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Abstract 

Many real complex systems present multilayer structure where high-order metadata on one 

layer refers to dyadic data on a lower layer. Significant progresses to analyse high-order 

metadata under the assumption of community organization have been done. However, there 

are no planted communities in real-world networks, and the necessity of new frameworks to 

analyze high-order metadata regardless of community organization has been raised. 

Here, we propose to adopt hyperedge organization. Predicting ‘entanglements’ between a 

hyperedge and nodes scattered in the rest of the network might suggest structural or functional 

liaisons, without assumption of any community organization. We introduce a novel concept: 

hyperedge entanglement (HE), which associates to each hyperedge an entangled hyperedge, 

by means of a network operator that predicts significant ‘interactions at distance’ between 

network nodes and existing hyperedges. We also introduce a new challenge termed hyperedge 

entanglement prediction (HEP), and an algorithm to perform this task. We evaluated HEP 

performance on social, biological and synthetic data where, given only topology and 

hyperedges (such as communities or functional modules), the goal is to predict whether nodes 

not connected to a certain hyperedge might be candidates for a significant entanglement. 

Finally, as real application in diseasome systems biomedicine, we perform HEP on the human 

protein interactome to predict unknown gene entanglements with the COPD disease gene 

hyperedge. HEP predictions are validated by biological experiments, enlarging our 

understanding of molecular mechanisms behind COPD/aneurysm comorbidity. 
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1. Introduction 

Research on the modular dyadic organization of complex networked systems has become 

increasingly popular in many scientific disciplines diverse from physics, including socio-

behavioral1–3, biological3,4 and maritime5 science. Progress has been achieved also in modeling 

community organization in artificial networks by random graphs without6 and with geometry7–

10. Community detection is an attractive area of investigation in the field of complex 

networks11, and recent studies investigated how network embedding can enhance community 

detection12–16. However, how topological community organization should be interpreted and 

harmonized with node metadata group information - and what are the limitations of such 

endeavor – is a controversial topic currently under investigation17. When Science is stuck in 

front of a dilemma or conceptual obstacle – let us term it a ‘Gordian Knot’ – then it is the 

moment that new ideas emerge. These ideas are not always the final solutions to the problem 

but represent a detour towards a new definition of the conceptual framework inside which 

flourishing of new interpretations and methods can bring toward ‘unleashing the Gordian 

Knot’. Here, we are in front of a ‘Community Knot’; and this study aims to select a different 

conceptual and theoretical ‘blade’ and to sharpen it, in the hope that others in the future might 

success to ‘cut the Community Knot’. 

The current conceptual framework is that many real networks are composed of several 

communities, also referred to as clusters or modules. An important and accepted property to 

distinguish a community in respect to others, is that its nodes have a higher probability to link 

to one another than to nodes that belong to a different community18,19. These groups of densely 

connected nodes can have entirely different meanings depending on the complex system under 

observation. Frequently, communities might be matched with groups of nodes that, according 

to metadata, share common properties or play similar roles. In a social network, a community 

can have a certain overlap with a tight group of friends, people sharing the same hobbies or the 

same job. In a protein-protein interaction (PPI) network it can have a certain correspondence 

to proteins involved in a specific process, function or pathway. Whereas, in a citation network, 

it might be to a certain extent associated to a set of scientific papers with a related topic. Yet 

the matching between the node metadata information and the topological community 

segregation is not always respected. In some cases, this is due to a multiplayer data structure. 

For instance, we can have a scientific co-authorship network, where each node is an author, 

and each link indicates a collaboration in a study between two authors, whereas the metadata 

information is the research institution of the authors. In other cases, such as for PPI networks, 
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the network topology is incomplete and metadata information too, therefore some modules 

indicating a cohort of genes whose proteins are involved in a disease are composed by nodes 

which are scattered in the network without a true community organization between them, that 

is also one of the cases we will investigate in the present study. In all these scenarios, we can 

still say that those groups of nodes are involved in a hyperedge. It means that they are linked 

(all together) at high-order by means of the metadata information without a detailed 

specification of their dyadic interactions. 

In this study we set a conceptual and computational framework that, at the best of our 

knowledge, has not been investigated in the previous literature. We start from the observation 

that many real complex systems present multilayer structure where high-order metadata on one 

layer refers to dyadic data on another layer. For instance, hyperedge organization (in the first 

layer) might be associated to node functional segregation and integration of dyadic networks 

(in the second layer). Predicting ‘entanglements’ between a hyperedge and nodes scattered in 

the rest of the network might suggest either structural (direct) or functional (indirect) liaisons. 

Hence, we introduce the novel concept of hyperedge entanglement (HE), which associates to 

each hyperedge an entangled hyperedge, by means of a network operator that predicts 

significant ‘interactions at distance’ between network nodes and existing hyperedges. To this 

aim we also introduce a new challenge termed hyperedge entanglement prediction (HEP), and 

an algorithm to perform this task.  

Depending on the area of application, entanglement can be interpreted as missing association 

due to a lack of observation or as a future connection. However, we would like to clarify that 

the topic is related, but not equivalent, to the classical link prediction. Indeed, in the classical 

link prediction problem, given the network topology, the goal is to identify the connections 

between nodes that have not been observed and that are likely to occur20. In other words, the 

links to predict are dyadic interactions between two nodes. Differently, in the problem that we 

are going to address in this study, the entanglement to predict is between a node and a 

hyperedge. In addition, we can also predict an entangled hyperedge which is an ensemble of 

nodes that are significantly entangled to the ‘seed’ hyperedge. In the rest of the study, we will 

discriminate these two different tasks respectively as node2hyperedge entanglement (N2HE) 

and hyperedge entanglement prediction (HEP); being N2HE a subroutine of HEP. The 

motivation for studying HEP is that connections between a hyperedge and other nodes in the 

rest of the network are pivotal bridges which might suggest either missed node membership or 

integration with other functionally overlapping hyperedges. 
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Examples of applications could be: i) to spot unknown associations between genes and a 

disease module whose proteins are scattered in the PPI network; ii) to predict contacts between 

terrorists around the world and an existing terrorist cell; iii) to predict contagions, in a contact 

tracing network, between a cluster of COVID 19 infected people that emerged in a certain time 

and location, and unknown people that are susceptible to the disease. Among these three 

examples, we recovered the data to investigate the first real case scenario, whereas we hope 

that in future studies we might procure the data to investigate the others. After evaluation of 

HEP performance on social, biological and synthetic networks, we indeed offer an example of 

real application in systems biomedicine of the diseasome21. The diseasome is the bipartite 

network where diseases on one layer connect to associated genes on the other layer. Hence a 

disease can be represented by a hyperedge of genes that can be projected on the PPI network 

nodes. We compute HEP on the human protein interactome in order to predict the entanglement 

hyperedge that contains genes significantly entangled with the chronic obstructive pulmonary 

disease (COPD) hyperedge. We consider this peculiar disease because it impacts large part of 

the worldwide population, and because we have specific expertise to biologically validate some 

of the predictions by techniques such as co-immunoprecipitation and gene silencing. The result 

of this validation confirms HEP computational prediction, and spread light on unknown 

molecular mechanisms behind COPD/aneurysm comorbidity. 

 

2. Results 

2.1 Hyperedge entanglement: definition and algorithm 

In this section, we will firstly introduce the theoretical definitions related to the hyperedge 

entanglement concepts and then we will provide the description of the algorithm for computing 

the significance (a p-value) of node2hyperedge entanglement. From here forward, we will 

consider as a working framework a high-order multilayer network (Fig. 1), which is a multiplex 

composed of two layers: one high-order (Fig. 1A) and one dyadic (Fig. 1B). The first high-

order layer is a hypergraph 𝐻𝐺(𝑉,𝐻), where 𝑉 is the set of vertices (or nodes) and 𝐻 is the set 

of hyperedges; the second dyadic layer is a graph 𝐺(𝑉, 𝐸), where 𝑉 is the same set of vertices 

as the hypergraph 𝐻𝐺 and 𝐸 is the set of edges (or links). In contrast to the dyadic graph, where 

an edge connects exactly two vertices, in the hypergraph a hyperedge can connect any number 

of vertices. Finally, in this study we will refer to the terms network and graph as 

interchangeable, but we warn the reader that this is a simplification that we apply only for 

easing the readability of the study. Although these two terms are often used in the literature of 
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complex systems interchangeably, the graph is in general a pure mathematical structure, 

whereas the network might be better interpreted as a graph that emerges from the underlying 

dynamics of a process in a complex system. 

 

2.1.1 Hyperedge entanglement (HE) 

The hyperedge entanglement is an operation that associates to a given hyperedge ℎ𝑗  an 

entangled hyperedge 𝑒ℎ𝑗 (Fig. 1A), whose members are the nodes 𝑣𝑖 ∈ 𝑉 that satisfy both the 

node2hyperedge entanglement necessary (ENC) and sufficient (ESC) conditions, that we will 

describe below. Intuitively, the entangled hyperedge 𝑒ℎ𝑗 includes all the nodes that have a 

significant ‘interaction at distance’ with the group of nodes in a hyperedge from which they 

are disconnected both in the hypergraph HG and the graph G (Fig. 1). 

The hyperedge entanglement should not be confused with the entanglement concept in 

quantum physics22, where the quantum state of each entangled particle of the group cannot be 

described independently of the state of the others. Indeed, in our scenario, the given hyperedge 

ℎ𝑗  can be described independently of the entangled hyperedge 𝑒ℎ𝑗, while the opposite is not 

true. In other words, in the quantum entanglement there is mutual (bidirectional) dependency 

between the particles, whereas in the here defined hyperedge entanglement there is 

unidirectional dependency of the entangled hyperedge 𝑒ℎ𝑗 on the given hyperedge ℎ𝑗 . 

 

2.1.2 node2hyperedge entanglement necessary condition (ENC) 

Given a node 𝑣𝑖 and a hyperedge ℎ𝑗  (Fig. 1), the ENC is satisfied and 𝑣𝑖 becomes a candidate 

node for entanglement 𝑐𝑖𝑗 if and only if: 

 (𝑣𝑖 ∉ ℎ𝑗) ∧ [(𝑣𝑖, 𝑣𝑘) ∉ 𝐸, ∀𝑣𝑘 ∈ ℎ𝑗] (1) 

In other words, the ENC guarantees that the candidate node 𝑐𝑖𝑗 is disconnected with the other 

nodes in the hyperedge ℎ𝑗 , in both the hypergraph (by not being a member of the hyperedge) 

and the graph (by not having links to the nodes of the hyperedge). Note that the condition (1) 

is a necessary and sufficient condition to become a candidate node for entanglement, whereas 

being a candidate node is a necessary condition for the entanglement, because we can entangle 

only a node and a hyperedge which are disconnected both in HG and G. 

 

2.1.3 node2hyperedge entanglement sufficient condition (ESC) 
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Given (Fig. 1) a hyperedge ℎ𝑗 , a candidate node 𝑐𝑖𝑗 (which is defined as candidate because it 

satisfies the ENC for ℎ𝑗) and a graph G (which can include not only topological information 

but any meta-information such as the nodes coordinates in a geometrical space), the ESC 

depends from the type of entanglement operator EO (which estimates the entanglement of 𝑐𝑖𝑗 

with ℎ𝑗) and the statistic S defined on the EO (which estimates the significance of the 

entanglement). Formally, we can write that the ESC is satisfied and 𝑐𝑖𝑗 becomes a member of 

the entangled hyperedge 𝑒ℎ𝑗 if and only if: 

 𝑆[𝐸𝑂(𝑐𝑖𝑗, ℎ𝑗 , 𝐺)] ≤ 𝜀 (2) 

This means that if the statistic is lower than or equal to a certain significance threshold 𝜀, then 

the ESC is satisfied. Without lack of generality, in our case we define the ESC according to an 

entanglement operator that is based on topological information in the graph 𝐺 between the node 

𝑐𝑖𝑗 and the nodes of the hyperedge ℎ𝑗 . In particular, we develop an algorithm that combines a 

topological entanglement operator TEO (based on link prediction in the graph 𝐺) and a 

statistical test (based on a null model), in order to compute a node2hyperedge entanglement p-

value. The p-value assesses the extent to which the candidate node 𝑐𝑖𝑗 is significantly entangled 

to the hyperedge ℎ𝑗 . If the p-value is significant (according to a significance threshold 𝜀), then 

the ESC is satisfied, and the node 𝑐𝑖𝑗 becomes a member of the entangled hyperedge 𝑒ℎ𝑗: 

 𝑆[𝐸𝑂(𝑐𝑖𝑗, ℎ𝑗 , 𝐺)] = 𝑝𝑣𝑎𝑙𝑢𝑒[𝑇𝐸𝑂(𝑐𝑖𝑗, ℎ𝑗 , 𝐺)] ≤ 𝜀 (3) 

Obviously, the significance threshold value determines the number of nodes that satisfy the 

ESC, the lower the 𝜀 the smaller the size of the 𝑒ℎ𝑗, hence the significance threshold can be 

interpreted also as a tuning parameter that allows to restrict the selection of nodes entangled 

with a hyperedge ℎ𝑗  to a required number. 

We stress that the design of the EO is not confined to the mere adoption of topological 

information. For instance, we define also a second interesting class of entanglement operators 

that are based on network geometry (geometrical entanglement operator: GEO), and that 

estimate the entanglement of a node 𝑐𝑖𝑗 with the hyperedge ℎ𝑗  on the basis of their distance in 

the geometrical space in which a network lies or is embedded12: 

 𝑆[𝐸𝑂(𝑐𝑖𝑗, ℎ𝑗 , 𝐺)] =  𝑆[𝐺𝐸𝑂(𝑐𝑖𝑗, ℎ𝑗 , 𝐺)] ≤ 𝜀 (4) 

Theoretically, also hybrid operators TGEO that integrate topological and geometrical 

information can be designed. However, here we will focus on TEO and we will leave to a future 

study the chance to explore GEO and TGEO. The reason to prioritize TEO investigation is that 
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the literature offers already solid evidences that topological link prediction is currently 

performing better than geometrical-embedding link prediction4.  

 

2.1.4 Global node2hyperedge entanglement sufficient condition in case of more than two layers 

Although the examples discussed in this study will consider only two layers, here for 

completeness we will discuss also the general case of a high-order multilayer network 

composed of n graph layers and m hypergraph layers: 

[𝐺1(𝑉1, 𝐸1), 𝐺2(𝑉2, 𝐸2), … , 𝐺𝑛(𝑉𝑛, 𝐸𝑛)] and [𝐻𝐺1(𝑉1, 𝐻1), 𝐻𝐺2(𝑉2, 𝐻2), … , 𝐻𝐺𝑚(𝑉𝑚, 𝐻𝑚)]. 

We can define a node2hyperedge global entanglement sufficient condition (GESC) when a 

node 𝑣𝑖 respect the ENC necessary condition (1) for ℎ𝑗𝑡 (where t indicates the hypergraph layer 

𝐻𝐺𝑡) in all possible n graphs, and becomes a global candidate node 𝑔𝑐𝑖𝑗𝑡. 

Then, the GESC for the global candidate node 𝑔𝑐𝑖𝑗𝑡 across the high-order multilayer network 

is: 

 𝑆̅ =
1

𝑛
∙∑𝑆[𝐸𝑂(𝑐𝑖𝑗𝑡, ℎ𝑗𝑡 , 𝐺𝑙)]

𝑛

𝑙=1

≤ 𝜀 (5) 

In brief, the mean statistic 𝑆̅ computed across all the n graphs should be lower than or equal to 

a significance threshold in order to confirm that the global candidate node 𝑔𝑐𝑖𝑗𝑡 has a global 

significant entanglement with ℎ𝑗𝑡. Note that when n = 1 and m > 1 this formula is equivalent to 

ESC (2), although it is defined for each ℎ𝑗𝑡. 

 

2.1.5 Algorithm for node2hyperedge entanglement (N2HE) p-value 

In this section and Fig. 2, we describe the node2hyperedge entanglement (N2HE) algorithm: 

- given in input a hyperedge ℎ𝑗 , a candidate node 𝑐𝑖𝑗, a graph 𝐺, a link-prediction-based 

topological entanglement operator 𝐿𝑃(𝐺) and a significance threshold 𝜀; 

- N2HE computes and offers in output a node2hyperedge entanglement p-value, to assess if the 

ESC is satisfied. 

The link predictor 𝐿𝑃(𝐺) is an operator that, exploiting topological information of the graph 

𝐺, can associate a similarity score to any disconnected node pair, suggesting the likelihood for 

a link between them to exist. Hence, here we define a topological entanglement operator that 

estimates an ensemble ‘interaction at distance’ between 𝑐𝑖𝑗 and ℎ𝑗  nodes by means of link 

prediction. Although in principle any link prediction algorithm can be adopted, without lack of 

generality we are going to focus on local approaches, which are able to perform a likelihood 
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prediction of a missing link between two nodes, by exploiting only local information that is 

related to their neighborhood4. The rationale for this choice is that local approaches allow the 

prediction just for a selected subset of missing links (such as the ones that could connect a node 

to a community). This can save a significant amount of computational time for application on 

real networks, where we might be interested to predict exclusively the entanglement of one 

node with one hyperedge. In contrast, many highly-performing global approaches such as 

Structural Perturbation Method23, since they are based on global operations, compute all 

missing links likelihoods at one time, requiring much more time. Hence, local methods allow 

to design efficient N2HE predictors that adapt their computational time to the query of the user, 

while preserving performance. Local approaches are therefore the proper candidates to perform 

computational demanding tests such as the ones we will present in this study. 

One of the simplest and well-known local-based link prediction methods is the common 

neighbors (CN) index, which states that the higher the number of CN between two nodes, the 

higher the likelihood to be connected24. Similar indexes have been developed introducing a 

normalization factor to the CN rule, such as in the Resource-Allocation (RA)25, Jaccard (J) and 

Adamic-Adar (AA)26 indexes. In 2013 Cannistraci et al.4 introduced the local-community 

paradigm (LCP) theory, suggesting that local-based topological link prediction should 

complement the information content related with the common neighbours nodes using also the 

topological knowledge emerging from the cross-interactions between them. Initially detected 

in brain-network self-organization topology4 and then extended to any monopartite and 

bipartite27 complex network, the LCP theory derives from a purely topological inspired 

interpretation of a local-learning-rule of neuronal networks named Hebbian learning rule. 

Based on the LCP theory, Cannistraci et al.4 designed several local, parameter-free and model-

based deterministic rules for topological link prediction in both monopartite and bipartite 

networks, which in a later study have been also re-interpreted as network automata that 

participate to learn and form new structures on a network by growing according to some local 

mechanisms of self-organization known as Cannistraci-Hebb (CH) models28. While all the 

previously mentioned indexes for link prediction on monopartite networks are based on paths 

of length two (L2), a recent and brilliant study by Kovács et al.29 proposed an algorithm based 

on paths of length three (L3) for prediction on protein interactomes. A subsequent study on 

network automata for link prediction of Muscoloni et al.28 defined CH network automata 

models on paths of length n (where n indicates any length), and demonstrated that Kovács et 

al. similarity is equivalent to RA defined on L3, therefore a subcase of generalized network 

automata defined on paths of length n. A wide comparative study on local-based link 
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predictors30 has recently shown that some CH models (both L2 and L3) overcome in prediction 

performance all the other methods including Kovács et al. similarity. 

The algorithmic steps of N2HE, visually shown in part of Fig. 2, are reported below: 

a. Fig. 2b,c: using the link predictor 𝐿𝑃(𝐺), compute the similarity score 𝑠𝑣𝑖,𝑣𝑘 between node 

𝑣𝑖 and every node 𝑣𝑘 ∈ 𝑉 that is not connected to 𝑣𝑖 in the graph 𝐺, i.e. (𝑣𝑖 , 𝑣𝑘) ∉ 𝐸. (Note: 

all the disconnected pairs are considered, because this will return useful in the 

implementation of the hyperedge entanglement predictor described in the next section that 

computes the entangled hyperedge of any hyperedge ℎ𝑗). 

b. Fig. 2d,e: compute the node2hyperedge entanglement score, as the average similarity score 

between candidate node 𝑐𝑖𝑗 and the nodes of the hyperedge ℎ𝑗: 

𝜎𝑖𝑗 = avg
𝑣𝑘∈ℎ𝑗

𝑠𝑐𝑖𝑗,𝑣𝑘  

where avg is an average operator, such as mean, median or mode. 

c. Fig. 2f: generate a set of random hyperedges ℎ1
𝑟…ℎ𝑀

𝑟  with the same size as the hyperedge 

ℎ𝑗 . Here, we set 𝑀 = 1000, but in relation to available computational resources this 

number can be also increased. The members of each hyperedge are sampled uniformly at 

random among all the nodes except the node 𝑐𝑖𝑗, its neighbors in the graph 𝐺 and the 

members of the hyperedge ℎ𝑗 . More formally, they are sampled from the set: 

𝑉′ = 𝑉 − ({𝑐𝑖𝑗} ∪ {𝑣𝑘 ∈ 𝑉: (𝑐𝑖𝑗, 𝑣𝑘) ∈ 𝐸} ∪ {𝑣𝑘 ∈ ℎ𝑗}) 

d. Fig. 2f: for each random hyperedge ℎ𝑗
𝑟, compute the node2hyperedge entanglement score 

𝜎𝑖𝑗
𝑟  with node 𝑐𝑖𝑗, resulting in a null-distribution of node2hyperedge entanglement scores 

𝜎𝑖1
𝑟 …𝜎𝑖𝑀

𝑟 . 

e. Fig. 2f: compute an empirical p-value 𝑝𝑖𝑗 representing the node2hyperedge entanglement 

p-value between the node 𝑐𝑖𝑗 and the hyperedge ℎ𝑗: 

𝑝𝑖𝑗 =
𝑚 + 1

𝑀 + 1
 

where 𝑚 is the number of node2hyperedge entanglement scores from the null-distribution 

𝜎𝑖1
𝑟 …𝜎𝑖𝑀

𝑟  that are greater than or equal to the observed one 𝜎𝑖𝑗. 

In this study we set a significance threshold of 𝜀 = 0.05, therefore if 𝑝𝑖𝑗 ≤ 0.05 then the 

candidate node 𝑐𝑖𝑗 and the hyperedge ℎ𝑗  satisfy the ESC, hence node 𝑐𝑖𝑗 becomes a member of 

the entangled hyperedge 𝑒ℎ𝑗. 

 

2.1.6 Hyperedge entanglement predictor (HEP) 
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In this section and Fig. 2, we describe the algorithm of the hyperedge entanglement predictor 

(HEP): 

-  given in input a graph 𝐺(𝑉, 𝐸), a hypergraph 𝐻𝐺(𝑉,𝐻) and an algorithm for node2hyperedge 

entanglement N2HE (such as the one based on link-prediction and proposed in the previous 

section); 

-  HEP is an algorithm that finds the entangled hyperedge 𝑒ℎ𝑗 associated to every hyperedge 

ℎ𝑗 ∈ 𝐻. 

More in details, for each pair (𝑐𝑖𝑗 ∈ 𝑉, ℎ𝑗 ∈ 𝐻), where 𝑐𝑖𝑗 is a node 𝑣𝑖 ∈ 𝑉 that satisfies the 

necessary condition ENC (1) for ℎ𝑗 ∈ 𝐻, the HEP computes the node2hyperedge entanglement 

p-value 𝑝𝑖𝑗, assessing whether the sufficient condition ESC (2) for 𝑐𝑖𝑗 ∈ 𝑒ℎ𝑗  is also satisfied. 

Then, for each hyperedge ℎ𝑗 ∈ 𝐻, the set of nodes 𝑣𝑖 ∈ 𝑉 that satisfy both ENC and ESC are 

the members of the entangled hyperedge 𝑒ℎ𝑗. This could be also simplified as: for each 

hyperedge ℎ𝑗 ∈ 𝐻, the candidate nodes 𝑐𝑖𝑗 ∈ 𝑉 that satisfy the ESC are the members of the 

entangled hyperedge 𝑒ℎ𝑗. Within the algorithmic pipeline of the HEP, and therefore of the 

N2HE algorithm for the node2hyperedge entanglement p-value (Fig. 2), we have considered 

several variants, which are summarized below: 

• Fig. 2b: 12 different link predictors 𝐿𝑃(𝐺): 8 of them are L2-based link prediction methods 

(CAR, CAA, LCL, CJC, RA-L2, CH1-L2, CH2-L2, CH3-L2) and 4 of them are L3-based 

(RA-L3, CH1-L3, CH2-L3, CH3-L3). The details about the mathematical formula of the 

link predictors are described in the Methods section. The rationale to select specifically 

these predictors is given in the previous section 2.1.5. 

• Fig. 2d: 3 different average operators (avg) to compute the node2hyperedge entanglement 

score: mean, median, mode. Since the similarity scores between a node and the members 

of a hyperedge can be all different, the mode is not always appropriate to use. For this 

reason, instead of the mode we compute a probability density estimate of the similarity 

scores based on a kernel smoothing function (‘ksdensity’ function in MATLAB), evaluated 

at 100 linearly spaced points between the minimum and the maximum similarity score, and 

we select as mode the point with the highest probability. 

• Fig. 2g: 2 options for p-values correction, when the node2hyperedge entanglement p-value 

is computed between a certain node and several hyperedges, we consider as an option a 

Benjamini-Hochberg correction (C) to adjust for multiple hypothesis testing, whereas the 

alternative option is to not perform any correction. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2020                   doi:10.20944/preprints202012.0500.v1

https://doi.org/10.20944/preprints202012.0500.v1


Note that when the node2hyperedge entanglement p-value is computed between a certain node 

and several hyperedges, the computation of the similarity scores at step (a) of the N2HE 

algorithm only needs to be performed once. In addition, we clarify that in this study we set a 

significance threshold of 0.05 for the p-values, but the user of the HEP algorithm is free to 

choose it. If the members of the entangled hyperedge are too many with a significance threshold 

of 0.05, the downstream analysis can be focused on the most important ones by setting a stricter 

threshold. 

The computational time complexity of the HEP algorithm is the maximum between 𝑂(𝑁2) and 

the complexity of the chosen link predictor. Considering the link predictors adopted in this 

study, in case of sparse networks, the complexity is 𝑂(𝑁2). Please, refer to Suppl. Information 

for a detailed analysis. The MATLAB implementation of the HEP algorithm is available at: 

https://github.com/biomedical-cybernetics/hyperedge_entanglement. 

 

2.2 node2hyperedge entanglement in real networks 

In order to test the algorithmic variants on real data, we collected 5 real networks for which 

metadata representing the nodes membership to a certain group are available. Nodes belonging 

to the same group share a common feature and can be considered as a hyperedge. Having a 

network and a set of hyperedges (a hypergraph) on the same nodes of the network, we fall 

within our working framework of a high-order multilayer network. Three out of five analysed 

networks are social and have non-overlapping hyperedges, representing the membership of the 

nodes to a social community. The remaining two networks are biological and have overlapping 

hyperedges, representing annotations related to biological metadata. This ensures that we can 

test our algorithm on different types of complex networked systems. Please refer to the 

Methods section for a detailed description of the networks and to Suppl. Table 1 for a summary 

of their topological properties. 

The basic idea of our evaluation framework is to remove a test node 𝑣𝑖𝑗  which is member of a 

hyperedge ℎ𝑗  - as well as the direct network connections between this test node and the other 

ℎ𝑗  hyperedge members - and to test whether, once removed from ℎ𝑗 , 𝑣𝑖𝑗 appears in the 

entangled hyperedge 𝑒ℎ𝑗 and not in other entangled hyperedges. According to these concepts, 

we build a positive and negative set of node-hyperedge pairs. The positive set is made by all 

the node-hyperedge pairs such that each test node has at least one link (that is removed) to the 

other members of the hyperedge and at least one link to nodes that are not members. For each 

node-hyperedge pair in the positive set we define a related negative pair, made by the same test 
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node and by another hyperedge whose members have the highest average shortest path to the 

node (considering only pairs that satisfy the ENC). All the possible pairs (𝑣𝑖𝑗 ∈ ℎ𝑗 , ℎ𝑗) in a 

hypergraph are tested and a measure of performance based on the correct positive and negative 

entanglements predicted by HEP is applied. More in details, once obtained predictions for all 

the pairs in the positive and negative set, we evaluate the performance using the Matthews 

correlation coefficient (MCC) because it is a measure that accounts for effect size and 

unbalance in data31. The precise algorithm implemented for the evaluation procedure is 

provided in the Method section. 

During the implementation of this evaluation framework, for each node-hyperedge pair 

evaluated, after a test node is removed from a hyperedge, the network connectivity changes, 

therefore the computation of the link predictor similarity scores in the N2HE algorithm needs 

to be performed again regardless of the fact that the same node has been already evaluated for 

another hyperedge. For this reason, local link predictors are specifically useful in this scenario, 

since they allow to efficiently compute the similarity scores only for those specific 

disconnected node pairs that are needed, saving a significant amount of computational time. 

On the contrary, global link predictors would require to compute at each round of the evaluation 

the similarity scores of all the missing links in the network, making this evaluation unfeasible 

on middle and large networks. 

Fig. 3a-c reports the results on 3 real social networks (see section 4.2 for detailed information) 

with non-overlapping hyperedges (Football, Opsahl_10, Polbooks). Football is a network that 

presents games between division IA colleges during regular season fall 2000. Hyperedges 

associate teams belonging to the same conference. The Opsahl_10 network comes from the 

research team of a manufacturing company, nodes represent employees and edges indicate 

frequent work interactions. The hyperedges group the employees by the company locations 

(Paris, Frankfurt, Warsaw, and Geneva). Polbooks is a network that represents frequent co-

purchases of books concerning US politics on amazon.com. Hyperedges associate the books 

with the same political orientation such as conservative, neutral or liberal. 

For each link predictor, Fig. 3a-c shows the MCC of the best algorithmic variant (regardless of 

average operator and p-value correction), whereas in the Suppl. Tables 2-4 all the variants are 

reported. Note that since there is only one MCC value for each network, no standard error is 

shown. The figure presents the results also for a random link predictor, obtained by assigning 

random similarity scores to disconnected node pairs. In Football (Fig. 3a) the overall 

performance is below MCC=0.4 and all the L3-based predictors outperform the L2-based 
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predictors. Also in Opsahl_10 (Fig. 3b) the L3-based predictors obtain the best MCC (which 

is around 0.4), while most of the L2-based predictors have performance close to random. In 

Polbooks (Fig. 3c) the overall MCC of the methods is higher (below 0.6). This seems the only 

network in which the specific rule of the link predictor is more important than the path length, 

indeed the two CH2-based link predictors (based on the Cannistraci-Hebb modelling with L2 

and L3) are the top performing. In general, for Polbooks the L3-based predictors have similar 

performance to the one of some L2-predictors (CH2-L2, CH3-L2 and RA-L2), while the other 

L2-predictors are lower. 

The link predictors CH2-L2, CH3-L2 and RA-L2 differ from the other L2-predictors because 

they perform an explicit and unconditioned minimization of the links external to the local 

community. Instead, for instance, in CH1-L2 this minimization is conditioned by the existence 

of the links internal to the local community (see Methods for details). For this reason CH2-L2, 

CH3-L2 and RA-L2 perform differently from the other L2 methods and, since they are 

considered forming a homogenous group of methods, in this study they will be represented 

using the same color (light green) in the figures. Previously, LCP-based methods were focused 

on the maximization of links internal to the local community4, instead the recently proposed 

Cannistraci-Hebb (CH) models emphasize the minimization of the external links, while 

retaining or not the maximization of the internal links28. In particular, CH3 is a new model 

introduced in this study that is exclusively based on the minimization of the external links (see 

Methods for details). 

Fig. 3d-e reports the results for 2 real biological networks with overlapping hyperedges. S. 

Cerevisiae PPI stems from the union of 3 recent protein-protein interaction networks of 

Saccharomyces cerevisiae, the hyperedges associate proteins with the same significantly 

enriched GO terms. E. Coli metabolic is one of the most elaborate metabolic network 

reconstructions currently available (see section 4.2 for more details), the hyperedges group 

metabolites with the same metabolic pathway annotation. In these networks the overall MCC 

reaches much higher levels, up to around 0.9 (in Suppl. Tables 5-6 all the algorithmic variants 

are reported). In S. Cerevisiae PPI (Fig. 3d) the ranking of the methods is similar to the one 

seen in Football (Fig. 3a), with L3 methods as best performing (in agreement with link 

prediction results of Muscoloni et al.28), followed by CH-L2 methods (CH2-L2, CH3-L2 and 

RA-L2), and then by the other L2-based predictors (in agreement with the results of 

Cannistraci32, discussing the importance of minimizing external links in PPI networks). We 

confirm that also in our tests L3-methods overcome L2-methods as reported in previous 

literature by Kovács et al.29. The E. Coli metabolic network (Fig. 3e) seems instead to represent 
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an exception with respect to the other trends. Indeed, RA-L2, CH3-L2 and CH2-L2 obtain the 

best performances, followed by the other L2-based and then L3-based predictors. The 

molecular network of the Escherichia coli K-12 MG1655 strain accounts for many different 

reactions where other pairs of metabolites help to take place (exchange of a proton or a 

phosphate moiety, for example), playing similar role to ATP or ADP. Therefore, the co-

occurrence of these currency metabolites (ATP, ADP, water, and so on) in many reactions leads 

to high clustering, and therefore a better fit with the L2-based models. 

The last panel (Fig. 3f) reports the mean and standard error of the MCC over the 5 real networks 

considered. It highlights that the L3-based methods represent overall the most robust choice, 

followed by the subset of L2-based methods that explicitly minimize the external links in the 

CH model (CH2-L2, CH3-L2 and RA-L2), and then by the other L2-based predictors. 

Altogether, from the results one might notice that even for social networks, typically associated 

to a L2-based structural organization, the L3-based methods obtain overall higher performance. 

In these social datasets the hyperedges represent community-related metadata, groups of nodes 

that tend to have more connections between themselves than with the rest of the network. 

Therefore, the majority of the L2 paths are made by links between the members of the 

hyperedge. In this evaluation framework, for each node-hyperedge pair in the positive set, the 

network links between the node and the other members of the hyperedge are removed, therefore 

most of existing L2 paths are eliminated. This is likely the reason why L2-based methods are 

outperformed by L3-based methods in HEP on social networks. 

 

2.3 Latent geometry plays a role in node2hyperedge entanglement 

A point of weakness of the evaluation framework for real networks is that we have to build a 

positive set by leave-one-out node dismantling of hyperedges and modifying the graph 

connectivity. In addition, the negative set is based on a node-hyperedge distance that is 

approximated using topological shortest paths. In this section we want to integrate the previous 

results by introducing a second (and radically different) evaluation framework which exploits 

a random geometric graph generative model for realistic artificial complex networks. In this 

context, ‘realistic’ means that we can control several topological features that are typical of 

real networks, therefore we can investigate how HEP changes in relation to fundamental 

modifications of the network topology. Indeed, having the latent geometry that is behind the 

observable topology allows to build the positive and negative set based on node-hyperedge 

geometrical distances, leaving unperturbed (by any dismantling) the graph and hypergraph 

structure on which we apply the HEP. 
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In particular, in the computational evaluations of this section we adopt the nonuniform 

popularity-similarity-optimization (nPSO) model7,8, a generative model recently introduced in 

order to grow random geometric graphs in the hyperbolic space, reproducing networks that 

have realistic features such as high clustering, small-worldness, scale-freeness and rich-

clubness12,33, with the additional possibility to control the community organization (for instance 

by setting a predefined number of communities, their internal distribution and their mixing). In 

this framework, the hyperedges are associations between the nodes that are members of the 

same community. The nodes of the network have coordinates in the hyperbolic disk, and the 

lower the hyperbolic distance between two nodes the higher the likelihood to be connected. 

Based on this knowledge we build a positive and negative set of node-hyperedge pairs. After 

computing all the pairwise hyperbolic distances between the nodes, for each node-hyperedge 

pair that satisfies the ENC we assign a node-hyperedge distance equal to the minimum 

hyperbolic distance between the node and the members of the hyperedge. The positive set is 

composed by the 5% of pairs with the lowest node-hyperedge distance, while the negative set 

by the 5% of pairs with the highest distance. This is a very conservative definition of a positive 

and negative set, because only the pairs that are significantly different from the central part of 

the distribution are tested, making sure that the evaluation is reliable. 

For each node-hyperedge pair (𝑐𝑖𝑗, ℎ𝑗) in the positive and negative set, we run the algorithm 

for node2hyperedge entanglement p-value 𝑝𝑖𝑗. By considering a significance threshold of 0.05 

we obtain a prediction on whether the node 𝑐𝑖𝑗 becomes a member of the entangled hyperedge 

𝑒ℎ𝑗. After obtaining predictions for all the pairs in the positive and negative set, we evaluate 

the performance using the Matthews correlation coefficient (MCC). Note that if the option of 

Benjamini-Hochberg correction is considered, then for each pair (𝑐𝑖𝑗, ℎ𝑗) the p-value should 

also be computed between the node 𝑐𝑖𝑗 and every other hyperedge for which the ENC is 

satisfied. 

In order to test the overall performance of the methods, we generated synthetic networks with 

the nPSO model7,8 ranging over several parameter combinations. In particular, we fixed the 

size of the networks to N = 1000 nodes, we tuned the exponent of the power-law degree 

distribution to γ = [2, 3], half of the average node degree to m = [4, 8], the temperature 

(inversely related to the clustering) to T = [0.1, 0.3, 0.5, 0.7] and the number of communities 

(in this case hyperedges) to C = [10, 20]. For each parameter combination, we generated 10 

network realizations. We selected these specific values for the parameters because they are 
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close to the ones of real networks and therefore this allows a type of evaluation that is 

approximating as much as possible the real scenario. 

Fig. 4 reports the MCC evaluation in four panels, each analyzing the variation in performance 

by changing a certain nPSO parameter. In panel 4a, the barplot shows for each link predictor 

the average MCC over all the networks with γ = 2 (white bars) compared with the average 

MCC over all the networks with γ = 3 (colored bars). The same applies in panel 4b for m = 4 

versus m = 8; in panel 4c for T = 0.1 versus T = 0.7; and in panel 4d for C = 10 versus C = 20. 

Since we generated networks with four different values of T, in panel 4c we compared the two 

extreme ones. Note that for each link predictor the figure reports only the best variant, meaning 

the one with average operator and p-values correction option that provides the highest average 

performance across all the networks. Please refer to Suppl. Table 7 for the complete overview 

of all the algorithmic variants. For visual clarity, the standard error of the MCC is not shown 

in Fig. 4, but it is reported in Suppl. Fig. 1, where the performance related to the two values of 

each nPSO parameter is shown in separated barplots. 

The first message that is evident from the figure is that the L3-based link predictors (average 

MCC around 0.5) reach overall higher performance than the L2-based links predictors (average 

MCC around 0.15). In addition, the L2-based methods that explicitly minimize the external 

links in the CH model (CH2-L2, CH3-L2 and RA-L2), in this evaluation do not show a clear 

advantage with respect to the other L2-based predictors. 

The four panels highlight that the performance improves by: (a) increasing the power-law 

exponent γ (at least for L3-based methods); (b) increasing half of average node degree m; (c) 

decreasing the temperature T (i.e. increasing the clustering); (d) increasing the number of 

communities C. The change in performance seems overall minor for the variation of m, T and 

C, highlighting that the predictors are quite robust across different topological organizations. 

On the other hand, the performance has a considerable boost going from γ = 2 to γ = 3 for L3 

link predictors. The reason might be that with a decrease in power-lawness (from γ = 2 to γ = 

3) - and therefore a decrease of hubs geometrical centrality in the hyperbolic disk - the 

geometrical distances between the hyperedges increase, and this helps to boost the performance 

in predicting to which entangled hyperedges belongs a candidate node. 

 

2.4 Hyperedge entanglement in network medicine: a case study on COPD 

The two different computational evaluations provided in the previous sections were crucial to 

assess the behaviour of the proposed HEP on data with gold standard and ground-truth 

hyperedge metadata. In this section we aim to evaluate the impact of hyperedge entanglement 
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theory and the associated HEP on a real case scenario in complex systems biomedicine, where 

the metadata are incomplete to the point that nodes in the same hyperedge are not topologically 

connected between them. This is a challenging problem. Most algorithms currently available 

in network science for community detection or network generative modelling assume that a 

social group or a disease module should display high dyadic modularity for which nodes inside 

the hyperedge should have higher connectivity between them than with the rest of the network. 

For HEP instead, as we will investigate in this section, this might not be a problem and does 

not represent an obstacle to provide meaningful predictions. 

Scientific evidence suggests that proteins of genes associated with complex diseases tend to 

connect in protein-protein interaction (PPI) networks, participating in the same biological 

pathways21,34, and this is also reflected in the proteome35 and the diseasome21. We remind that 

the diseasome consists of a bipartite network where diseases on one layer connects to 

associated genes on the other layer21. Bipartite networks allow interactions only across the two 

layers, this means that a disease imposes a hyperedge on its associated genes, which (by 

definition) do not interact between each other in the gene layer. Hence, we can translate and 

integrate this information in a high-order multilayer network model: one layer contains the 

diseasome-derived hypergraph (Fig. 5a, where each hyperedge links together a cohort of genes 

associated to a disease), another layer contains the PPI network (Fig. 5b). 

Previous analysis of the diseasome showed that genes that contribute to common disorders: (i) 

show an increased tendency for their proteins to interact with each other via protein-protein 

interactions36; (ii) tend to be co-expressed in general or in specific tissues36; (iii) tend to share 

Gene Ontology (GO) terms36,37. These biological evidences are at support of a diseasome-based 

high-order multilayer network model such as the one we propose here. Indeed, pathways in 

PPI networks are often composed of group of interconnected proteins responsible for specific 

biological functions21, and a disease represents a variation-induced perturbation of a specific 

PPI disease hyperedge that might contain different biological pathways, producing 

pathophysiological abnormalities. 

Given any disease hyperedge and any candidate protein (any protein node that satisfies the 

ENC, see Results section 2.1.2) in a PPI network, HEP assesses the extent to which that 

candidate protein (and its gene) is significantly entangled to that disease. Hence, the entangled 

hyperedge (of a disease hyperedge) can provide insights on proteins whose genes might be 

significantly associated to a certain disease and its biological pathways. This has relevance 

because, despite major efforts in high-throughput mapping, the missing human PPIs exceed the 

experimentally documented interactions38,39. Our ability to predict previously undetected 
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associations between parts of the diseasome using network science tools offers the possibility 

to gain insights about the mechanism underlying a complex disease40. 

To illustrate the benefits of such a modelling approach, we apply HEP algorithm to predict the 

genes that are members of the entangled hyperedge of COPD (Fig. 5a). COPD is a chronic 

inflammatory lung disease generally associated with cigarette smoking (with a smaller number 

of cases due to factors such as air pollution and mere genetics) and leading to obstructed airflow 

in bronchi. Although genetic studies have identified several risk loci for COPD41–43, the 

mechanisms and molecular interactions that rule its pathophysiology need substantial 

investigation. We based our analysis on a PPI network which is a reference in systems biology 

and it is compiled from 15 different sources (16,418 nodes and 235,566 edges)36. We 

considered a total of 300 disease hyperedges: the COPD-associated disease hyperedge counts 

30 COPD GWAS genes44,45 (29 of which are present in the PPI network, therefore we do not 

consider the missing one that is ADGRG6). Note that the COPD disease module genes are not 

connected between them in the PPI network topology (there is only one link between the 29 

genes), which is an important peculiarity not present in the previous evaluations. The remaining 

299 disease36 hyperedges are defined by the Medical Subject Headings (MeSH) ontology that 

have at least 20 associated genes in the current Online Mendelian Inheritance in Man (OMIM) 

and genome-wide association study (GWAS) databases46,47. Given the PPI network and the 

300 disease hyperedges, we apply the HEP algorithm, which provides a p-value for each 

association between candidate genes (genes that in the PPI network are candidate nodes for 

entanglement to a given hyperedge) and a disease hyperedge.  

At the end of this procedure, given the p-values for a certain gene and all the disease hyperedges 

of which it is candidate, a Benjamini-Hochberg adjustment is performed in order to correct for 

multiple hypothesis testing. Hence, in this context, the other 299 disease hyperedges are used 

only for multiple hypothesis testing adjustment and to obtain a robust estimation of the gene-

hyperedge that is significantly entangled to COPD disease hyperedge, which is the focus of 

this case study. 

In Fig. 5b, we display the COPD disease hyperedge (29 genes on the right side) and the 

respective entangled hyperedge (32 genes on the left side) predicted by at least one of the HEP 

algorithmic variants. Their pathway enrichment analysis using DAVID48 (version 6.8 with the 

following pathways options: BBID, BIOCARTA, KEGG, Reactome, EC number) detects two 

significantly enriched pathways: platelet degranulation (7/61 genes included) and molecules 

associated with elastic fibres (5/61 genes included). This pathway analysis was executed 

considering as background all the PPI network genes, Benjamini adjusted p-values and a 
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significance threshold of 0.05. Fig. 5b also reports part of the PPI network that connects COPD 

disease hyperedge and its entangled hyperedge by means of the two significant pathways. This 

is obtained with the following procedure. At first, we identified all the intermediate genes 

belonging to paths of length two (L2) or length three (L3) that connect COPD disease 

hyperedge and its entangled hyperedge. Then, we selected the subset of those intermediate 

genes that are included in at least one of the two enriched pathways. The colours of nodes and 

links highlight their association to the enriched pathways. From the biological point of view, 

the fact that the COPD entangled hyperedge is L2/L3 connected to the original COPD 

hyperedge via PPIs whose nodes are in those two pathways represent an essential confirmation 

of the biological relevance of the entanglement. Indeed, previous studies reported increased 

platelet activation in patients with stable and acute exacerbation of COPD49, association of 

thrombocytosis with COPD morbidity50, changes in elastic fibres in the small airways and 

alveoli in COPD51. 

In Fig. 5b, MFAP5 is the only gene exclusively involved with elastic fibres pathway and for 

which a significant entanglement to COPD has been predicted by HEP algorithm. An earlier 

study suggested that MFAP5 might be implicated in the extracellular matrix pathway with 

COPD proteins45. Moreover, MFAP5 has been previously shown to be differentially expressed 

in severe emphysema and bronchitis in lung tissue52, two hallmarks of COPD. Hence, we 

moved forward to perform wet lab experiments that could support and clarify the reason of this 

significantly predicted entanglement of MFAP5 with the COPD hyperedge.  

Fig. 6a reports for each link predictor variant of the HEP algorithm (the mean has been used as 

average operator in this specific application), the adjusted p-values of possible entanglement 

between MFAP5 and COPD disease hyperedge. The entanglement is significant (p-value < 

0.05) according to three L3-based methods (CH2-L3, CH3-L3 and RA-L3). These L3-based 

predictors assigned a positive (nonzero) likelihood score to 10 of the 29 potential interactions 

between MFAP5 and the 29 proteins belonging to the COPD hyperedge. Out of these 10 

potential candidates to interact with MFAP5, we had available resources to test 2 for co-

immunoprecipitation (TGFB2, ELN) and 7 in a gene silencing experiment (TGFB2, MMP12, 

EGLN2, FBLN5, SFTPD, CHRNA5, TUFM). 

Fig. 6b shows that ELN and TGFB2 were separately detected in the same IP western blot that 

MFAP5 was detected, indicating that they co-immunoprecipitate with MFAP5. This is an 

experimental evidence at support of the physical binding between MFAP5-ELN and between 

MFAP5-TGFB2, which is an important experimental result at validation and support of the 

computational prediction obtained by means of the HEP algorithm. 
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Finally, we performed siRNA knockdown assays in bronchial epithelial cells (16HBE cells), 

showing that MFAP5 suppresses the expression of TGFB2, EGLN2, FBLN5, SFTPD, 

CHRNA5 and TUFM, and enhances the expression of MMP12 at mRNA level (Fig. 6c), 

supporting the validity of the entangled suggested by the HEP algorithmic variants. Fig. 6d 

provides a summary of the new information gained from the biological experiments discussed 

in this section, in comparison to knowledge already in literature. It is evident the disruptive 

impact of the HEP algorithm in the process to gain new knowledge. 

Since previous studies reported a level of comorbidity between COPD and aneurysm53,54, we 

performed an additional analysis in order to spot a possible relation between the genes 

associated to aneurysm and the COPD entanglement subnetwork genes (Fig. 5b) that were 

enriched in the two significantly detected pathways (platelet degranulation and molecules 

associated with elastic fibres). In particular, for each of the two pathways, we performed a 

hypergeometric test to verify whether the genes associated to aneurysm are significantly 

enriched in the respective COPD-pathway subnetwork (see Methods for details). The p-values 

are strongly significant for both pathways (platelet degranulation p=8.35e-07, molecules 

associated with elastic fibres p=1.67e-07), consolidating and enlarging knowledge on the 

molecular mechanisms for comorbidity of the two diseases. 

 

3. Discussion 

The first important achievement of this study is that we have introduced a new concept and a 

novel challenge in network science, which take respectively the names of entangled hyperedge 

and of hyperedge entanglement prediction (HEP). The formal definition of this prediction 

problem is fundamental to investigate how elementary modelling at the minimal scale of dyadic 

node-node link formation can impact modelling of hyperedge formation at larger scale (higher 

order) in the network organization. In addition, the same prediction problem can be employed 

to address practical questions such as: how to forecast the possible relationship between a 

member of a social network and a consolidated social group; or how to spot in biomedicine an 

unknown association between a certain gene and a disease module. 

The second important attainment is that we have proposed the first algorithm for hyperedge 

entanglement prediction which consists of many variants that allow to investigate the 

multifaceted local rules of self-organization and link formation of a complex network, and their 

L2 or L3 organization. 
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The third important accomplishment is that we have introduced two different evaluation 

frameworks for the prediction performance of HEP algorithms. The first evaluation scheme is 

on real networks, where we build a positive set by dismantling existing hyperedges and a 

negative set by exploiting topological information. The second evaluation scheme is on 

synthetic networks generated with the nPSO model7,8, where the positive and negative sets are 

constructed based on node-hyperedge geometrical distances. 

In brief, the first important result that we achieve is that HEP is feasible and performs much 

better than random prediction. This is not trivial, because it represents a necessary and 

fundamental evidence at support of the fact that HEP is a well-posed problem in network 

science, for which algorithms can provide meaningful computational solutions. 

The second important result is that local link prediction variants - adopted within the pipeline 

of the HEP algorithm - are enough (in the sense that local topological information is enough) 

to allow efficient (fast and meaningful) prediction. Furthermore, in line with some recent 

studies28–30 the results from our analysis confirm that the Cannistraci-Hebb (CH) models are 

robust link predictors across different network topologies, and that the adoption of models 

based on paths of length three (L3) seems more reliable than paths of length two (L2) on most 

network structural organizations. 

The third landmark result of this study is that we successfully exploited the proposed HEP 

algorithm in systems biomedicine in order to predict and enhance the understanding of the 

genes involved in the pathogenesis and comorbidity of COPD. To run HEP we simply need 

very basic knowledge, only two information to provide as inputs in the algorithm: the module 

of known  genes (disease module) associated with the considered complex disease (in this case 

COPD) and the updated human interactome topology. Some of the associations suggested by 

the HEP algorithm for COPD have been experimentally tested in this study by co-

immunoprecipitation and gene silencing, confirming the validity of the prediction. In addition, 

we detected two significantly enriched pathways involved in the COPD entanglement (platelet 

degranulation and molecules associated with elastic fibres) and their related subnetworks are 

in turn significantly enriched with genes associated to aneurysm. This corroborates previous 

studies54,55, reporting COPD as the strongest independently associated disease with aortic 

aneurysm, with a prevalence of COPD up to 44% among aneurysm patients. Moreover, it has 

been demonstrated that fibrillinopathies such as aortic aneurysm arises from mutations in genes 

that encode important molecules associated to elastic fibres. Elastic fibres are insoluble 

components of the extracellular matrix (ECM) of dynamic connective tissues such as skin, 

arteries, lungs and ligaments. Mutations in several ECM genes, such as FBN1, MFAP5 and 
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TGFB2 (shown in Fig. 5b), predispose to aortic aneurysmal disease by affecting aortic stiffness 

and elasticity56.  

A final important remark is that in our HEP framework, a social group or disease module do 

not need to be characterized by a high dyadic modularity for which nodes inside the hyperedge 

should have higher connectivity between them than with the rest of the network. In practice, 

we do not constrain the hyperedge to be a block module or a segregated community in the 

network. This is particularly important in predictions in presence of incomplete metadata such 

as the ones of the COPD disease module, whose genes have only one connection between them 

in the PPI network topology. 

To conclude, there is also a last and remarkable result of HEP that is coming from its 

application in cardiovascular molecular biomedicine. HEP was recently used with success to 

identify SDC4, a heparan sulfate proteoglycan, as a potential target of PCSK9 that mediates 

pro-inflammatory responses in macrophages. This result, now available in a study on a murine 

animal model of Katsuki et al. [submitted 2020], is relevant because circulating PCSK9 may 

induce macrophage activation and contribute to vein graft lesion development via mechanisms 

independent of LDLR degradation and blood cholesterol levels. PCSK9 suppression may thus 

prevent vein graft failure, which is a major clinical problem with no effective medical therapies 

up today.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2020                   doi:10.20944/preprints202012.0500.v1

https://doi.org/10.20944/preprints202012.0500.v1


4. Methods 

4.1 Link prediction methods 

Resource Allocation (RA) 

The formula of the RA-L2 model is25: 

𝑅𝐴_𝐿2(𝑢, 𝑣) = ∑
1

𝑑𝑧
𝑧∈𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate node 

on the considered path of length two; 𝑑𝑧 is the respective node degree; and the summation is 

executed over all the paths of length two. 

The formula of the RA-L3 model is29: 

𝑅𝐴_𝐿3(𝑢, 𝑣) = ∑
1

√𝑑𝑧1 ∗ 𝑑𝑧2𝑧1,𝑧2 ∈ 𝐿3

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧1, 𝑧2 are the intermediate 

nodes on the considered path of length three; 𝑑𝑧1 , 𝑑𝑧2 are the respective node degrees; and the 

summation is executed over all the paths of length three. 

 

Cannistraci-Hebb (CH) 

The formulas of the CH1-L2, CH2-L2 and CH3-L2 models are28: 

𝐶𝐻1_𝐿2(𝑢, 𝑣) = ∑
𝑑𝑖𝑧
𝑑𝑧

𝑧 ∈ 𝐿2

 

𝐶𝐻2_𝐿2(𝑢, 𝑣) = ∑ (
𝑑𝑖𝑧
∗

𝑑𝑒𝑧∗
=
1 + 𝑑𝑖𝑧
1 + 𝑑𝑒𝑧

)

𝑧 ∈ 𝐿2

 

𝐶𝐻3_𝐿2(𝑢, 𝑣) = ∑ (
1

𝑑𝑒𝑧∗
=

1

1 + 𝑑𝑒𝑧
)

𝑧 ∈ 𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate node 

on the considered path of length two; 𝑑𝑧 is the respective node degree; 𝑑𝑖𝑧 is the respective 

internal node degree; 𝑑𝑒𝑧 is the respective external node degree; and the summation is executed 

over all the paths of length two. The asterisk on a degree variable indicates that a unitary term 

is added, in order to avoid the saturation of the value. 

The formulas of the CH1-L3, CH2-L3 and CH3-L3 models are28: 

𝐶𝐻1_𝐿3(𝑢, 𝑣) = ∑
√𝑑𝑖𝑧1 ∗ 𝑑𝑖𝑧2

√𝑑𝑧1 ∗ 𝑑𝑧2𝑧1,𝑧2 ∈ 𝐿3
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𝐶𝐻2_𝐿3(𝑢, 𝑣) = ∑
√𝑑𝑖𝑧1

∗ ∗ 𝑑𝑖𝑧2
∗

√𝑑𝑒𝑧1
∗ ∗ 𝑑𝑒𝑧2

∗
𝑧1,𝑧2 ∈ 𝐿3

 

𝐶𝐻3_𝐿3(𝑢, 𝑣) = ∑
1

√𝑑𝑒𝑧1
∗ ∗ 𝑑𝑒𝑧2

∗
𝑧1,𝑧2 ∈ 𝐿3

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧1, 𝑧2 are the intermediate 

nodes on the considered path of length three; 𝑑𝑧1 , 𝑑𝑧2 are the respective node degrees; 𝑑𝑖𝑧1 , 𝑑𝑖𝑧2 

are the respective internal node degreed; 𝑑𝑒𝑧1 , 𝑑𝑒𝑧2 are the respective external node degrees; 

and the summation is executed over all the paths of length three. The asterisk on a degree 

variable indicates that a unitary term is added, in order to avoid the saturation of the value. 

Note that the CH3 model, based only on the minimization of the external node degrees, has 

been introduced in this study. 

 

Cannistraci-Alanis-Ravasi (CAR) 

The formula of the CAR model is4: 

𝐶𝐴𝑅(𝑢, 𝑣) =  𝐶𝑁(𝑢, 𝑣) × 𝐿𝐶𝐿(𝑢, 𝑣) 

where: u and v are the two seed nodes of the candidate interaction; 𝐶𝑁(𝑢, 𝑣) is the number of 

common neighbours between them and 𝐿𝐶𝐿(𝑢, 𝑣) is the number of local community links 

(links between the common neighbours). 

 

Cannistraci-Adamic-Adar (CAA) 

The formula of the CAA model is4: 

𝐶𝐴𝐴(𝑢, 𝑣) =  ∑
𝑑𝑖𝑧

log2 𝑑𝑧
𝑧∈𝐿2

 

where: u and v are the two seed nodes of the candidate interaction; 𝑧 is the intermediate node 

on the considered path of length two; 𝑑𝑧 is the respective node degree; 𝑑𝑖𝑧 is the respective 

internal node degree; and the summation is executed over all the paths of length two. 

 

Cannistraci-Jaccard (CJC) 

The formula of the CAA model is4: 

𝐶𝐽𝐶(𝑢, 𝑣) =  
𝐶𝐴𝑅(𝑢, 𝑣)

|𝑁(𝑢) ∪ 𝑁(𝑣)|
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where: u and v are the two seed nodes of the candidate interaction; 𝐶𝐴𝑅(𝑢, 𝑣) is the value of 

the Cannistraci-Alanis-Ravasi model, |𝑁(𝑢) ∪ 𝑁(𝑣)| is the cardinality of the set composed of 

the union of the neighbours of u and v. 

 

4.2 Real networks dataset 

The methods have been tested on three small real networks and on two large biological 

networks. For such networks metadata are available, representing the membership of the nodes 

to a certain group. Nodes belonging to the same group share a common feature. We consider 

such association between multiple nodes sharing a common feature as a hyperedge. The 

networks have been transformed into undirected, unweighted, without self-loops and only the 

largest connected component has been considered. 

The Football network presents games between division IA colleges during regular season fall 

2000. Hyperedges associate teams belonging to the same conference. 

The Opsahl_10 network comes from the research team of a manufacturing company and nodes 

represent employees. The hyperedges group the employees by the company locations (Paris, 

Frankfurt, Warsaw, and Geneva). The researchers were asked to indicate the extent to which 

their co-workers provide them with information they use to accomplish their work. The 

answers were on the following scale: 0—I do not know this person/I never met this person; 1—

Very infrequently; 2—Infrequently; 3—Somewhat frequently; 4— Frequently; 5—Very 

frequently. We set an undirected link when there was at least a weight of 4. 

The Polbooks network represents frequent co-purchases of books concerning US politics on 

amazon.com. Hyperedges associate the books with the same political orientation such as 

conservative, neutral or liberal. The network is unpublished but can be downloaded at 

http://www-personal.umich.edu/~mejn/netdata/. 

The protein-protein interaction (PPI) network of S. cerevisiae is one of the most studied PPI 

networks that has been used. It comes from a published dataset of PPI networks compiled into 

three genome-scale networks: yeast two-hybrid (Y2H), affinity purification followed by mass 

spectrometry (AP/MS), and literature curated (LC)57. This PPI network was preprocessed by 

Ahn et al.58 by using the union of these three networks and taking only the largest component 

of each network. The hyperedges associate proteins with the same significantly enriched GO 

terms. 

The metabolic network reconstruction of E. coli K-12 MG1655 strain (iAF1260) is one of the 

most elaborate metabolic network reconstructions currently available59. From the metabolic 

network reconstruction iAF1260, Ahn et al.58 retained only cellular reactions, ignored 
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information regarding the compartments (cytoplasm and periplasm), and projected the network 

into metabolite space (two metabolites are connected if they share a reaction). For instance, if 

an enzyme catalyzes the reaction where metabolites A and B are transformed into C and D, the 

resulting network would contain a clique of A, B, C, and D. The hyperedges group metabolites 

with the same metabolic pathway annotation from the KEGG database. 

Some topological properties of the networks used in this study are summarized in Suppl. Table 

1. 

 

4.3 Algorithm for the evaluation procedure of HEP in real networks 

In general, after removal from the hyperedge ℎ𝑗 , the test node becomes a test candidate node 

𝑐𝑖𝑗 for entanglement with ℎ𝑗 . Then, we compute by HEP whether this test candidate node is 

predicted as a member of the 𝑒ℎ𝑗 entangled hyperedge. At the same time, we want to test that 

the test candidate node 𝑐𝑖𝑗 is not predicted by HEP as member of the entangled hyperedge 

𝑒ℎ𝑘 of another hyperedge ℎ𝑘 which by definition is considered a wrong assignment because 

topologically very far from the test candidate node 𝑐𝑖𝑗. 

In details, the algorithm for the evaluation procedure of HEP in real networks is the following. 

For each node-hyperedge pair (𝑣𝑖𝑗 ∈ ℎ𝑗 , ℎ𝑗) in hypergraph: 

a. If the node 𝑣𝑖𝑗 has at least one link to the other members of the hyperedge ℎ𝑗  and at least 

one link to nodes that are not members, we remove the node 𝑣𝑖𝑗 from ℎ𝑗 , as well as the 

network links between 𝑣𝑖𝑗 and the other members of ℎ𝑗 . After the removal 𝑣𝑖𝑗 satisfies the 

ENC and therefore it becomes a candidate node for entanglement 𝑐𝑖𝑗. This generates a pair 

(𝑐𝑖𝑗, ℎ𝑗) to test for entanglement significance by the ESC. 

b. We run the algorithm for node2hyperedge entanglement p-value between the node 𝑐𝑖𝑗 and 

the hyperedge ℎ𝑗 , which represents a test on the positive set (here a correct prediction is if 

the p-value will be significant). Meanwhile for 𝑐𝑖𝑗 we define the ‘negative’ hyperedge ℎ𝑘 

and we run the algorithm for node2hyperedge entanglement p-value between the node 𝑐𝑖𝑗 

and the hyperedge ℎ𝑘, which represents a test on the negative set (here a correct prediction 

is if the p-value will be not significant). We obtain the p-values 𝑝𝑖𝑗 and 𝑝𝑖𝑘. 

c. By considering a significance threshold of 0.05 for the p-values 𝑝𝑖𝑗 and 𝑝𝑖𝑘, we obtain a 

prediction on whether (𝑐𝑖𝑗 , ℎ𝑗) and (𝑐𝑖𝑗, ℎ𝑘) also satisfy the ESC, indicating if the node 𝑐𝑖𝑗 

becomes a member of the entangled hyperedges 𝑒ℎ𝑗 and 𝑒ℎ𝑘 respectively. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2020                   doi:10.20944/preprints202012.0500.v1

https://doi.org/10.20944/preprints202012.0500.v1


Once obtained predictions for all the pairs in the positive and negative set, we evaluate the 

performance using the Matthews correlation coefficient (MCC). Note that if the option of 

Benjamini-Hochberg correction is considered, then in step (b) the p-value should be computed 

between the node 𝑐𝑖𝑗 and every hyperedge for which ENC is satisfied. 

 

4.4 Generation of synthetic networks using the nPSO model 

The Popularity-Similarity-Optimization (PSO) model7 is a generative network model recently 

introduced in order to describe how random geometric graphs grow in the hyperbolic space. In 

this model the networks evolve optimizing a trade-off between node popularity, abstracted by 

the radial coordinate, and similarity, represented by the angular distance. The PSO model can 

reproduce many structural properties of real networks: clustering, small-worldness (concurrent 

low characteristic path length and high clustering), node degree heterogeneity with power-law 

degree distribution and rich-clubness. However, being the nodes uniformly distributed over the 

angular coordinate, the model lacks a non-trivial community structure. 

The nonuniform PSO (nPSO) model7,8 is a variation of the PSO model that exploits a 

nonuniform distribution of nodes over the angular coordinate in order to generate networks 

characterized by communities, with the possibility to tune their number, size and mixing 

property. We adopted a Gaussian mixture distribution of angular coordinates, with 

communities that emerge in correspondence of the different Gaussians, and the parameter 

setting suggested in the original study7,8. Given the number of components C, they have means 

equidistantly arranged over the angular space, 𝜇𝑖 =
2𝜋

𝐶
∙ (𝑖 − 1), the same standard deviation 

fixed to 1/6 of the distance between two adjacent means, 𝜎𝑖 =
1

6
∙
2𝜋

𝐶
, and equal mixing 

proportions, 𝜌𝑖 =
1

𝐶
 (𝑖 = 1…𝐶). The community memberships are assigned considering for 

each node the component whose mean is the closest in the angular space. We consider such 

association between multiple nodes in the same community as a hyperedge. The other 

parameters of the model are the number of nodes N, half of the average node degree m, the 

network temperature T (inversely related to the clustering) and the exponent γ of the power-

law degree distribution. Given the parameters (N, m, T, γ, C), for details on the generative 

procedure please refer to the original study7,8. 

 

4.5 Cell culture maintenance 

The cell lines used to validate the link predictions with biological experiments were bronchial 

epithelial cells BEAS-2B (Cat # 95102433, Millipore) and 16-HBE/16HBE (human bronchial 
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epithelium, Cat# SCC150, Millipore). These cells were propagated in vitro at 37OC in a 

humidified incubator with 5% CO2. The culture media used for in vitro experiments are the 

following: (1) For the BEAS-2B cells, growth media (GM) is Dulbecco's modified eagle 

medium, DMEM (Cat# 10569-010, Gibco, Thermo Fisher) with 1% penicillin/streptomycin 

(P/S) and 10% of fetal bovine serum (FBS). For all washing steps, if not indicated otherwise, 

autoclaved Ca++- and Mg++-free phosphate buffer saline (PBS) was used. 

 

4.6 Co-Immunoprecipitation (Co-IP) 

Cells in 150 cm culture flasks were harvested and lysed with 600µl lysis buffer (20 mM HEPES 

(pH7.9), 0.1 M KCl, 0.2 mM EDTA, 10% Glycerol, 0.1% NP-40 and cOmplete™, EDTA-free 

Protease Inhibitor Cocktail (Sigma Aldrich, Cat# S8830) and PhosSTOP Phosphatase Inhibitor 

Cocktail Tablets (Sigma Aldrich, Cat# 4906845001). Cells were incubated in the lysis buffer 

for ten minutes at 4OC on a rotating shaker. The resulting lysates were then centrifuged at 

10,000 rpm for 10 minutes at 4°C. We then collected the supernatant (soluble) fraction for 

immunoprecipitation. The protein concentration of the lysate was measured using the 

bicinchoninic acid (BCA) method (Thermo Scientific, PI-Cat#23225). After obtaining protein 

concentration, 1.0 mg of protein of the 16HBE lysate was incubated overnight at 4°C, with 5.0 

µg of the following antibody in PBS: mouse monoclonal anti-human MFAP5 (Sigma-Aldrich, 

Cat# SAB1406642) which detects the full length of the MFAP5 protein and 25µl per sample 

of Dynabeads Protein G (Thermo Scientific, Cat# 10004D). Dynabeads were washed once with 

lysis buffer before addition to the lysate-antibody mix. Washing Dynabeads involved placing 

the tube containing 25 uL of Dynabeads on the vendor-provided magnet (DynaMag, Thermo 

Fisher) until the solution clears. The clear solution is discarded, and the tube is removed from 

the magnet. Then, the Dynabeads are redissolved with the lysate-antibody mix. Each sample 

replicate was left to incubate for 1 hour at 4°C on a rotating shaker. Subsequently, the lysate 

was washed five times, with 1.0 ml of lysis buffer using the magnet as above. At this step, any 

unbound protein from the lysate to the Dynabeads are washed away by the changing washes of 

lysate buffer. The target protein, along with other proteins bound to that target protein, will be 

bound by the target antibody (MFAP5), which in turn is bound by the beads. The pellet is then 

redissolved in 250 L RIPA buffer (Cat# BP-407, Boston BioProducts). Protein yield from 

the co-IP supernatant was determined using a protein assay kit (Thermo Fisher Scientific, Cat# 

23225). The samples (replicate experiments, n=3) were dissolved in 50.0 L of Laemmli 

sample buffer (Boston BioProducts, Cat# BP-111R) and then boiled for 5 minutes at 95°C. At 

this point, the antibody and bound proteins are eluted or separated from the Dynabeads and the 
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target antibody. The remaining Dynabeads are removed by magnetic isolation as above. The 

resulting supernatant is then processed for Western blotting. 

Standard Western blotting procedure was done. The denatured samples were run in lanes and 

separated by SDS polyacrylamide electrophoresis. The protein lanes were (1) "input," which 

refers to protein lysate before IP, and (2) "IP" which is the immunoprecipitated proteins only 

(Fig. 6b). In some gels/blots (not shown), we added a lane that contained pure recombinant 

human MFAP5 protein as a reference band to confirm the MFAP5 band in the input and IP 

lanes. SDS-PAGE used 8.0% acrylamide (Boston BioProducts, Cat# BAC-30PA), separating 

buffer (Boston BioProducts, Cat# BP-90), stacking buffer (Boston BioProducts, Cat# BP-95), 

N,N,N',N'-tetramethylethylenediamine (TEMED) (Sigma-Aldrich, Cat# 1610801), and 

ammonium persulfate (Sigma-Aldrich, Cat# A3678-25G)]. They were subsequently 

transferred to nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA, Cat# 1620112). 

The membranes were blocked with 2.5% non-fat dry milk (Santa Cruz Biotechnology, TX, 

Cat# sc-2325) in 1X tris-buffered saline with 0.1% Tween 20 (TBST) (Boston BioProducts, 

MA, Cat# IBB-181). The primary antibody used was a rabbit polyclonal anti-human MFAP5 

antibody (1:1000, Cat# abx103845, Abbexa). The secondary detection antibody used was anti-

rabbit IgG with peroxidase conjugate (1:5000, Sigma-Aldrich, Cat# A0545-1ML). The 

proteins of interest were visualized using an ECL blotting substrate (Bio-Rad Laboratories, 

Cat# 1705060) and an imager (GE Healthcare, ImageQuant LAS 4000). 

After detecting MFAP5 in the IP blot, we "stripped" the blot using stripping buffer, Thermo 

Scientific, Restore Western Blot Stripping Buffer (Cat# 21059, ThermoFisher) to remove the 

detected bands by MFAP5. Western blot was repeated for other co-immunoprecipitated 

proteins (TGFB2 and ELN) after the blot-stripping process. We used mouse monoclonal 

antibody against human TGFB2 (Cat# ab36495, Abcam) or rabbit monoclonal ELN (Cat# 

ab213720 Abcam) in the same manner as above. The secondary detection antibody used this 

time was anti-mouse IgG peroxidase conjugate (1:5000, Sigma-Aldrich, Cat# A4416-1ML) for 

TGFB2 and anti-rabbit IgG peroxidase conjugate (1:5000, Sigma-Aldrich, Cat# A0545-1ML) 

for ELN. The proteins of interest were visualized using an ECL blotting substrate (Bio-Rad 

Laboratories, Cat# 1705060) and an imager (GE Healthcare, ImageQuant LAS 4000). 

Detection of TGFB2 or ELN bands from the same blot where MFAP5 was detected, 

demonstrates that these proteins were co-immunoprecipitated with MFAP5. 
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4.7 RNA purification and cDNA synthesis 

RNA from cultured 16HBE cells (at passage # 5) was isolated using the IllustraTM RNAspin 

mini kit (GE Healthcare, Cat# 25-0500-72). We experimented on nine replicates. For the 

adherent cells, RNA Lyse solution from the Illustra RNAspin Mini Kit (GE Life Science) 

mixed with 1% 2-mercaptoethanol (Sigma) was added. Each lysate was then frozen at -30 C 

for later RNA purification. The purification was done following the manufacturer's protocol 

for GE Healthcare Illustra™ RNAspin Mini Isolation Kit (lot 1711/001). To get a concentrated 

RNA yield, the purified RNA was eluted in 16 L RNase-free H2O. Each sample 

concentration was measured using a NanoDrop Microvolume Spectrophotometer 2009 

(ThermoFisher). To normalize the amount of RNA between samples, the volume needed for 

each sample to have 500 ng of RNA was calculated. The qScript cDNA Synthesis Kit 

(Quantabio) was used to make Complementary DNA (cDNA). The volume of RNA was then 

added to a strip tube and diluted with nuclease-free water to a total of 15 L. For each tube, 

4.0 L of reaction mix and 1.0 L of reverse transcriptase (RT). After centrifugation, the 

prepared strip tube plate was processed in Biosystems 2720 Thermal Cycler for cDNA 

synthesis. Samples were stored at 4.0 C. 

 

4.8 Pre-Amplification 

For the pre-Amplification of cDNA samples, it was performed with the Perfecta PreAmp 

SuperMix (5X) kit (Quantabio). It was made an assay primers pool using 2.0 µl of each primer 

(see Suppl. Table 8). The reaction solution was raised to 200.0 µL total volume, additional TE 

buffer (10mM Tris-HCl (pH 8.0), 0.1ml EDTA) was added. 4.0 µL of PerfeCta PreAmpl 

SuperMix (5X), 2.5 µl of Taqman Assay Pool, 5.0 µl of cDNA and 8.5 µl of nuclease-free 

water were mixed to make 20 µl of the pre-amplification reaction mixture for TaqMan assays. 

Each sample was, then, incubated in a thermal cycle, following these steps: initial denaturation 

(95°C, 2 minutes), PreAmpl cycling (14 cycles of 95°C, 10 seconds; 60°C, 3 minutes) and hold 

(4°C). Finally, the concurrent samples were used for qPCR. 

 

4.9 qPCR  

For qPCR analysis, it was used a 384 well plate with 2 l of PreAmp cDNA and 8 l of primer 

cocktail per well. The primer cocktail was made with 5 l of Taqman Fast Universal PCR 

Master Mix (2X), 2.75 l of nuclease-free water (QuantaBio), and 0.25 l of respective primer 

(see Suppl. Table 8). PCR was done using 79020HT Fast Real-Time PCR Systems, and the 

data were analyzed using Prism GraphPad 8. Statistical significance was determined after 
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testing between Control and MFAP5 silenced sample conditions by student's t-test, two-tailed, 

and unpaired. 

 

4.10 Hypergeometric test  

Consider to randomly draw n objects, without replacement, from a finite population of size N 

that contains exactly K objects with a desired feature. The hypergeometric distribution is a 

discrete probability distribution that describes the probability of randomly drawing k objects 

with that feature (successes). The probability mass function of a random variable X that follows 

the hypergeometric distribution is: 

Pr(𝑋 = 𝑘) =
(𝐾
𝑘
)(𝑁−𝐾
𝑛−𝑘

)

(𝑁
𝑛
)

 

The function is positive when max(0, 𝑛 + 𝐾 − 𝑁) ≤ 𝑘 ≤ min (𝑛, 𝐾). 

In the hypergeometric test for over-representation of the desired feature in a sample, the p-

value is computed using the hypergeometric distribution as the probability of randomly 

drawing k or more successes. If in your sample you observe 𝑘∗ objects with the desired feature, 

the p-value of the hypergeometric test for over-representation is given by: 

𝑝 = ∑
(𝐾
𝑘
)(𝑁−𝐾
𝑛−𝑘

)

(𝑁
𝑛
)

min (𝑛,𝐾)

𝑘=max(𝑘∗,𝑛+𝐾−𝑁)

 

In our simulations related to the Results section 2.4, for each of the two biological pathways 

considered (platelet degranulation, molecules associated with elastic fibres), we performed the 

hypergeometric test for over-representation of genes associated to aneurysm in the COPD-

pathway subnetwork. Therefore, we have defined the parameters of the hypergeometric 

distribution as follows: N is equal to the number of nodes in the PPI network; K is equal to the 

number of nodes associated to aneurysm, meaning that they are either members of the 

aneurysm hyperedge or they are neighbors of its members in the PPI; n is the number of nodes 

in the COPD-pathway subnetwork, meaning that they are in the pathway considered and they 

are either in the COPD hyperedge, in its entangled hyperedge or in a L2/L3 path between them 

(see Fig. 5b); k is equal to the number of nodes in the COPD-pathway subnetwork and 

associated to aneurysm. 

The actual values of the parameters and the resulting p-values are the following: 

• platelet degranulation: N=16418, K=918, n=39, k=12, p=8.35e-07; 

• molecules associated with elastic fibres: N=16418, K=918, n=23, k=10, p=1.67e-07. 
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Figures and tables 

 

 
 

Figure 1. Visualization of hyperedge entanglement in high-order multilayer network. 

The figure represents the hyperedge entanglement framework in high-order multilayer network 

proposed in this study. a. The first (top) high-order layer is a hypergraph 𝐻𝐺(𝑉,𝐻), where 𝑉 is the set 

of vertices (or nodes) and 𝐻 is the set of hyperedges. b. The second (bottom) layer is a graph 𝐺(𝑉, 𝐸), 

where 𝑉 is the same set of vertices as the hypergraph 𝐻𝐺 and 𝐸 is the set of edges (or links). Orange 

nodes are the members of a hyperedge and the information is projected on the network. Black nodes 

represent candidate nodes for entanglement (nodes that satisfy the ENC with the hyperedge). White 

nodes are not candidate nodes (because they do not satisfy the ENC), they are intermediate nodes in the 

network paths which enforce the entanglement between black and orange nodes. The HEP algorithm, 

which exploits link prediction on the network, predict (HE-prediction arrow) which ones of the black 

nodes are significantly entangled with the orange nodes (Hyperedge) and therefore are members of the 

entangled hyperedge (E-Hyperedge).  
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Figure 2. Flow chart of HEP algorithm. 

The figure is a flow-chart representation of the HEP algorithmic steps which include also the N2EH 

algorithm (b-f panels). a. high-order multilayer network in input to the algorithm; b. choice of the link 

prediction option; c. computation of the node-node similarities between disconnected node pairs; d. 

choice of the average operator option for entanglement; e. computation of the node2hyperedge 

entanglement score; f. statistical test comparing the observed value of the node2hyperedge 

entanglement score with a null distribution, resulting in an empirical p-value; g. choice of the p-value 

correction option (if required); h. as output of the algorithm, a p-value for every candidate-node (a node 

that satisfies the ENC) to hyperedge pair, indicating if the pair also satisfy the ESC. For more details 

please refer to the Results section 2.1.  
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Figure 3. MCC evaluation of node2hyperedge entanglement in real networks. 

The figure reports the results of the node2hyperedge entanglement simulation in 5 real networks: a. 

Football; b. Opsahl 10; c. Polbooks; d. S. Cerevisiae PPI; e. E. Coli metabolic. For each network, after 

creating a positive and negative set of node-hyperedge pairs, we run the node2hyperedge entanglement 

algorithm in order to obtain the predictions, and the performance is evaluated using the Matthews 

correlation coefficient (MCC). Please refer to section 2.2 for more details. For each link predictor only 

the best algorithmic variant is shown (regardless of average operator and p-value correction), whereas 

in the Suppl. Tables 2-6 all the variants are reported. Note that since there is only one MCC value for 

each network, no standard error is shown. f. The last panel reports the mean and standard error of the 

MCC over the 5 networks.  
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Figure 4. MCC evaluation of node2hyperedge entanglement in synthetic networks. 

We generated synthetic networks using the nPSO model7,8 with parameters N = 1000, γ = [2, 3], m = [4, 

8], T = [0.1, 0.3, 0.5, 0.7] and C = [10, 20]. For each network, after creating a positive and negative set 

of node-hyperedge pairs, we run the node2hyperedge entanglement algorithm in order to obtain the 

predictions, and the performance is evaluated using the Matthews correlation coefficient (MCC). Please 

refer to section 2.3 for more details. The figure reports the MCC evaluation in four panels, each 

analyzing the variation in performance by changing a certain nPSO parameter. 

a. The barplot shows for each link predictor the average MCC over all the networks with γ = 2 (white 

bars) compared with the average MCC over all the networks with γ = 3 (colored bars). The same applies 

in panels: b. m = 4 versus m = 8; c. T = 0.1 versus T = 0.7; d. C = 10 versus C = 20. Since we generated 

networks with four different values of T, in panel c we compared the two extreme ones. Note that for 

each link predictor the figure reports only the best variant, meaning the one with average operator and 

p-values correction option that provides the highest average performance across all the networks. Please 

refer to Suppl. Table 7 for the complete overview of all the algorithmic variants. For visual clarity, the 

standard error of the MCC is not shown, but it is reported in Suppl. Fig. 1.  
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Figure 5. Prediction of entanglement hyperedge of COPD disease hyperedge 

a. Visual representation of the HEP algorithm performed on the high-order multilayer graph, having 

the COPD disease hyperedge at the upper layer and the PPI network at the bottom layer. 

b. On the left, the 32 genes (triangle symbol) of the entangled hyperedge (predicted information). On 

the centre, the 47 intermediate genes (circle symbol) that belong to paths of length two (L2) or length 

three (L3) and that are included in at least one of the two enriched pathways: platelet degranulation (red 

colour) and molecules associated with elastic fibres (green colour). On the right, the 29 genes (square 

symbol) of the COPD hyperedge (known information). Grey nodes are COPD genes or entangled genes 

that are not part of the pathways, but they are still reported for completeness. Solid lines are for 

interactions between the nodes in the PPI network, dashed lines are for the interactions experimentally 

validated in this study. Colours of nodes and links highlight their association to the two pathways, as 

indicated in the legend. Grey links are between nodes that are not associated to the same pathway.  
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Figure 6. Computational and experimental validation on COPD disease 

a. p-values of possible entanglement between MFAP5 and COPD disease hyperedge assessed according 

to the 12 variants of the HEP algorithm. “Rand” corresponds to the random predictor. The entanglement 

is significant (p-value < 0.05) according to three L3-based methods (CH2-L3, CH3-L3, RA-L3). 

b. Immunoblot of proteins after immunoprecipitation with Microfibril Associated Protein 5 (MFAP5) 

antibody (IP) and staining with elastin and TGFB2 antibody. MFAP5 interaction with ELN and TGFB2 

is confirmed. 

c. MFAP5 siRNA suppresses the expression of TGFB2, EGLN2, FBLN5, SFTPD, CHRNA5 and 

TUFM and enhances the expression of MMP12 at mRNA level. 

d. Summary of the known knowledge and new knowledge gained in this study. The new knowledge 

from our prediction (panel a) supported by the experimental validations (panels b and c) is represented 

with a red arrow when, as a consequence of MFAP5 regulation, the expression of a COPD-related 

disease gene is decreased (repression), and with a green arrow when it is increased (enhancement). The 

dashed blue line indicates the validated interactions. Genes associated to the biological pathway of 

molecules associated with elastic fibres are highlighted with a black border. References for literature-

curated interactions: the complex associations come from Reactome60; MMP12 cleaves FBLN5 in vitro 

and may mediate injury-induced loss of FBLN561 (negative regulation); TGFB2 may regulate indirectly 

FBLN5 by the change of its level in the lungs62 (unknown regulation); the interaction between ELN and 

MMP12 comes from the PPI network considered in this study36.  
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Supplementary Information  

 

Computational complexity 

- L2-based link predictors 

The L2-based algorithms for topological link prediction consist of a main loop exploring all 

the non-observed links, and evaluating the likelihood of one link at each iteration. 

Given the number of nodes N and the number of observed links E, the number of iterations is: 

𝑁(𝑁 − 1)

2
− 𝐸 

For a given evaluation of the candidate link between nodes i and j, the dominant operation is 

to find the common neighbours of i and j. In order to do this, for each neighbour of i, we need 

to check if it is connected to j. The time complexity of this computation is linear on the degree 

of i, therefore on average it is linear on the average node degree of the network k: 

𝑂(𝑘) = 𝑂 (
𝐸

𝑁
) 

Given that we perform 
𝑁(𝑁−1)

2
− 𝐸 iterations with average complexity 𝑂 (

𝐸

𝑁
), the overall 

complexity is: 

𝑂 ((
𝑁(𝑁 − 1)

2
− 𝐸) ∗

𝐸

𝑁
) = 𝑂 (

𝐸(𝑁 − 1)

2
−
𝐸2

𝑁
) 

Gathering the factor 
𝐸(𝑁−1)

2
 we obtain: 

𝑂 (
𝐸(𝑁 − 1)

2
(1 −

2𝐸

𝑁(𝑁 − 1)
)) = 𝑂 (

𝐸(𝑁 − 1)

2
(1 − 𝐷)) 

where D is the network density 𝐷 =
2𝐸

𝑁(𝑁−1)
. 

Removing the multiplicative factor 
1

2
 and replacing (N – 1) with just N, we can rewrite in a 

more compact form: 

𝑂(𝐸𝑁(1 − 𝐷)) 

The complexity analysis is remarkable in three particular cases: 

(1) Minimum number of links for a connected network (tree): 𝐸 =  𝑁 − 1 

𝑂 (
𝐸(𝑁 − 1)

2
(1 −

2𝐸

𝑁(𝑁 − 1)
)) = 𝑂 (

(𝑁 − 1)2

2
(1 −

2(𝑁 − 1)

𝑁(𝑁 − 1)
)) 

= 𝑂 (
(𝑁 − 1)2

2
−
(𝑁 − 1)2

𝑁
) = 𝑂(𝑁2 −

𝑁2

𝑁
) = 𝑂(𝑁2) 
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(2) Half of the number of possible links: 𝐸 =
𝑁(𝑁−1)

4
 

𝑂 (
𝐸(𝑁 − 1)

2
(1 −

2𝐸

𝑁(𝑁 − 1)
)) = 𝑂(

𝑁(𝑁 − 1)2

8
(1 −

1

2
)) = 𝑂 (

𝑁(𝑁 − 1)2

16
) = 𝑂(𝑁3) 

(3) Fully connected network (no non-observed links to evaluate): 𝐸 =
𝑁(𝑁−1)

2
 

𝑂 (
𝐸(𝑁 − 1)

2
(1 −

2𝐸

𝑁(𝑁 − 1)
)) = 𝑂 (

𝑁(𝑁 − 1)2

8
(1 − 1)) = 0 

This suggests that running the algorithm over a sparse network achieves complexity 𝑂(𝑁2), 

which increases to 𝑂(𝑁3) for intermediate values of network density. However, for densely 

connected networks the computational cost decreases, ideally reaching zero for a fully 

connected network without non-observed links to evaluate. 

Since reasonable values of density for real networks are generally low or intermediate, we may 

assert that within the domain of real and practical problems in which topological link prediction 

is applied, the complexity of L2-based algorithms can be expressed as 𝑂(𝐸𝑁), and very often 

approximated by O(N2). 

Note that the link likelihoods are computed independently of each other and therefore the 

implementation can be easily parallelized in order to speed up the running time. 

 

- L3-based link predictors 

The L3-based algorithms for topological link prediction, analogously to the L2-based, consist 

of a main loop exploring all the non-observed links, and evaluating the likelihood of one link 

at each iteration. 

In this case, for a given evaluation of the candidate link between nodes i and j, the dominant 

operation is to find the L3 paths between i and j. In order to do this, for each neighbour l of i, 

we need to check if each neighbour of l is connected to j. The time complexity of this 

computation is dependent on the degree of i multiplied by the degree of l, therefore on average 

it is dependent on the squared average node degree of the network k: 

𝑂(𝑘2) = 𝑂 (
𝐸2

𝑁2
) 

Given that we perform 
𝑁(𝑁−1)

2
− 𝐸 iterations with average complexity 𝑂 (

𝐸2

𝑁2
), the overall 

complexity is: 

𝑂 ((
𝑁(𝑁 − 1)

2
− 𝐸) ∗

𝐸2

𝑁2
) 
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The complexity analysis is remarkable in three particular cases: 

(1) Minimum number of links for a connected network (tree): 𝐸 =  𝑁 − 1 ≅  𝑁 

𝑂 ((
𝑁(𝑁 − 1)

2
− 𝐸) ∗

𝐸2

𝑁2
) = 𝑂 ((

𝑁(𝑁 − 1)

2
− 𝑁) ∗

𝑁2

𝑁2
) 

= 𝑂 (
𝑁(𝑁 − 1)

2
− 𝑁) = 𝑂 (

𝑁2

2
−
𝑁

2
− 𝑁) = 𝑂(𝑁2) 

(2) Half of the number of possible links: 𝐸 =
𝑁(𝑁−1)

4
 

𝑂 ((
𝑁(𝑁 − 1)

2
− 𝐸) ∗

𝐸2

𝑁2
) = 𝑂

(

 
 
(
𝑁(𝑁 − 1)

2
−
𝑁(𝑁 − 1)

4
) ∗
(
𝑁(𝑁 − 1)

4
)
2

𝑁2

)

 
 

 

= 𝑂(
𝑁(𝑁 − 1)

4
∗
𝑁2(𝑁 − 1)2

16 ∗ 𝑁2
) = 𝑂 (

𝑁(𝑁 − 1)3

64
) = 𝑂(𝑁4) 

(3) Fully connected network: no non-observed links to evaluate. 

This suggests that running the algorithm over a sparse network achieves complexity 𝑂(𝑁2), 

which increases to 𝑂(𝑁4) for intermediate values of network density. 

 

- HEP 

For each node-hyperedge pair that satisfies the ENC, the HEP computes the node2hyperedge 

entanglement p-value (for details see the Results sections 2.1.5 and 2.1.6). Given 𝑁 nodes and 

𝐻 hyperedges, the node-hyperedges pairs to evaluate are 𝑂(𝑁 ∗ 𝐻). 

As preliminary step, we can compute the similarity scores for all the pairs of disconnected 

nodes in the network, with time complexity dependent on the link predictor, as discussed in the 

previous sections. Therefore such operation does not have to be repeated for each node-

hyperedge pair. Given a node-hyperedge pair and the node-node similarities already computed, 

the algorithm for the node2hyperedge entanglement p-value requires the following operations 

(see section 2.1.5): 

• Computation of the node2hyperedge entanglement score, using one of the three average 

operators: mean, median, mode. Mean and median can be executed with time complexity 

linear to the number of samples to average. The mode option, as described in section 2.1.6, 

is based on a kernel smoothing function estimate evaluated at 100 points, which can also 

be implemented with linear time complexity63. The number of samples to average is equal 
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to the average size of the hyperedge, that we can here refer with 𝑠. The time complexity of 

this step is 𝑂(𝑠). 

• Generation of 𝑀 random hyperedges. In order to sample the members of one random 

hyperedge the time complexity is equal to the average hyperedge size, and this procedure 

is repeated 𝑀 times. The time complexity of this step is 𝑂(𝑀 ∗ 𝑠). 

• Computation of the null-distribution of node2hyperedge entanglement scores. This is 

equivalent to computing 𝑀 times a node2hyperedge entanglement score, therefore the time 

complexity is 𝑂(𝑀 ∗ 𝑠). 

• Computation of the empirical p-value. This operation requires 𝑀 comparisons, therefore 

the time complexity is 𝑂(𝑀). 

The dominant operation among the four listed is 𝑂(𝑀 ∗ 𝑠). A reasonable assumption is that the 

average hyperedge size is approximately equal to 𝑠 =
𝑁

𝐻
. 

Since the four operations above are repeated 𝑂(𝑁 ∗ 𝐻) times, we obtain: 

𝑂 (𝑁 ∗ 𝐻 ∗ 𝑀 ∗
𝑁

𝐻
) = 𝑂(𝑁2 ∗ 𝑀) 

Note that in our simulations the number of repetitions 𝑀 is fixed to 1000, therefore it can be 

considered as a constant factor and indicate the time complexity of the statistical test as 𝑂(𝑁2). 

At last, for each node, the Benjamini-Hochberg correction can be performed as an option to 

adjust for multiple hypothesis testing over the hyperedges, with an overall cost of 

𝑂(𝑁 ∗ 𝐻𝑙𝑜𝑔𝐻). Since generally 𝑁 ≫ 𝐻, we can consider such complexity lower than or equal 

to 𝑂(𝑁2). 

In summary, the time complexity of the HEP algorithm is the maximum between 𝑂(𝑁2) and 

the complexity of the link predictor. Considering the link predictors adopted in this study, in 

case of sparse networks, the complexity is 𝑂(𝑁2).  
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Figure S1. MCC evaluation of node2hyperedge entanglement in synthetic networks. 

The figure reports the same results as Fig. 4, but the performance related to the two values of 

each nPSO parameter is shown in separate barplots. In addition, the standard error of the MCC 

is also reported.  
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 Network Hypergraph 

 N E m Cl γ LCP-corr H overlapping 

Football 115 613 5.33 0.40 9.09 0.89 12 No 

Opsahl 10 77 518 6.73 0.65 5.06 0.96 4 No 

Polbooks 105 441 4.20 0.49 2.62 0.94 3 No 

S. cerevisiae PPI 2729 12174 4.46 0.29 3.03 0.96 548 Yes 

E. coli metabolic 1042 8756 8.40 0.73 2.24 0.93 169 Yes 

 

Table S1. Main topological properties of real networks and hypergraph information. 

The table reports the following topological properties of the 5 real networks considered in this 

study: number of nodes N, number of edges E, half of average node degree m, clustering 

coefficient Cl, exponent γ of the fitted power-law degree distribution, LCP-corr that is a 

measure of local community organization of the networks. The table also reports the number 

of hyperedges H in the hypergraph and whether the hyperedges are overlapping or not.  
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Football 

CH3 L3 mode 0.40 CH2 L3 mode C 0.25 CH3 L2 median C 0.14 CJC mode 0.12 

CH1 L3 mode 0.40 CH1 L3 median C 0.25 CH1 L2 mean 0.14 LCL mean 0.12 

RA L3 median 0.40 CH2 L2 mode 0.24 CH1 L2 median 0.14 LCL median C 0.12 

CH2 L3 mode 0.39 CH2 L2 mean 0.23 CH1 L2 median C 0.14 CH1 L2 mean C 0.10 

RA L3 mode 0.38 CH3 L2 median 0.22 CH1 L2 mode 0.14 CAR mean 0.10 

CH3 L3 median 0.37 CH2 L2 median 0.22 RA L2 median C 0.14 CAA mean C 0.10 

CH1 L3 median 0.37 RA L2 median 0.22 CAR median 0.14 CJC mean C 0.10 

CH2 L3 median 0.36 CH1 L3 mean 0.21 CAA mean 0.14 CJC mode C 0.10 

RA L3 mean 0.32 RA L3 mean C 0.21 CAA median 0.14 LCL mode C 0.10 

CH3 L3 mode C 0.30 CH3 L2 mean C 0.18 CAA median C 0.14 CAR mean C 0.07 

RA L3 mode C 0.29 CH3 L2 mode C 0.18 CAA mode 0.14 CAR mode C 0.07 

RA L2 mean 0.28 CH2 L2 mean C 0.18 CJC median 0.14 LCL mean C 0.07 

CH3 L3 median C 0.27 RA L2 mode C 0.18 CJC median C 0.14 random mode 0.01 

CH3 L2 mode 0.27 CH2 L3 mean 0.17 LCL median 0.14 random mean 0.00 

RA L2 mode 0.27 RA L2 mean C 0.17 LCL mode 0.14 random mean C 0.00 

CH1 L3 mode C 0.26 CH3 L3 mean C 0.15 CH1 L2 mode C 0.12 random median -0.02 

CH3 L2 mean 0.26 CH2 L3 mean C 0.15 CAR median C 0.12 random median C -0.02 

RA L3 median C 0.26 CH1 L3 mean C 0.15 CAR mode 0.12 random mode C -0.03 

CH3 L3 mean 0.25 CH2 L2 median C 0.15 CAA mode C 0.12   

CH2 L3 median C 0.25 CH2 L2 mode C 0.15 CJC mean 0.12   

 

Table S2. MCC evaluation on Football network for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the MCC evaluated on the Football network.  
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Opsahl 10 

RA L3 mode 0.43 random mode C 0.02 CH1 L2 mean 0.00 CAA mean C 0.00 

CH3 L3 mode 0.41 random median C 0.01 CH1 L2 mean C 0.00 CAA median 0.00 

CH2 L3 mode 0.41 random mode 0.01 CH1 L2 median 0.00 CAA median C 0.00 

CH1 L3 mode C 0.41 CH3 L3 mean 0.00 CH1 L2 median C 0.00 CAA mode 0.00 

RA L3 mode C 0.41 CH3 L3 mean C 0.00 CH1 L2 mode 0.00 CAA mode C 0.00 

CH3 L3 mode C 0.39 CH2 L3 mean 0.00 CH1 L2 mode C 0.00 CJC median 0.00 

CH1 L3 mode 0.39 CH2 L3 mean C 0.00 RA L3 mean C 0.00 CJC median C 0.00 

CH3 L3 median 0.34 CH1 L3 mean C 0.00 RA L2 mean 0.00 CJC mode 0.00 

CH3 L3 median C 0.34 CH3 L2 mean 0.00 RA L2 mean C 0.00 CJC mode C 0.00 

CH2 L3 median 0.34 CH3 L2 mean C 0.00 RA L2 median 0.00 LCL mean 0.00 

CH2 L3 median C 0.34 CH3 L2 median 0.00 RA L2 median C 0.00 LCL mean C 0.00 

CH2 L3 mode C 0.34 CH3 L2 median C 0.00 RA L2 mode 0.00 LCL median 0.00 

CH1 L3 median 0.34 CH3 L2 mode 0.00 RA L2 mode C 0.00 LCL median C 0.00 

CH1 L3 median C 0.34 CH3 L2 mode C 0.00 CAR mean 0.00 LCL mode 0.00 

RA L3 median 0.34 CH2 L2 mean 0.00 CAR mean C 0.00 LCL mode C 0.00 

RA L3 median C 0.34 CH2 L2 mean C 0.00 CAR median 0.00 random median 0.00 

RA L3 mean 0.21 CH2 L2 median 0.00 CAR median C 0.00 random mean -0.01 

CH1 L3 mean 0.18 CH2 L2 median C 0.00 CAR mode 0.00 random mean C -0.01 

CJC mean 0.18 CH2 L2 mode 0.00 CAR mode C 0.00   

CJC mean C 0.10 CH2 L2 mode C 0.00 CAA mean 0.00   

 

Table S3. MCC evaluation on Opsahl 10 network for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the MCC evaluated on the Opsahl 10 network.  
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Polbooks 

CH2 L2 mean 0.54 RA L2 mean 0.47 CH3 L3 median 0.32 CH3 L2 median C 0.00 

CH2 L2 mean C 0.54 RA L2 mean C 0.47 CH3 L3 median C 0.32 CH2 L2 median 0.00 

CH2 L3 mean C 0.52 CH2 L3 mode 0.45 CH2 L3 median 0.32 CH2 L2 median C 0.00 

CH3 L3 mean 0.51 CH3 L2 mode C 0.45 CH2 L3 median C 0.32 CH1 L2 median 0.00 

CH3 L3 mean C 0.51 RA L3 mean 0.45 CH1 L3 median 0.32 CH1 L2 median C 0.00 

CH3 L3 mode 0.49 CH2 L3 mode C 0.43 RA L3 median 0.32 RA L2 median 0.00 

CH3 L3 mode C 0.49 RA L2 mode 0.43 CH1 L2 mode 0.28 RA L2 median C 0.00 

CH2 L3 mean 0.49 RA L2 mode C 0.43 CH1 L2 mode C 0.28 CAR median 0.00 

CH1 L3 mean 0.49 CJC mean 0.37 CAR mode 0.28 CAR median C 0.00 

CH1 L3 mode 0.49 CJC mean C 0.37 CAR mode C 0.28 CAA median 0.00 

CH1 L3 mode C 0.49 CH1 L3 median C 0.36 CAA mode 0.28 CAA median C 0.00 

CH3 L2 mean 0.49 RA L3 median C 0.36 CAA mode C 0.28 CJC median 0.00 

CH3 L2 mean C 0.49 CH1 L2 mean 0.35 CJC mode 0.28 CJC median C 0.00 

CH2 L2 mode 0.49 CH1 L2 mean C 0.35 CJC mode C 0.28 LCL median 0.00 

RA L3 mean C 0.49 CAA mean 0.35 LCL mode 0.28 LCL median C 0.00 

CH1 L3 mean C 0.47 CAA mean C 0.35 LCL mode C 0.28 random mode -0.02 

CH3 L2 mode 0.47 CAR mean 0.33 random mean C 0.02 random mode C -0.02 

CH2 L2 mode C 0.47 CAR mean C 0.33 random median C 0.02 random median -0.04 

RA L3 mode 0.47 LCL mean 0.33 random mean 0.01   

RA L3 mode C 0.47 LCL mean C 0.33 CH3 L2 median 0.00   

 

Table S4. MCC evaluation on Polbooks network for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the MCC evaluated on the Polbooks network. 
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S. Cerevisiae PPI 

CH3 L3 mean 0.94 RA L2 median 0.89 RA L3 mode C 0.67 CAA mode C 0.33 

CH3 L3 median 0.94 RA L3 median C 0.83 CH3 L2 median C 0.65 CH3 L2 mean C 0.31 

CH3 L3 mode 0.94 CH3 L3 median C 0.82 RA L2 median C 0.65 CH2 L2 mode C 0.30 

CH2 L3 median 0.94 CH2 L3 median C 0.81 CH2 L2 median C 0.64 CH1 L2 mode C 0.30 

CH1 L3 median 0.94 CH1 L3 median C 0.81 RA L3 mean C 0.58 CAA mean C 0.30 

RA L3 mean 0.94 CH1 L2 mean 0.78 CH1 L3 mode C 0.55 LCL mean C 0.30 

RA L3 median 0.94 CAR mean 0.78 CH3 L3 mode C 0.51 CH2 L2 mean C 0.29 

RA L3 mode 0.94 CAA mean 0.78 CH1 L2 median C 0.50 CH1 L2 mean C 0.28 

CH2 L3 mean 0.93 CJC mean 0.78 RA L2 mode C 0.50 CAR mean C 0.27 

CH2 L3 mode 0.93 LCL mean 0.78 CAR median C 0.50 CAR mode C 0.25 

CH1 L3 mean 0.93 CAA mode 0.77 CAA median C 0.50 CJC mean C 0.23 

CH1 L3 mode 0.93 CH1 L2 mode 0.76 CJC median C 0.50 CJC mode C 0.23 

CH3 L2 mean 0.93 LCL mode 0.76 LCL median C 0.50 random mean 0.01 

CH3 L2 mode 0.93 CAR mode 0.74 CH1 L3 mean C 0.47 random median 0.01 

CH2 L2 mean 0.93 CJC mode 0.74 CH2 L3 mode C 0.43 random mean C 0.00 

RA L2 mean 0.93 CH1 L2 median 0.72 CH3 L3 mean C 0.39 random median C 0.00 

RA L2 mode 0.93 CAR median 0.72 CH3 L2 mode C 0.38 random mode 0.00 

CH2 L2 mode 0.91 CAA median 0.72 RA L2 mean C 0.37 random mode C 0.00 

CH3 L2 median 0.89 CJC median 0.72 CH2 L3 mean C 0.36   

CH2 L2 median 0.89 LCL median 0.72 LCL mode C 0.34   

 

Table S5. MCC evaluation on S. Cerevisiae PPI network for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the MCC evaluated on the S. Cerevisiae PPI network.  
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E. Coli metabolic 

RA L2 mean 0.84 CH3 L3 mode 0.61 CAR median 0.55 CJC median C 0.42 

CH3 L2 mean 0.83 CH1 L3 median C 0.61 LCL median 0.55 CH3 L3 mean C 0.41 

CH2 L2 mean 0.83 CH3 L2 median 0.61 CAR mode 0.54 CH2 L3 mode C 0.41 

CH1 L2 mean 0.82 CH2 L2 median 0.61 CJC mode 0.53 CH3 L2 mode C 0.41 

CAA mean 0.80 CH1 L2 mean C 0.61 CH2 L3 mode 0.51 CJC mean C 0.41 

CAR mean 0.78 CH1 L2 median 0.61 CH1 L3 mean 0.51 CH1 L3 mean C 0.40 

LCL mean 0.77 RA L2 median 0.61 RA L3 mode C 0.51 CH3 L2 median C 0.40 

CH3 L3 median 0.75 CAA median 0.61 CH3 L3 mode C 0.50 RA L2 median C 0.40 

RA L3 median 0.74 CAA mode 0.60 CH2 L3 mean 0.49 CH2 L3 mean C 0.38 

CH2 L3 median 0.73 CJC median 0.60 LCL mode C 0.47 CAR median C 0.36 

CH1 L3 median 0.73 LCL mode 0.60 RA L3 mean C 0.46 LCL median C 0.35 

CJC mean 0.72 CH2 L2 mean C 0.59 CAA mode C 0.46 CJC mode C 0.30 

CAA mean C 0.68 RA L2 mean C 0.59 CH1 L3 mode C 0.43 random mean 0.01 

LCL mean C 0.67 CH3 L2 mode 0.58 CH2 L2 median C 0.43 random mean C 0.01 

RA L3 mode 0.65 RA L3 mean 0.58 RA L2 mode C 0.43 random median 0.01 

CAR mean C 0.65 CH3 L3 mean 0.57 CH2 L2 mode C 0.42 random mode 0.01 

CH3 L3 median C 0.64 CH1 L3 mode 0.57 CH1 L2 median C 0.42 random median C 0.00 

RA L3 median C 0.64 CH3 L2 mean C 0.57 CH1 L2 mode C 0.42 random mode C 0.00 

CH2 L3 median C 0.63 CH1 L2 mode 0.57 CAR mode C 0.42   

RA L2 mode 0.62 CH2 L2 mode 0.56 CAA median C 0.42   

 

Table S6. MCC evaluation on E. Coli metabolic network for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the MCC evaluated on the E. Coli metabolic network.  
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nPSO 

CH3 L3 median 0.50 RA L3 mean C 0.24 RA L2 median 0.11 CAA median 0.04 

RA L3 median 0.50 CH2 L3 mean C 0.21 CH3 L2 median C 0.10 CJC mean 0.04 

CH2 L3 median 0.49 CH1 L3 mean C 0.21 CH2 L2 median 0.10 CH1 L2 median C 0.03 

CH1 L3 median 0.49 CH3 L3 mean C 0.20 CH2 L2 median C 0.10 CAA median C 0.03 

CH3 L3 median C 0.48 CAR mean 0.18 RA L2 median C 0.10 CJC median 0.03 

RA L3 median C 0.48 CH3 L2 mode 0.15 CH2 L2 mean C 0.09 CJC median C 0.03 

CH2 L3 median C 0.47 CH2 L2 mean 0.15 CH2 L2 mode C 0.09 CJC mode C 0.03 

CH1 L3 median C 0.47 CH1 L2 mean 0.15 CH3 L2 mode C 0.08 CAR median 0.02 

RA L3 mode 0.42 RA L2 mode 0.15 CH1 L2 mean C 0.08 CAR median C 0.02 

CH3 L3 mode 0.40 CH3 L2 mean 0.14 RA L2 mode C 0.08 CJC mean C 0.02 

RA L3 mode C 0.39 CH2 L2 mode 0.14 CAA mean C 0.08 LCL median 0.02 

CH3 L3 mode C 0.37 CAA mean 0.14 CH3 L2 mean C 0.07 LCL median C 0.02 

RA L3 mean 0.36 LCL mean 0.14 CAR mode C 0.07 random mean C 0.01 

CH1 L3 mean 0.34 RA L2 mean 0.13 LCL mean C 0.07 random median C 0.01 

CH1 L3 mode 0.33 CAR mode 0.13 CH1 L2 mode C 0.06 random mode C 0.01 

CH3 L3 mean 0.32 CAR mean C 0.12 RA L2 mean C 0.06 random mean 0.00 

CH2 L3 mean 0.32 CAA mode 0.12 CAA mode C 0.06 random median 0.00 

CH1 L3 mode C 0.31 LCL mode 0.12 CJC mode 0.06 random mode 0.00 

CH2 L3 mode 0.30 CH3 L2 median 0.11 LCL mode C 0.06   

CH2 L3 mode C 0.29 CH1 L2 mode 0.11 CH1 L2 median 0.04   

 

Table S7. MCC evaluation on synthetic nPSO networks for all the algorithmic variants. 

For each HEP algorithmic variant (link predictor, average operator and p-value correction), the 

table reports the mean MCC evaluated over all the nPSO networks.  
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Gene Description Ref# Source Concentration Species 

MFAP5 
microfibrillar 

associated protein 5 
Hs00969608_g1 

ThermoFisher 
Scientific 

20x Human 

TGFB2 
transforming growth 

factor beta 2 
Hs00234244_m1 

ThermoFisher 
Scientific 

20x Human 

MMP12 
matrix 

metallopeptidase 12 
Hs00899666_m1 

ThermoFisher 
Scientific 

20x Human 

EGLN2 
egl-9 family hypoxia-

inducible factor 2 
Hs00363196_m1 

ThermoFisher 
Scientific 

20x Human 

FBLN5 fibulin 5 Hs01056640_m1 
ThermoFisher 

Scientific 
20x Human 

SFTPD surfactant protein D Hs01108490_m1 
ThermoFisher 

Scientific 
20x Human 

CHRNA 
cholinergic receptor 

nicotinic alpha-1 
subunit 

Hs00909664_m1 
ThermoFisher 

Scientific 
20x Human 

TUFM 
Tu translation 

elongation factor, 
mitochondrial 

Hs00607042_gH 
ThermoFisher 

Scientific 
20x Human 

 

Table S8. PCR Primer set. 
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