Dade, 
Broward, Palm Beach, 
and Martin Counties 
along the Atlantic 
Coast, with predicted 
values decreasing, 
moving northward into 
St. Lucie, Indian River, 
and Brevard Counties. 
Counties containing 
areas predicted highly 
suitable on the Gulf 
Coast of Florida 
included Monroe, 
Collier, Lee, Charlotte, 

 

Figure 5. Southeastern United States, Caribbean 

Islands, and Mexico; A) predicted suitability, B) 

standard deviation. 

 
Figure 6. A) Predicted suitability for Ae. scapularis in Florida and 

surrounding states; B) Standard deviation values in Florida and 

surrounding states. 
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Sarasota, Manatee, Pinellas, and portions of Hillsborough, Pasco, Hernando, and Citrus Counties, 
with predicted values decreasing continuing northward along the coast of the Big Bend region and 
onto the Florida Panhandle, before increasing again in Gulf County. Standard deviation values within 
Florida indicated higher variability beginning in central Florida and moving northward, with greater 
values in model predictions in the southeastern United States, beginning in central Florida and 
moving northward and across portions of the Florida Panhandle (Figure 6B).    

4. Discussion 

The objective of this study was to predict the potential geographic distribution of Ae. scapularis, 
an important vector of multiple arboviral and parasitic diseases. The recent identification of 
established Ae. scapularis populations on the Florida Peninsula indicated a recent expansion in the 
known geographic range of this species and highlights the need to monitor further geographic 
expansion by characterizing environments that may be suitable for this species.  

Here, we used an ecological niche modeling approach to predict the potential geographic 
distribution of Ae. scapularis across much of the Americas and the Caribbean Islands, with emphasis 
on environments that may be suitable for this species along coastal areas of North America, and more 
specifically, in the State of Florida in the United States. The best performing model included four 
environmental variables summarizing temperature and specific humidity values. Model results 
indicated that locations that did not have extreme ratio values between average diurnal temperature 
values and overall temperature values, that generally had warmer average annual temperatures, but 
not extreme maximum temperatures, and relatively average specific humidity values were predicted 
suitable for Ae. scapularis.  

Model outputs predicted suitable environments for Ae. scapularis matching closely to historical 
collection localities outlined by Arnell [26] and adapted in Figure 4A, as did the majority of the 
occurrence records used here for model calibration, with the exception of a few regions for which 
precise georeferenced occurrence points were not available, and in Florida, where the recent 
geographic expansion occurred. Arnell’s records and the georeferenced occurrence points used here 
generally tracked along or near coastal regions with fewer observations present in inland regions, 
and this phenomenon was evident in the model results, with average isothermality (mean diurnal 
range/temperature annual range) contributing the greatest to model performance. Model outputs 
predicted highly suitable environments along several coastal areas where maritime climates with 
ocean waters that mediate large temperature fluctuations between daylight and nighttime hours are 
present [54] and in additional regions exhibiting similar isothermality values. These results may 
highlight the importance of average isothermality values to the survival and reproduction of Ae. 
scapularis, but the possibility also exists that these results may be an indicator of greater sampling 
effort and accessible sampling opportunities across coastal regions, where higher densities of people 
were present, and the terrain does not present an obstacle to sampling.  

While coastal regions appear to be highly suitable for Ae. scapularis, an important and 
outstanding question remains regarding the extent to which Ae. scapularis utilizes inland 
environments, given the less frequent but described inland observations. Of particular interest is the 
extent to which Ae. scapularis may inhabit heavily forested environments such as the Amazon Basin. 
There, our model outputs suggested highly suitable environments south of the Amazon River, where 
mid-range average isothermality values were present, while predicting low suitability north of the 
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Amazon River, where average isothermality values rise. Additionally, many of Arnell’s observations 
in Paraguay and northern Argentina that were not predicted suitable in our model fall within the 
“dry chaco” ecoregion, a hot and semiarid lowland natural region of the Río de la Plata Basin that 
has a long (6-month) dry season. Predicted suitability was also low further south in the Province of 
Río Negro, Argentina [55], where the climate is likely at the extreme limits of minimum temperature 
tolerance for this species. A lack of precise georeferenced occurrence records representing the 
combination of environments at these inland locations in model calibration likely contributed to this 
outcome, highlighting the benefit of continued and updated georeferenced data to inform model 
outputs. Considering that Ae. scapularis occurs across a broad temperate area in the southern portion 
of its range, cool winters on the central and northern Florida Peninsula may not inhibit northward 
expansion of this species’ geographic distribution. As Ae. scapularis continues to expand its 
geographic range, and additional georeferenced occurrence points become available, we anticipate 
the potential for an increase in inland occurrence data and that these additional data points may alter 
the contribution of environmental variables to model performance and predictions.   

Model predictions suggested highly suitable or relatively suitable environments for Ae. 
scapularis along much of the Gulf Coast of the United States. Importantly, no major gaps in highly 
suitable or relatively suitable values occurred across this area, suggesting that the environments in 
this region could serve as an environmental corridor for continued range expansion throughout the 
region. Although we emphasize the introduction of Ae. scapularis in southern Florida, connectivity of 
suitable environments along the Gulf Coast could also facilitate movement of this species between 
northern Mexico and the Florida Panhandle. Since 1916 Ae. scapularis has been known from 
southernmost Texas (Cameron and Hidalgo Counties) [26], but to our knowledge, no additional 
published records from elsewhere in Texas exist to indicate its distribution has expanded there 
beyond the lower Rio Grande Valley. Interestingly, Culex coronator, Culex declarator and Culex 
interrogator, all now established non-native species in Florida, likely arrived to Florida via a recent 
north- and eastward expansion from southern Texas along the Gulf Coast [8,56,57], suggesting that 
environmental and climatic trends may facilitate geographic expansions across a Gulf Coast route. 
Additionally, major port cities along the Gulf Coast (Houston, New Orleans, Gulf Port, and Mobile) 
provide entry points that could further facilitate the geographic expansion of Ae. scapularis. 

Until recently, Ae. scapularis was formerly known to occur across much of the Neotropics, 
including some Caribbean islands, but was not known from the Florida mainland. The recent 
collections of Ae. scapularis in Miami-Dade and Broward Counties [25], Florida suggests that Ae. 
scapularis could expand its mainland distribution northward and westward, and possibly into the 
southeastern United States, as no substantial geographic barriers limit its expansion except 
environmental unsuitability. While human-mediated transport is a likely culprit in the establishment 
of Ae. scapularis in mainland Florida, continued changes in abiotic environmental conditions and 
human-mediated habitats will be important to monitor, when considering further distributional 
expansions.  

 Our model predictions suggested that mosquito surveillance programs in Florida, particularly 
those along both coasts, should be vigilant for this species. Many Florida counties have robust 
mosquito control programs which actively trap mosquitoes in these areas [58]. Close inspection of 
Aedes Ochlerotatus Group specimens is warranted as Ae. scapularis could be misidentified as 
morphologically similar species known from Florida: Aedes infirmatus and Aedes condolescens. Aedes 
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condolescens is limited to coastal areas of the southern peninsula, while Ae. infirmatus occurs statewide. 
The three species share a conspicuous patch of silvery or light-colored scales on the anterior scutum, 
but only Ae. scapularis has a stripe of pale scales on the hindtibia. (see [59] and for details on 
morphological identification of Ae. scapularis). Mosquito surveillance programs in Florida, 
particularly those situated in counties predicted high suitability for Ae. scapularis (Fig. 6) should be 
aware of the potential for this mosquito to be present within their jurisdictions.  

Our finding that we could calibrate a robust Ae. scapularis distribution model using abiotic 
climatic variables is in agreement with the notion that this species is considered a generalist in its use 
of habitats, occurring in both sylvatic and human-dominated areas at low and middle elevations. The 
larvae develop in temporary pools filled by rainfall or overflowing waterways [26]. Adult females 
are considered opportunistic in their host use, though they feed frequently from endothermic hosts, 
especially mammals [60-67]. Humans are frequent hosts for female Ae. scapularis, and in some human 
dominated areas, the species shows synanthropic adaptations such as readily entering buildings, and 
host-seeking and blood-feeding indoors [68,69]. The wide host breadth and frequent use of human 
hosts coupled with synanthropic adaptions suggests that Ae. scapularis may be well positioned, 
ecologically, to serve as a bridge vector for human and animal pathogens, highlighting further the 
need to utilize robust tools to monitor the expansion of this species in the Florida Peninsula.  

Further investigation using next generation sequencing and population genomics analyses 
may reveal dispersal patterns of Ae. scapularis, the general time scale of when it arrived in the Florida 
mainland, and how this species is utilizing its environment. Identifying the pathway or pathways 
through which Ae. scapularis arrived will be critical to understanding the potential for future 
introductions of medically important mosquito species, particularly as anticipated global climate 
changes stimulate changes in the occurrence of mosquito species. Documenting continued changes 
in Ae. scapularis distributions in mainland Florida will provide valuable information toward 
understanding how future synanthropic species introductions may spread and utilize the 
environment. 

Aedes scapularis is a neotropical vector mosquito that transmits arboviruses and parasites of 
medical and veterinary importance. Its recent establishment in the southeastern peninsular Florida 
has potential public health implications, requiring vigilant surveillance and utilization of modeling 
approaches to predict where the environment may be suitable for this species. The ecological niche 
model presented here provides a valuable tool to help inform vector control and public health 
surveillance efforts, characterizing areas that may be suitable for the geographic expansion of this 
species, while providing more detailed information about environmental suitability throughout its 
previously known distribution. As global connectivity continues to increase and environmental 
conditions continue to change, combining quantitative modeling approaches with field collected data 
will be critical to maximizing surveillance tools to monitor medically important mosquito vectors. 

5. Conclusions 

Aedes scapularis is a neotropical vector mosquito that transmits arboviruses and parasites of 
medical and veterinary importance. Its recent establishment in the southeastern peninsular Florida 
has potential public health implications, requiring vigilant surveillance and utilization of modeling 
approaches to predict where the environment may be suitable for this species. The ecological niche 
model presented here provides a valuable tool to help inform vector control and public health 
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surveillance efforts, characterizing areas that may be suitable for the geographic expansion of this 
species, while providing more detailed information about environmental suitability throughout its 
previously known distribution. As global connectivity continues to increase and environmental 
conditions continue to change, combining quantitative modeling approaches with field collected data 
will be critical to maximizing surveillance tools to monitor medically important mosquito vectors. 
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