
Rethinking the foundation of physics and its relation to quantum

gravity and quantum probabilities: Unification of Gravity and Quantum

Mechanics

Espen Gaarder Haug
Norwegian University of Life Sciences, Norway

e-mail espenhaug@mac.com

December 19, 2020

Abstract

In this paper we will show that standard physics to a large degree consists of derivatives of a deeper reality.
This means standard physics is both overly complex and also incomplete. Modern physics has typically started
from working with first understanding the surface of the world, that is typically the macroscopic world, and then
forming theories about the atomic and subatomic world. And we did not have much of a choice, as the subatomic
world is very hard to observe directly, if not impossible to observe directly at the deepest level. Despite the
enormous success of modern physics, it is therefore no big surprise that we at some point have possibly taken
a step in the wrong direction. We will claim that one such step came when one thought that the de Broglie
wavelength represented a real matter wavelength. We will claim that the Compton wavelength is the real matter
wavelength. Based on such a view we will see that many equations in modern physics are only derivatives of
much simpler relations. Second, we will claim that in today’s physics one uses two different mass definitions,
one mass definition that is complete or at least more complete, embedded in gravity equations without being
aware of it, as it is concealed in GM , and the standard, but incomplete, kg mass definition in non-gravitational
physics. First, when this is understood, and one uses the more complete mass definition that is embedded in
gravity physics, not only in gravity physics, but in all of physics, then one has a chance to unify gravity and
quantum mechanics. Our new theory shows that most physical phenomena when observed over a very short
timescale are probabilistic for masses smaller than a Planck mass and dominated by determinism at or above
Planck mass size.

Our findings have many implications. For example, we show that the Heisenberg uncertainty principle is
rooted in a foundation not valid for rest-mass particles, so the Heisenberg uncertainty principle can say nothing
about rest-masses. When re-formulated based on a foundation compatible with a new momentum that is also
compatible with rest-masses, we obtain a re-defined Heisenberg principle that seems to become a certainty
principle in the special case of a Planck mass particle. Furthermore, we show that the Planck mass particle is
linked to gravity and that we can easily detect the Planck scale from gravity observations.

Keywords: quantum mechanics, quantum probability, de Broglie wavelength, Compton wavelength, gravity,
quantum gravity.

1 Introduction

First of all, since we use a series of variables and parameters in this paper and also some newly defined symbols,
we will start by providing a list of symbols (Table 1), as a preface to our paper, in order that the reader, at any
point in the article, can check what the notation means.

The beginnings of our understanding of the physical world started a long time ago. As technical instruments
with high precision were not well developed at the early stage, it was natural that such a theory mainly started
from top-down principles. That is to say, by observing macroscopic easily observable phenomena and how they
behaved, and then based on this attempting to come up with models and theories that could also describe the
deeper and not directly observable reality. Still, even in ancient times bottom-up theories also existed. Ancient
atomism [1–3] was such a theory – it assumed everything consisted of indivisible particles and empty space
(void). Based on such a simple theory the ancient atomist was extremely successful at predicting a series of
things. For example, Democritus [4, 5] predicted around 500 BC, based on atomism, that there had to be binary
suns (stars) and a large number of planets, some with life, some without life. This was naturally just a theory
and we can discuss up and down how sound it was, for example Aristotle was a notable critic of atomism [6].
In modern times, based on his writings, Schrödinger [7] was clearly interested in atomism, but it is unclear if
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Symbol Represents (standard notation)
h Planck constant.
~ reduced Planck constant.
rs Schwarzschild radius.
g gravity acceleration.
G Newton’s gravity constant.
δ Deflection off light angle (light bending angle in a gravitational field).
ω frequency, used for cyclotron frequency, but also for Compton frequency in wave equation.
f frequency, used for reduced Compton frequency, and photon frequency.
q charge.
B uniform magnetic field.
c speed of light.
v velocity.
λγ Photon wavelength.
λ Compton wavelength.
λ̄ Reduced Compton wavelength.
λ de Broglie wavelength.
λ̄b Reduced de Broglie wavelength.
λe Compton wavelength electron.
λ̄e Reduced Compton wavelength electron.
m Rest mass in kg.
λ̄M reduced Compton wavelength of the large mass in the Newton formula.
me rest mass of electron in kg.
mP rest mass of proton in kg.
mp Planck mass in kg.
lp Planck length.
tp Planck time.

γ = 1√
1− v2

c2

Lorentz factor.

p = mvγ Standard momentum (de Broglie momentum).
E energy, used for both rest-mass energy and total energy.
Ek kinetic energy.
ψ wave function.

New definitions:
pt = mcγ total Compton momentum based on kg mass.
pr = mc rest-mass Compton momentum based on kg mass.

pk = mcγ −mc kinetic Compton momentum based on kg mass.

m̄ =
lp
c

lp
λ̄

rest mass defined as collision time.

m̄e =
lp
c

lp
λ̄e

rest mass electron defined as collision time.

m̄P =
lp
c

lp
λ̄P

rest mass proton defined as collision time.

m̄γ =
lp
c

lp
λ̄
γ relativistic collision time mass.

pt = m̄cγ total Compton momentum based on collision time mass.
pr = m̄c rest-mass Compton momentum based on collision time mass.

pk = m̄cγ −mc kinetic Compton momentum based on collision time mass.
Ē = m̄c rest mass energy defined as collision length.

Ē = m̄cγ = lp
lp
λ̄
γ energy defined as collision length, symbol used for both rest-mass energy and total energy.

Ēk = m̄cγ − m̄c kinetic energy defined as collision length.

Pc =
lp
λ̄
γ collision state probability.

Pn = 1− lp
λ̄
γ no-collision probability.

ˆ̄pt = il2p∇ Total Compton momentum operator with respect to space x.
ˆ̄E = ilp∇t Total collision time energy operator with respect to time t.

vmax = c

√
1−

l2p

λ̄2 maximum velocity for elementary particles.

Table 1: Symbol list.

it inspired him in any of his discoveries, we would say probably not. However, in recent times it is clear that
Democritus at least was correct in his prediction that the universe contained many planets [8] as well as binary
stars. Whether Democritus was right based on lucky speculations or deep thinking we leave up to others to
consider, but we will indeed return to atomism later in this paper.

Still, it was the top-down approach that, at least until the development of atomic physics and quantum
mechanics, that has been the dominant approach. And even the quantum mechanics foundation, as we will see,
is based on findings and a foundation laid out by top-down principles, and some top-down principles that we will
look at are not necessarily all rooted in experiments, but can principally be considered an untested hypothesis.
When working from top-down principles, then the smallest misunderstanding about the macroscopic world could
have massive implications for our theories about the subatomic world. In this paper we will argue that it has
been basically two steps in the wrong direction that have stopped us from being able to unify quantum mechanics
with gravity. We will surprisingly claim that one of these two erroneous steps was how one has held on to the
old hypothesis of momentum: p = mv. One of the core principles of scientific physics is that, for something
predicted from theory, one should be able to observe, or at least test out indirectly if this is the case. One
has to be careful here with such statements, as much of the subatomic world is too small for us to glimpse in
any foreseeable future and perhaps forever to be observed directly, even by the best technical instruments of
the far-fetched advanced future. Still, theories about the subatomic world should lead to predictions about the
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observable world that we can then test out and observe. However, the concept of momentum was originally
suggested for macroscopic observable objects, so it should be easily observable and test out if: p = mv is a good
description of a moving object. Concepts and derivations around momentum are today so very well established
and incorporated in all areas of physics, that hardly anyone in physics would even think about questioning our
momentum definition. After all, has momentum not been observed over and over again for hundreds of years, is
this not one of the best tested cornerstones of physics? Well, we will ask if anyone can show us how to observe
mv. We can observe the kg mass (or pound or similar) of an object m by putting it on a weight (as mass is
proportional to weight in a given gravity field), and we can measure the velocity of the same object when it
moves. Velocity is simply how far something moves in a given period of time. However, we will claim we cannot
measure mv, we will claim it is a pure mathematical construct, which we, in this paper, will prove is never
needed. Even if I can observe an apple and a banana, that does not mean an “apple-banana” exists. From this
mathematically non-observable construct – the momentum for anything with mass – de Broglie [9, 10] around
1924 derived what is today known as the de Broglie wavelength, or the matter wavelength. Furthermore, the
standard momentum and the de Broglie wavelength are both part of the foundation of quantum mechanics.

Quantum mechanics has been incredibly successful in many testable predictions, so such a theory cannot be
that wrong – there must naturally be something to it. Still, today’s quantum mechanics we will claim is shrouded
in several what we would could call almost mystical interpretations. We will in this paper try to show that there is
another way. There is an alternative and real momentum that can easily be observed, it is the momentum we can
derive from the Compton wavelength relation and also observe directly from moving macroscopic objects. The
standard momentum and the de Broglie wavelength are both just derivatives (functions) of this real momentum
and real matter wavelength. When one understands this, then everything becomes much simpler. Based on this
we will also show that much of today’s physics is just mathematical functions (derivatives) of a much simpler,
and we will claim much more elegant, theory.

The second incorrect path we will see was to ignore Newton’s original gravity formula and his claim about
what matter entailed. Newton’s original gravity formula was F = Mm

R2 and not the modern version F = GMm
R2 .

If one had held on to his original formula, then we will see one had likely long ago understood that today’s
mass definition in non-gravitational physics is incomplete and not the same mass as we find embedded in gravity
equations, but, as we will show, unknowingly so also concealed in GM . The only way to get Newton’s original
mass formula to work is to use a mass definition that gives us a theory that makes quantum mechanics and
gravity consistent. Naturally, Newton knew nothing about this. We will see how the gravity constant G, that
Newton neither invented nor used, is simply a way to transform the incomplete kg mass definition into a complete
mass definition. First, when one understands this in combination with the idea that the Compton wavelength is
the real matter wavelength and that the de Broglie wavelength is a derivative, that is a function of the Compton
wavelength, then one gets a much simpler theory, which also appears able to let us unify key concepts in gravity
with quantum mechanics. As we will see, the world is dominated by probability for masses much smaller than
the Planck mass and is dominated by determinism when we get close to the Planck mass and above. Moreover,
we will show there is a Planck mass particle that is actually the building block of all matter that again consists
of the collision between two light particles. This is a new way to look at physics so we naturally do not ask the
reader to take any of this for granted, but we think our theory is rigorous at the same time that it simplifies and
makes physics easier to understand. Based on this we think it deserves to at least be considered and discussed,
in order to find out if this is on the right path to a unified theory, or just another step into the desert.

2 Mass, Momentum and Energy

Newton, in Principia [11], published in 1686, defined mass as the quantity of matter (“quantities material”).
But then, what is matter? Newton also had a clear idea about this – he stated in the third part of his book
Principia, which predominately concerned gravity, that behind all his philosophy was the idea about indivisible
particles, and that they also had extension in space, and were movable. This was an idea he had probably got
from the ancient atomists. One could claim Newton’s idea about indivisible particles was speculative as there
seems to have been no way Newton could prove this, at least not in his time. If mass is the quantity of matter,
and matter ultimately consists of indivisible particles, then these indivisible particles must be incredibly small.
Newton held on to this view in his later years, as he also repeated this view on the matter in his book, Opticks
[12], published in 1704.

Newton also repeatedly pointed out that mass was proportional to weight for bodies measured in the same
gravity field, that were at the same distance from a large massive object, such as the Earth – something we
know fits experiments to this day. In gravity theory today we have not necessarily travelled much further in our
understanding of mass. Mass is today defined as kg (or we could use pounds), and since mass is proportional to
weight this works well for many purposes. We come back to the 2019 kilogram definition that is linked to the
Planck constant later on. In quantum mechanics we have gone deeper in our understanding on matter, where it
is assumed and partly observed that matter has a form of wave-particle duality, as likely first suggested by de
Broglie. Still, we have not been able to build a bridge between quantum mechanics and gravity. Prof. Jammer
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[13] in his work on mass states:“mass is a mess” – his point is that we still do not really understand what mass is.
And Feynman, putting it a little on the edge with a touch of humor said “It is important to realize that in physics
today, we have no knowledge what energy is.” Despite Feynman’s humorous tone, there is also something to this
– here we are about hundred years after the introduction of general relativity theory and quantum mechanics,
and we have still not been able to unite the “forces” of the macroscopic and the subatomic world, and we likely
do not fully understand what energy and mass is at the deepest level, but maybe there is still hope.

Here we will show that, embedded in Newton’s gravity theory, after calibrated to a gravity observation, one
basically has an embedded mass definition without being aware of it, which is very close to Newton’s original
idea that matter ultimately consisted of indivisible particles, and that there even existed indivisible moments of
time (as Newton called it). Furthermore, it will be clear that these indivisible particles have a physical extension
in space, as Newton also mentioned, and that they were movable. We naturally do not mean that Newton was
hiding such things in his gravity formula on purpose. But as we will see, the gravity constant G can be seen as just
a parameter for what is missing in the model when one uses a certain mass definition such as the kg definition.
When calibrating the model to observable gravity phenomena, we are able to indirectly get several things into
the model that are missing from its assumptions. This is naturally on the condition that these missing elements
are already embedded in observable gravity phenomena, something we soon will demonstrate is the case. And in
non-gravitational physics we are using a different mass definition, the standard kg mass definition, that we will
show is incomplete. So indirectly in modern physics one is using a complete mass definition that is embedded
and hidden in gravitational theory (after calibration), and an incomplete mass definition in non-gravitational
theory. When one can fully understand this one can build a bridge between quantum mechanics and gravity,
something we will try to attempt here, but without claiming we have a complete theory, simply that that we are
on a new and interesting path that likely deserves more attention among researchers.

Let us first go back to today’s mass definition. Often, we are only interested in how many kilograms a mass
has, that is to say we are often just operating with the kg definition of mass. The kg definition of mass is
originally an arbitrary clump of matter (quantity of matter) likely chosen to be the standard for weight, and
since mass is proportional to weight, then kg is also a measure for mass. In many if not most physical formulas
that are related to mass, it is the amount of kg this mass has that one needs as input in the formula to perform
calculations and thereby offer predictions that can be compared to observations. The kilogram most likely partly
originated from trade. In business it is very important to have a standardized measure of weight. The mass
size of the kg was likely chosen so it was not so light that the weight was inaccurately based on the weighing
equipment used at that time. Also, it could not be so heavy that it could not easily be transported. Well, enough
on this topic, one could write a whole book about the history of the kg definition. The Planck constant h that
was introduced by Max Planck has output units kg ·m2 · s−2, thus the Planck constant contains kg. From 2019
the kg was re-defined on the basis of the Planck constant by using a watt balance, see, for example, [14–16].
This led us to the important question: “how is kg linked to the quantum world?”. The Planck constant is after
all considered to be linked to quantization of energy. We will claim the simplest way to express the rest-mass in
terms of kg in terms of constants and parameters linked to the quantum world is by the following formula

m =
h

λ

1

c
=

~
λ̄

1

c
(1)

where h and ~ are respectively the Planck constant and the reduced Planck constant, and λ and λ̄ are respectively
the Compton wavelength and the reduced Compton wavelength, and c is the speed of light. This mass formula is
simply obtained by solving the Compton [17] 1923 wavelength formula, λ = h

mc
, with respect to m. This formula

we can say both incorporates a wavelength, and thereby could be linked to the wavelike-property of matter, as
well as quantization of matter, as the Planck constant, ~, is linked to quantization (normally for energy). We
will later come back to exactly how we think the Planck constant is linked to quantization – it is far from clear
until understood from a deeper perspective. In addition, perhaps to some readers’ surprise, we have the speed
of light there in the formula to describe a rest-mass, and we will soon understand why.

It is traditionally the de Broglie wavelength that is linked to matter wavelengths and not the Compton
wavelength. However, one cannot express a rest-mass in terms of the de Broglie wavelength; this because the
de Broglie wavelength [10, 18] is given by λb = h

mv
, and since it is not mathematically defined to divide by

zero, then the de Broglie wavelength simply does not exist for rest-mass particles. We could argue, based on
the Heisenberg uncertainty principle, that a particle never stands still, and that when v approaches zero, then
the de Broglie wavelength simply approaches infinity. This may be why several physicists have claimed that the
de Broglie wavelength is infinite for rest-mass particles, see for example [19]. Still, an electron almost at rest
with an infinite wavelength seems absurd in our view. An infinite or close to infinite wavelength has naturally
never been observed, even if one could always claim one has observed it indirectly. And we think several of the
interpretations of the de Broglie wavelength for rest or close to rest-mass particles are just “absurd”, such as

“The de Broglie wave has infinite extent in space” – A. I. Lvovsky1. [20]

1In an otherwise excellent book.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2020                   



5

and there is no clear agreement on how to interpret the infinite de Broglie wavelength, as seen, for example, by
reading the well-known book by Max Born [21] :

“Physically, there is no meaning in regarding this wave as a simple harmonic wave of infinite
extent; we must, on the contrary, regard it as a wave packet consisting of a small group of indefinitely
close wave-numbers, that is, of great extent in space.” – M. Born

On the other hand, the Compton wavelength has indirectly been measured many times, and, for example, the
reduced Compton wavelength of an electron with velocity v << c is in the order of approximately 3.86×10−13 m,
which is indeed a distance not so far from other quantum distances we are aware of, such as, for example, the
radius of the proton (approximately 10−15 m). The formula for the Compton wavelength and the de Broglie
wavelength given above are non-relativistic. The relativistic formulas for the de Broglie wavelength and the
Compton wavelength are given by

λb,r =
h

p
=

h

mvγ
, λr =

h

mcγ
(2)

where λb,r is the relativistic de Broglie wavelength, and λr is the relativistic Compton wavelength, and γ =
1/
√

1− v2/c2, is the standard Lorentz factor.
The relativistic de Broglie wavelength was introduced by de Broglie himself. To our surprise we have not

found a single paper on deriving a full relativistic Compton wavelength2, even if it is trivial to extend the
non-relativistic Compton wavelength to a relativistic one. So we wrote a short paper on the derivation of the
relativistic Compton wavelength ourselves [22]. The original Compton wavelength formula assumes the electron
is initially at rest. Overall, the de Broglie wavelength seems to have received much more attention than the
Compton wavelength. For example, the wave function in the Schrödinger and the Klein Gordon equation is
directly linked to the de Broglie wavelength, based on how the wave function is typically set up based on
momentum3, see for example [23].

After Einstein’s [24] explanation of the photoelectronic effect it was clear that light had both particle and
wavelike properties. Furthermore it was clear that the photon wavelength was related to the photon momentum
by the formula λγ = h

pγ
, where pγ is the photon momentum, and λγ is the photon wavelength. In his PhD

thesis, de Broglie was likely to have been inspired by Einstein’s relation between photon momentum and the
photon wavelength, and speculated that matter also likely had wave-like properties. The natural best guess was
then to assume the matter wavelength was also linked to the momentum, as it was assumed to be the case for
the photon, and he suggested that the matter wavelength was given by λb = h

p
, where p was the momentum

of the mass in question. De Broglie’s PhD supervisor sent his thesis to Einstein, to obtain his views on it.
Einstein liked the idea and basically endorsed this hypothesis. In 1927 it was experimentally confirmed that
electrons had wavelike properties, see [25, 26]. These experiments are claimed to have confirmed the de Broglie
hypothesis. However, all that was shown in these experiments was that matter also had wavelike properties,
as indeed first suggested by de Broglie. It was however not necessarily a measurement or detection of the de
Broglie wavelength. It is easily forgotten that Arthur Compton at almost the same time suggested and indirectly
measured a wavelength linked to the electron that is today known as the Compton wavelength, from so-called
Compton scattering. Compton’s paper was however much more experimentally focused, while de Broglie paper
more heavily involved deeper (mathematical) philosophy about the possible properties of matter. We think the
idea from de Broglie that matter had wave-like properties and a wavelength was brilliant, but we will see that
the wavelength formula he suggested as understood from a deeper perspective is likely to be just a mathematical
derivative (function) of the real matter wavelength that we will claim is the Compton wavelength.

From the two formulas above (see 2), we can see that the de Broglie wave is always equal to the Compton
wavelength multiplied by c

v
. One can then ask, why are there two wavelengths connected to matter and not

only one? Photons do not have two different wavelengths, in particular not one that is short at the same time
as the other one is close to infinite. We agree that de Broglie was correct in his hypothesis that matter had
wavelike properties, but we will claim his theoretical wavelength is just a mathematical derivative of the real
matter wavelengths that we will claim is the Compton wavelength. Why would there be such a simple relation
between them, λb = λ c

v
if they not were directly related? We have already seen that the Compton wavelength

also holds for rest-mass particles, while the de Broglie wavelength is not defined in that case. We will argue that
the hypothesis that the de Broglie wave is a real matter wavelength and not only a derivative of the Compton
wavelength has led modern physics to develop a whole theory that is just a mathematical derivative of a simpler
and more robust theory. But this actually goes all the way back to the definition of momentum, something we
will return to soon.

That the de Broglie wavelength is not valid for rest-mass particles we will show is part of the reason why
nobody has been able to unify gravity with quantum mechanics. But back to the kg mass first. It is clear that
we cannot describe a rest-mass with the de Broglie wavelength, the closest we can come is solving the de Broglie
formula with respect to the mass, which gives

2Not that we know every paper published in physics.
3At least the Plane wave solution.
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m =
h

λb

1

v
γ =

h

λb,r

1

v
(3)

where λb,r = λb/γ. And again, we cannot divide by zero, so this formula can also not be valid for v = 0.
This formula is not valid for rest-mass particles. However, we can describe all rest masses in terms of kg with
formula 1, that is based on the Compton wavelength, and also moving masses in terms of kg by simply solving
the relativistic Compton wavelength formula with respect to m, this gives

m =
~
λ̄

1

c
γ =

~

λ̄
√

1− v2

c2

1

c
(4)

That is to say we have established a very simple mathematical link between the kg definition of mass and
quantum parameters and constants. Nonetheless, the formula 1 or in relativistic form 4 seems to give limited
intuition. However, if we slightly re-write the formula we get

~
λ̄

1

c
=

~
λ̄

1

c

c

c
=

c
λ̄

c2

~

=
c
λ̄
c
~

1×c

=
f

f1kg
(5)

That is to say the kg mass formula we obtained from the Compton formula can be interpreted as a frequency
ratio. It is the reduced Compton frequency of the mass we are interested in, f , divided by the reduced Compton
frequency of one kg, f1kg. Alternatively, we could take the two Compton frequencies instead of the reduced
Compton frequencies, as this will give the same ratio and numerical output. So we will claim the quantity of
matter is linked to the Compton frequency inside the matter. We will later discuss if macroscopic masses like
one kg can actually have a Compton wavelength and thereby Compton frequencies, or only elementary particles;
for now we assume all masses can have a Compton frequency. The reduced Compton frequency of one kg is
given by

f1kg =
c

λ̄1kg

=
c
~

1kg×c
≈ 8.52× 1050 per second (6)

and to find the kg mass of any mass, we just need to know its reduced Compton frequency, for an electron it is

fe =
c

λ̄e
≈ 7.76× 1020 per second (7)

and we get the electron’s mass equal to me = fe
f1kg

≈ 7.76×1020

8.52×1050 ≈ 9.11 × 10−31 kg, which is the well-known

electron mass4. Also note that a particle with reduced Compton frequency of one has a kg mass of

1

f1kg
=

1

8.52× 1050
≈ 1.17× 10−51 kg (8)

This is actually identical to the mass equivalent of a photon with a frequency of one per second E
c2

= ~f
c2

=
~×1
c2
≈ 1.17 × 10−51 kg. The Planck constant is therefore linked to a reduced Compton frequency of one per

second relative to the Compton frequency in one kg per second. However, at this point it is not exactly clear
what the interpretation of a frequency of one is, but we will return to this soon – but first we will get back
to momentum. What is important at this stage is to understand for a possible deeper understanding of one
kg is that it represents the Compton frequency ratio of the mass we are interested in relative to the Compton
frequency in one kg.

The concept of momentum goes back long back before Newton, but somewhat diffusely. Newton in Principia
introduced “quantity of motion” arising from the velocity and quantity of matter conjointly. Jennings [27] in
1721 specifically defines momentum mathematically as we know it today, namely p = mv. Momentum was what
we can call an idea or a concept, or simply a hypothesis. An important question is if momentum is directly
observable even for macroscopic masses. One can find the kg mass of an object by finding its weight relative
to a kg mass. And we can measure the velocity of an object, as velocity is simply the distance an object (or
a particle) has moved inside a chosen observational time window. That is to say, we can easily observe m,
and we can easily observe v, but to our knowledge we cannot observe mv. The momentum definition is only a
mathematical concept (multiplication) of two observable entities. Some will likely protest here and claim that
momentum is measured all the time, but again one then has to think if we are actually observing momentum,
that is mv, or simply m and v separately. Even if we will claim momentum does not exist physically, if it is
a derivative of a more real momentum that can actually be observed, therefore the standard momentum still
contains embedded valuable information about reality that can be used in further derivations to get to predictions
and other important concepts in physics, albeit, as we will see, at the cost of unnecessary complexity. One of
the most important concepts where momentum appears is in Einstein’s relativistic energy momentum relation,

4NIST 2018 gives an electron mass equal to 9.1093837015(28)× 10−31 kg.
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which is the foundation behind much of modern quantum mechanics. The momentum p = mv is actually only
an approximation when v << c. The more precise momentum formula is the well-known relativistic formula

p = mvγ (9)

This is essentially that one has taken the old momentum that was introduced in the past for granted and made it
relativistic, after the discovery of relativity theory. When v << c we can approximate the relativistic momentum
very well with the first term of a Taylor series expansion, which gives us the well-known “ancient” momentum
formula p ≈ mv. But again we will claim mv has never been directly observed. The de Broglie wavelength was
calculated from the momentum formula – we repeat it again here λb = h

pγ
= h

mvγ
. But if momentum is not

observable, then maybe standard momentum simply does not exist, except as a mathematical construct. We
can also solve the de Broglie formula with respect to p, this gives

p =
h

λb
γ (10)

But then no one has observed the de Broglie wavelength, for example for a particle almost at rest. Such a de
Broglie wavelength would extend beyond our solar system, and if v is very close to zero it would extend beyond
our galaxy and when v is close enough to 0, beyond the assumed diameter of the observable universe. One
can naturally argue about the interpretation of the de Broglie wavelength and claim our interpretation here is
wrong, see for example [28]. More importantly, again the de Broglie wave is not defined for v = 0, so if we then
derive the standard momentum from the de Broglie wavelength, or at least require the momentum to always be
consistent with the de Broglie wavelength, then it is not that standard momentum is zero when v = 0, rather
the standard momentum simply does not mathematically exist for rest-mass particles. No surprise there, some
will possibly say, because momentum has to do with moving particles, but then things in quantum mechanics
derived from the standard momentum can also not say anything about rest-mass particles.

Actually, it is when we derive a new momentum from the Compton wavelength formula that we soon will see
something very interesting

λ =
h

mcγ
(11)

Solved similarly to the way we adopted to find standard momentum from the de Broglie wavelength formula,
the Compton wavelength formula gives us a new momentum that we will call Compton momentum.

pt = mcγ =
h

λ
γ (12)

This is more precisely the total Compton momentum, and we use notation, pt, to distinguish it from the standard
momentum p. First of all, this new Compton momentum is also valid when v = 0, as v = 0 simply makes γ = 1,
and in that special case the formula above simplifies to mc. The Compton momentum when v = 0 we can call
rest-mass momentum, pr = mc. We can then also define a kinetic momentum which must be given by

p̄k = mcγ −mc (13)

The kinetic momentum is the momentum of the moving particle. When v = 0, the kinetic momentum is zero,
but it is not that it is non-defined mathematically as with standard momentum. Second, if v << 0 we can
approximate the kinetic momentum formula very well with the first term of a Taylor series expansion, this gives

pk ≈
1

2

mv2

c
(14)

That is the kinetic momentum for a given rest-mass is a function of v2 and not v as standard momentum. While
mv is non-observable, 1

2
mv2/c is observable, as we now will discuss. This brings us all the way back to the

discussion on kinetic energy, and as we will see it is linked to the Compton momentum. Historically, we know
it was a decades-long debate on the topic of whether kinetic energy was a function of v or v2. In 1686, one year
before Newton published his Principia, Leibniz [29] published that kinetic energy (vis viva as he called it: Living
force) was proportional v2 and not v. However, that kinetic energy was a function of the square of velocity and
not just proportional to the velocity was not easily accepted. Nevertheless, in 1720 Gravesande [30] performed
and published experiments where he dropped brass balls in clay. If the brass ball had twice the velocity, the
indent in the clay was not actually twice as deep, but approximately four times as deep. And a brass ball with
three times the velocity would leave a mark approximately nine times as deep. Clay was an excellent medium
here, because one needed a medium where a minimum amount of the kinetic energy was used to bounce the
ball back. In other words the Gravesande experiment confirmed that kinetic energy was a function of v2 and
not v. Actually, the first kinetic energy formula was Ek = mv2, and the half multiplier we are used to was first
suggested by Bernoulli [31] in 1741. The half multiplier for kinetic energy was discussed in more detail and made
popular by Coriolis [32] and Poncelet [33] in the early 19th century.
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This brings us back to our Compton momentum – it is proportional to v2 and not v. It is only different from
today’s kinetic energy by division by a constant, namely c. To divide or multiply by a constant in general only
changes the output units. We will claim the Compton momentum is much more directly observable compared to
the standard momentum, which is not observable and only calculatable from two things we can observe, namely
m and v. Also the wavelength we can predict from the Compton momentum is indirectly observable, and it,
as we have discussed at length, is indeed at the scale of what we would expect at the quantum scale, while the
hypothetical de Broglie wavelength linked to standard momentum can stretch out beyond our galaxy.

We noticed earlier that the de Broglie wavelength can always be expressed as a function of the Compton
wavelength, or the opposite, that is λb = λ c

v
. We have a similar relation between the standard momentum

(which is linked to the de Broglie wavelength) and the Compton momentum, namely we always have

p = pt
v

c
(15)

We will claim we have an observable momentum, the Compton momentum and an indirectly observable
wavelength, the Compton wavelength, and we have a non-observable momentum, the standard momentum, and
a unobservable wavelength with properties that basically seem absurd, the de Broglie wavelength. We will claim
that the standard momentum and the de Broglie wavelength are nothing more than mathematical functions of
the real momentum and the real matter wavelength. If this is the case it has several important implications
for such topics such as quantum mechanics, as we will start to look at in the next section. If we have found
the deeper reality, a good indication would be that many equations derived from this deeper fundament became
simpler and were still able to describe what the existing theory can do, and perhaps that we could also discover
something new.

2.1 Implications for quantum mechanics

As we have shown in the section above, the standard momentum that is linked to the de Broglie wavelength
is not mathematically valid for rest-mass parties. Second, the standard momentum is likely a derivative of the
real momentum, the Compton momentum. This alone has a series of implications for quantum mechanics. A
cornerstone of the foundation of quantum mechanics is Einstein’s relativistic energy momentum relation, which
is given by

E2 = p2c2 +m2c4 (16)

where p = mvγ, or for a photon p = h
λ

. While the relation between energy and the relativistic Compton
momentum is much simpler, namely it must be

E = ptc (17)

Since pt = mcγ. Does this mean we claim Einstein’s relativistic momentum relation is wrong? Not at all, since
the standard momentum is a function of the real momentum then it is only unnecessarily complex, and also not
necessarily valid for v = 0. We can easily demonstrate that the Einstein’s relativistic energy momentum relation
can be derived from the simpler energy relativistic Compton momentum relation, because we must have (keep
in mind that the standard momentum is p = pt

v
c
, and pt = p c

v
):

E = pk +mc2

E = ptc

E =
pc2

v

E = mc2γ

E2 = m2c4γ2

E2 = m2c4γ2 −m2c4 +m2c4

E2 = m2c4(v2/c2 − 1)γ2 +m2c4(v2/c2)γ2 +m2c4

E2 = m2c4γ2 −m2c4
(

1− v2

c2

)
γ2 +m2c4

E2 = m2c4v2/c2γ2 +m2c4

E2 = m2v2c2γ2 +m2c4

E2 = p2
0c

2γ2 +m2c4

E2 = p2c2 +m2c4 (18)

In other words, the standard relativistic energy momentum relation is unnecessarily complex, because it is a
derivative (function) of the real and simpler relativistic energy Compton momentum relation. If correct this also
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means quantum mechanics is unnecessarily complex, as the relativistic energy momentum relation is one of its
cornerstones. For example, the Klein Gordon equation, which was the first derived relativistic wave equation,
is directly linked to the Einstein relativistic energy momentum relation by replacing the energy with the energy
operator i~ ∂

∂t
, and the momentum with the momentum operator, i~∇, we get the following wave equation

i2~2 ∂
2ψ

∂t2
− i2~2c2∇2ψ −m2c4ψ = 0

−~2 ∂
2ψ

∂t2
+ ~2c2∇2ψ −m2c4ψ = 0

1

c2
∂2ψ

∂t2
−∇2ψ +

m2c2

~2
ψ = 0 (19)

The last line is how the Klein–Gordon equation is most often presented. Already by this stage we can instead
start to think, what if we can instead start out with the relativistic energy Compton momentum relation as
it is fully consistent and we can even claim the deeper physical foundation of the Einstein relativistic energy
momentum relation, and then “speculate” how we can get a new and simpler wave equation? We will leave
this for a later stage in our paper as there are also other aspects of the foundation of physics we first need to
look closely at. But let us also quickly look at the Schrödinger [34] equation in its relation to the standard
momentum. The foundation of the Schrödinger equation is the following relation

E = Ek +mc2 (20)

where we can approximate Ek ≈ p2

2m
= m2v2

2m
= 1

2
mv2, which is the kinetic energy approximation when v << c.

That is to say, the Schrödinger equation must be non-relativistic as is well known, so it is only valid for v << c.
However, as we have shown earlier, the standard momentum is likely not mathematically valid, at least if we
want it to be consistent with the de Broglie wavelength, when v = 0. So the Schrödinger equation and all that
comes out from it we will claim is not valid for rest-mass particles, and, as we later will see, the rest is likely to
be the very essence of gravity. In addition, the Schrödinger equation has somewhat “strange” properties, such as
it has terms of a first order partial derivative with respect to the time dimension and a second order derivative
with respect to the space dimension.

2.2 The Heisenberg uncertainty principle and the momentum

We will also now briefly comment on the Heisenberg’s [35] uncertainty principle, which was originally given by

∆p∆x ≥ ~ (21)

Kennard [36] in the same year published a paper showing we are likely to have ∆p∆x ≥ ~
2
, but the half

factor is outside of our interest here. What is important to pay attention to at this stage is that the Heisenberg
uncertainty principle also relies on the momentum – this is even more clear when one derives the Heisenberg
uncertainty principle from scratch, as we will do later on. If the standard momentum is not mathematically
valid for a rest-mass particle, then Heisenberg’s uncertainty principle also cannot be valid to include rest-mass
particles, or at least it must be incomplete. According to Heisenberg’s uncertainty principle a particle can
potentially never stand completely still, but then Heisenberg’s uncertainty principle is, in our view, in the first
place derived from a foundation, namely standard momentum (actually a momentum operator that is linked
to the standard momentum), that is not valid for a rest-mass particle. Heisenberg’s uncertainty principle in
its known form can therefore probably not say anything about rest-mass particles as its foundation is not even
compatible with it. We will later show how we can modify the foundation of it, and then also show what we get
in the special case of rest-mass particles, v = 0.

We will demonstrate that to truly understand rest-mass at the deepest level is the very essence of under-
standing quantum gravity at a deeper level and to also have a chance to unify quantum mechanics with gravity.
We will therefore now first return to gravity before we return to quantum mechanics and how we can possibly
obtain simpler quantum mechanics that are consistent with quantum gravity.

3 Gravity and the hidden mass definition that is the key to the
Planck scale and the speed of gravity

One of the biggest challenges in physics for the last hundred years or so has been that there seems to be no link
between gravity and quantum mechanics. Gravity theory has been extremely accurate in predicting heavenly
objects. Furthermore, it seems, at least from the mathematical surface, that gravity theory as it is today –
I am thinking of Newton’s gravitational theory as well as Einstein’s general relativity theory – contains no
information about the atomic, or subatomic, world and therefore no information about the quantum world.
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Quantum mechanics, on the other hand, has been extremely successful at predicting observable phenomena
related to the atomic and subatomic world. We will show that even Newtonian gravity indirectly contains much
more information about the quantum world than is commonly thought. Later on, we will understand that gravity
is directly linked to what we could call the ultimate rest mass particle, namely the Planck mass particle. We have
in the previous section argued that today’s quantum mechanics is built on a foundation that is not defined for
v = 0, and soon we will understand that gravity is closely linked to the case where we, in the subatomic world,
have v = 0. But before we begin to understand this we need to go back to the history of gravity. Therefore, we
will start with a short history of Newtonian gravity, because we will claim modern physics has a very limited
understanding of Newtonian gravity and even the wrong assumptions about it.

The Newton gravitational force formula is likely the second most commonly known formula in physics after
Einstein’s E = mc2, and is today known as

F = G
Mm

R2
(22)

There is no scientific device I can use to measure the gravitational force directly. Perhaps this is not that
unexpected as a force is something acting on something, for example on a mass. One can however, on the basis
of this formula combined with other formulas, derive predictions for things such as orbital velocity, orbital time
and gravitational acceleration. We can naturally easily observe such things as the orbital time of the Moon
around the Earth, or the orbital time of the Earth around the Sun, we can also easily find the distance to
these objects with parallax. Then one can naturally check the predictions from a gravitational formula (theory)
with observations. Table 3 provides an overview of many Newtonian gravitational observations that have been
observed and also things that have not been observed, such as the gravity force itself. That they have not been
observed can mean they do not actually exist physically and can never be observed, or it can mean they are
difficult to observe, or can only be observed indirectly. However, we can only be “sure” on what we have observed
at least indirectly, and the observations are very close to predictions we get by inputting values for M , R and G
into the formulas, so at least we know the Newton formula is a very good approximation for these phenomena.

Non-Observable, contains GMm Formula:
Gravity force F = GMm

R2

Observable Predictions, all contains GM not GMm: Formula:
Gravity acceleration g = GM

R2

Orbital velocity vo =
√

GM
R

Orbital time T = 2πR√
GM
R

Velocity ball Newton cradlea vout ≈
√

2GMR2 H

Frequency Newton spring f = 1
2π

√
k
m = 1

2πR

√
GM
x

Periodicity pendulum (clock)b T ≈ 2π
√

L
g = 2πR

√
L
GM

Predictions that not have been observed: Formula:

Escape velocity ve =
√

2GM
R

Table 2: The table shows a series of gravity effects that can be predicted from Newton’s formula. As expected, the
speed of light (gravity) does not appear in any of the formulas.

aH is the height of the ball drop. This is a very good approximation when v << c.
bThis was actually derived by Huygens [37] some years before Newton. L is the length of the pendulum.

In Table 3 we show observable gravity phenomena that are not considered to be predictable from Newton
theory, but from general relativity theory.

In all observable gravity phenomena in the two tables above, we only see GM and never GMm, in observable
gravity phenomena, i.e. the small mass m in Newton’s gravitational formula always cancels out in derivations to
predict directly observable gravity phenomena. All these phenomena described above are basically one gravity
body prediction. The small mass m has an insignificant gravitational effect relative to the large mass M . It
is still a two-body problem somehow, but it is only how one large mass affects the smaller mass, and only the
gravitational force from the large body is relevant. This is why here one always has GM and not GMm in all
such observable gravity phenomena. In two real body problems where m is significantly large relative to M ,
we also need to take into account the gravitational effect from both masses on each other. Then the gravity
parameter is changed from µ = GM to µ2 = G(M1 +M2) = GM1 +GM2, in other words here we also have GM1

and GM2 and never GM1M2. Of course I could invent something, for example gravitational bending multiplied
by the small mass and come up with a new term and coin it the ‘Ikonok’ effect, this would have the formula
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Observable predictions (from GR), contains only GM and not GMm
Advance of perihelion σ = 6πGM

a(1−e2)c2

Gravitational red-shift z =

√
1− 2GM

R1c
2√

1− 2GM
R2c

2

− 1

Time dilation TR = Tf

√
1−

√
2GM
R

2

/c2

Gravitational deflection (GR) δ = 4GM
c2R = 4

R

l2p
λ̄M

Table 3: The table shows a series of gravity effects that can be predicted from Newton’s formula.

4GMm
c2R

, and indeed it contains GMm, but that does not make it directly observable – it is a mathematical
construct, a composite of two things that we can observe, namely the gravitational bending of light from mass
M plus the kg mass of the small mass m, that we then multiply by each other, but that does not make it real
and observable.

An important question then is, if all the predictable gravity phenomena that we actually can directly observe
only contain GM and not GMm, does this imply anything special or significant? Yes, we will soon see this is
a key to understanding what is missing in the standard kg definition of mass. To understand this let us first
go back to the history of gravity. Newton never invented nor used a gravity constant. In Principia [11] Newton
stated the gravitational force in words, and his formula is equivalent to

F =
M̄m̄

R2
(23)

We are deliberately using a different notation for the two masses here, as we will see the original Newton
formula leads to a different mass definition than the modern kg mass definition used explicitly in the Newtonian
gravitational force formula. Even the historians seem in general to have ignored the fact that Newton introduces a
gravitational force formula without any gravity constant, see for example [39] and [40]5. Therefore, we encourage
readers to go back and study Principia itself.

Even without any gravity constant Newton was able to perform a long series of gravity predictions, for
example he could find the relative mass between planets in our solar system and the Sun. We can find the
relative mass between two masses just by observing the orbital time for one satellite around each of the masses
we want to compare, the formula is

M1

M2
=
R3

1T
2
2

R3
2T

2
1

(24)

where T2 and T1 are the orbital times of, for example, the Moon around the Earth, and the Earth around the
Sun, R2 is the distance from the center of the Earth to the Moon, and R1 is the distance from the center of
the Sun to the Earth6. Newton used a similar approach, see Principia and also [41]. Newton was also able to
calculate the density of the Earth relative to the Sun very accurately, as he knew their relative mass only from
orbital velocities, and could find their relative density by knowing the approximate diameters of the objects and
thereby their relative volumes. What Newton was not able to do in his time, but that he clearly tried to do,
was to find the relative density of the Earth (or any other heavy object) relative to a known uniform substance,
such as water, lead or gold. To perform this somewhat accurately we had to wait for Cavendish in 1798. In
the Cavendish apparatus the large gravity object, M , is the large ball in the apparatus. Unlike a planet or a
moon, one can have full control of the substance one is making these balls from. From this Cavendish could find
the density of the Earth relative to lead, and, as one can easily find the density of a series of uniform materials
relative to lead just by using simple old-fashioned weights and their volumes, one therefore had gained additional
insight. Still, Cavendish used no gravitational constant to do this, something historians and physics books also
often get wrong. What is true is that one can use a Cavendish apparatus to also find the gravity constant.

The gravitational constant was actually probably first introduced in 1873 by Cornu and Baille [42], where
they introduced the formula F = f Mm

R2 . Boys, in 1894, was likely to have been the first to introduce the well-
known notation G for the gravity constant that gave us Newton’s gravitational force formula with the notation
we know it today, namely F = GMm

R2 . Naturally, whether one uses f or G for the constant is merely cosmetic.
The important point here is that we worked with Newtonian gravity for almost two hundred years before the

5Milstrom [40] correctly highlights that Newton basically only pointed out in written form in Principia that the gravitational force
between two masses is proportional to the product of those two masses and inversely proportional to the square of the distance between
them, but he then mistakenly claims this corresponds to the equation, F = GMm

R2 . There is not a single word about a gravity constant
by Newton, so, from a historical point of view this is wrong, although the book is otherwise excellent.

6To find the relative mass between the Sun and the Earth we have R1 = 149, 600, 000 km, R2 = 384, 400 km, T1 = 365 days, and

T2 = 27.32 days, so we have M1
M2

= 1496000003×27.322

3844000003×365
≈ 330233, which is very close to the known relative mass of the Sun versus the

Earth.
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gravity constant was introduced. One of the main reasons for the invention of the gravity constant may have
been that, in the mid-1870s, the kg definition of mass became the international standard in much of the world.
If one used the kg definition of mass, then one had to add such a constant and calibrate the value of the constant
to a gravitational phenomenon to get the formula to work. And G was then clearly a constant, because, if first
calibrated to one observable gravity phenomena, for example with the use of a Cavendish apparatus, one did
not need re-calibrate the value of G to predict other gravitational phenomena that could easily be checked with
observations. Moreover, G did not seem to change over time, so “all” observations and use of the formula indeed
point toward G being a constant. However, what does G truly represent? Its output units are m3 ·kg−1 ·s−2. Can
anyone imagine anything physical that has such properties; meters cubed divided by kg and seconds squared? I
cannot. I can however easily imagine something with length (in meters), for example my shoe, or something with
weight (in kg), my shoe, or something that takes time (in seconds), for example moving my shoe from point A
to point B. Already from the output dimensions of G, one gets a hint that the so-called Newton gravity constant
could be a composite constant, something we will get back to soon. Also one should ask why was it possible
to predict a series of gravity phenomena from the Newton gravitational force formula long before the gravity
constant even was invented? Does the gravity constant simply relate to the choice of units, or is it embedded to
contain a deeper secret about gravity? We will soon understand what the gravity constant truly represents.

Already by 1883, only ten years after the introduction of the gravity constant, Stoney [43] suggested that
there were some natural units that could be derived from G, c as well as the elementary charge and the Coulomb
constant, today known as the Stoney units. Then, in 1899, Max Planck [44, 45] assumed that there were three
universal fundamental constants, G, c and ~, and then, based on dimensional analysis, derived a fundamental

length lp =
√

G~
c3

, a time tp =
√

G~
c5

, and a mass mp =
√

~c
G

, today known as the Planck units. The Planck units

would, over time, overtake the Stoney units as being considered to be the essential and fundamental natural
units, a view held by most to this day. This is also a view we hold, but it is much more than just a view, we will
soon show how we can build both gravitational theory and quantum mechanics from these only two constants,
namely lp and c, rather than from G, c and ~, but first we need a little more history.

Einstein [46] was already by 1916 suggesting that a quantum gravity theory was the next natural step after
his general relativity theory, or in his own words

Because of the intra-atomic movement of electrons, the atom must radiate not only electromagnetic
but also gravitational energy, if only in minute amounts. Since, in reality, this cannot be the case in
nature, then it appears that the quantum theory must modify not only Maxwell’s electrodynamics but
also the new theory of gravitation. – A. Einstein

Eddington [47] then in 1922 suggested that the Planck length would probably be essential for building a
quantum gravity theory. However, as no sign of the Planck units had been detected, others were more skeptical.
Prominent physicists like Bridgman [48] (who received the 1946 Nobel Prize in Physics) ridiculed the idea that
the Planck units meant anything special, for him it was simply more akin to some mathematical artifacts coming
out of dimensional analysis, see also [49]. At the present time, it seems like most physicists involved in the topic
think that the Planck length represents the smallest possible length, see for example [50–52], but some seem
to think there are lengths and structures below the Planck length, see for example [53]. Nonetheless, there are
what we could call a minority group of physicists that still claim, like Bridgman did in 1931, that the Planck
units are not useful. For example, Unzicker [54] bases such a claim on his view that “there is not the remotest
chance of testing the validity of the Planck units”. His point we think is – or we should perhaps say seemed
like – a valid claim, as it is somewhat similar to Einstein’s claim that if we could not detect the ether then why
not simply abandon it. If it is not there and does not even have indirect effects we can observe from it, then
to include it in our theories will likely only make our theories unnecessarily complex, incomplete or even wrong.
However, we will show that the Planck length and thereby the Planck units can be detected, and that they are
directly linked to quantum gravity.

There is nothing wrong mathematically in solving the Planck length formula, lp =
√

G~
c3

, with respect to

G, this gives G =
l2pc

3

~ . And we could next, based on this, claim it is the Planck length together with c and ~
that are the essential constants and that G is simply a composite constant. Some will likely protest here as it is
assumed that we need to know G to find the Planck length; therefore, making G a function of lp just seems to
lead us into a unsolvable circular problem. However, we will soon see this is not the case. We will, in other words,
claim that G is a composite constant. Haug [55] in 2016 has suggested that G is likely to be such a composite
constant as it gives a strong simplification of the many Planck-unit-related formulas that seem to offer better
intuition. However, back then we could not see a way to find the Planck length without first knowing G, but
this has changed. That G came before lp does not necessarily make it more fundamental. On the contrary, most
things in physics have first consisted of scratching the surface of reality before we have understood something
at a deeper level. Before we prove that lp can easily be found with no knowledge of G, let us also look more
closely at the mass M in the gravity formula. This mass is expressed in kg, and we have in section 2 pointed out
that the simplest way to express a kg mass from quantum-related parameters and constants is by the following
formula
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M =
~
λ̄M

1

c
(25)

we have here added subscript notation M to the reduced Compton wavelength in order not to later confuse it
with the reduced Compton wavelength from the smaller mass m in the Newton formula. Therefore, when dealing
with both M and m, we will use λ̄M and λ̄ to distinguish between the reduced Compton wavelength from the
large and the small mass. A natural question then, is if non-elementary particles (composite masses like the
proton) and even macroscopic masses can have a Compton wavelength? The answer is yes and no. Composite
masses do not have a single “physical” Compton wavelength as the electrons likely have – they have many, but
we can aggregate the Compton wavelength of the particles making up the composite mass using the following
relation

λ̄ =
1∑n
i=1

1
λ̄i

=
1

1
λ̄1

+ 1
λ̄2

+ 1
λ̄3

+ · · ·+ 1
λ̄n

(26)

and in the case the Composite mass only consists of elementary particles with the same Compton wavelength
we have

λ̄ =
1

n 1
λ̄1

=
λ̄1

n
(27)

The formulas above are fully consistent with the standard mass addition rule, because we have

m = m1 +m2 +m3

~
λ̄

1

c
=

~
λ̄1

1

c
+

~
λ̄1

1

c
+

~
λ̄1

1

c

~
1

1
λ1

+ 1
λ2

+ 1
λ3

1

c
=

~
λ̄1

1

c
+

~
λ̄2

1

c
+

~
λ̄3

1

c
(28)

and in the special case where the composite mass m consists of only one type of elementary particles, we can
simplify this to

m = n×m1

~
λ̄

1

c
= n

~
λ̄1

1

c

~
1

n 1
λ1

1

c
= n

~
λ̄1

1

c

~
λ̄1
n

1

c
= n

~
λ̄1

1

c
(29)

The point is simply that any mass in terms of kg can be described in terms of one variable, the Compton
wavelength combined with two constants, ~ and c; m = ~

λ̄
1
c
. This even holds for massive objects such as the

Earth and the Sun, that is to say for any mass, from the smallest to the largest. However, when we deal with the
Compton wavelength of a composite mass we must keep in mind it is not a single physical Compton wavelength,
if not it can lead us to the wrong interpretations. Let us now for a moment assume G is a composite constant

of the form G =
l2pc

3

~ . Remember again that all observable gravity phenomena contain GM and not GMm, so
we have in predictions of all observable gravity phenomena

GM =
l2pc

3

~
× ~
λ̄M

1

c
= c2

l2p

λ̄M
(30)

Pay close attention to how the Planck constant embedded in G cancels out with the Planck constant in the kg
mass definition. We will claim the ~ embedded in G, not by assumption, but from calibration it is to get the
Planck constant out of the kg mass, and to get lp into the mass. Next take a look at Table 4.

We can from the table see that all Newtonian gravity phenomena are a function of two constants, lp and
c. Furthermore, we can see that all observable gravity phenomena typically only assumed to be possible to
predict based on general relativity only contain one constant, namely lp. And this is more than just some clever
re-writing of G, this gives a new and deeper insight into gravity. Because if we are right, and these observable
gravity phenomena are also only dependent on c and lp and some only on lp, plus some variables, then we
should be able to extract lp from gravity phenomena without any prior knowledge of G – something we will now
demonstrate is the case.

Let us consider what we can extract by simply observing the orbital time of the moon around the Earth.
The orbital time of the moon is approximately 27.32 days (the sidereal month is the time the Moon takes to
complete one full revolution around the Earth with respect to the background stars), that is we have
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Modern Newton:
Mass M = ~

λ̄M

1
c (kg)

Non observable (contains GMm)

Gravitational constant G,
(
G =

l2pc
3

~

)
Gravity force F = GMm

R2 (kg ·m · s−2)
Observable predictions, identical for the two methods: (contains only GM)

Gravity acceleration g = GM
R2 = c2

R2

l2p
λ̄M

Orbital velocity vo =
√

GM
R = clp

√
1

Rλ̄M

Orbital time T = 2πR√
GM
R

=
2π
√
λ̄MR3

clp

Velocity ball Newton cradle vout =
√

2GMR2 H =
clp
R

√
2H
λ̄M

Frequency Newton spring f = 1
2π

√
k
m = 1

2πR

√
GM
x =

clp
2πR

√
1

λ̄Mx

Periodicity pendulum (clock) T = 2π
√

L
g = 2πR

√
L
GM = 2πR

clp

√
Lλ̄M

Observable predictions (from GR): (contains only GM)

Advance of perihelion σ = 6πGM
a(1−e2)c2 = 6π

a(1−e2)

l2p
λ̄M

Gravitational red-shift z =

√
1− 2GM

R1c
2√

1− 2GM
R2c

2

− 1 =

√
1−

2l2p
R1λ̄M√

1−
2l2p

R2λ̄M

− 1

Time dilation TR = Tf

√
1−

√
2GM
R

2

/c2 = Tf

√
1− 2l2p

Rλ̄M

Deflection δ = 4GM
c2R = 4

R

l2p
λ̄M

Microlensing θE =
√

4GM
c2

(dS−dL)
dSdL

= 2lp
√

dS−dL
λ̄M (dSdL)

Table 4: The table shows that any gravity observations we can make contain GM and not GMm; GM contains and
needs less information than is required to find G and M .

T =
2π
√
λ̄MR3

clp
(31)

solved with respect to lpc we get

lp =
2π
√
λ̄MR3

Tc
(32)

That is to say, to find the value for lp from the orbital time of the moon, we in addition need to know c, which
we can find by measuring the speed of light. Moreover, we need to know two variables, namely R and λ̄M .
The variable R is in this case simply the distance from the center of the Earth to the Moon – this we can for
example approximate very well with parallax, it is 384400000 m. Then we also need to find the reduced Compton
wavelength of the Earth. Actually, we can find this with no knowledge of G or ~, but we have to start with
an electron. The Compton frequency of an electron is, by the original Compton paper, also given by (based on
Compton scattering):

λ2 − λ1 =
h

mc
(1− cos θ)

λ2 − λ1 =
h
h
λe

1
c
c

(1− cos θ)

λ2 − λ1 = λe(1− cos θ)

λe =
λ2 − λ1

1− cos θ

λe =
λ2 − λ1

1− cos θ
(33)

Namely, to find the reduced Compton wavelength of the electron we simply need to measure the wavelength of
an outgoing photon λ1 (before hitting the electron) and the wavelength of the reflected photon, λ2 (after hitting
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the electron), and the angle between the outgoing and incoming beam, which has been reflected when hitting
the electron. Additionally, we have that the cyclotron frequency is given by

ω =
v

r
=
qB

m
(34)

A proton and an electron have the same charge, so the cyclotron ratio is equal to the mass ratio. This is well
known, as one has also used cyclotron frequencies to find the well-known proton electron ratio (≈ 1836.15) by
this method, see [56]. Their mass ratio is therefore equal to the Compton wavelength ratio

ωP
ωe

=

qB
mP
qB
me

=
me

mP
=
λ̄e

λ̄P
≈ 1836.15 (35)

where λ̄P and λ̄e are, respectively, the Compton wavelength of the proton and the electron. That is to say, we
now know the reduced Compton length of the proton; it is equal to the reduced Compton frequency we found
from the electron divided by the cyclotron ratio, and we have found both of these with no knowledge of the
Planck constant ~. Next, we can find the reduced Compton frequency of the Earth by counting the number of
protons in the Earth and divide the Compton wavelength of the proton by this number. There is no physical law
that forbids this, but it is practically impossible with our technology and resources – also this would probably
destroy our planet, so not so smart. However a way exists that is potentially quite practical using the existing
technology. We can first count the number of protons and neutrons that we, for simplicity, assume to have the
same mass as the protons, in a handful of uniform matter. This has essentially recently been performed. Silicon
(28Si) is very uniform and has crystal structures that basically make it possible to count the number of atoms
inside an almost perfect sphere, see [57, 58], and this has also been one of the competing methods for a new kg
standard. Other promising methods to count the numbers of atoms also exist – see, for example, [59]. After
(or before) we have counted the number of atoms in a silicon sphere, about the size we can hold in our hand,
we can measure the gravitational acceleration field created by such a sphere by using it as the large balls in a
Cavendish apparatus – it is given by

g =
L4π2θ

T 2
(36)

where T is the oscillation time, θ is the angle of the arm in the apparatus and L is the distance between the two
arms. Pay attention to the fact that neither G nor ~ is needed for this. In addition, we have R1, which is the
distance from the center of the large ball in the Cavendish apparatus to the center of the small ball when the
arm in the apparatus is deflected. Figure 1 shows a modern Cavendish apparatus where the angle and oscillation
frequency is measured by fine electronics, and then fed directly into a computer.

The relative Compton wavelength between two masses is proportional to their gravitational acceleration in
the following way

g1R
2
1

g2R2
=

GM1

R2
1
R2

1

GM2
R2 R2

2

=
M1

M2
=
λ̄2

λ̄1

(37)

In this way we know the Compton wavelength of the Earth. First, we found the Compton wavelength of the
electron from Compton scattering; it is given by 3.86 × 10−13 m, and from a cyclotron we found the cyclotron
frequency ration of a proton versus an electron is 1836.15, and thereby the proton Compton wavelength. Assume
we then measure the gravitational acceleration; we measure from our silicon sphere ball (the large balls in the
Cavendish) apparatus if r1 = 7cm is approximately 1.36 × 10−8 m/s2. The gravitational acceleration in the
Earth we can, for example, find by simply by using a pendulum; the gravitational acceleration at the surface of
the Earth is given by

g =
2πL

T 2
(38)

where L is the length of the pendulum. Actually, we can look at the Earth-Moon system as a giant pendulum
clock, the orbital time is 27.23 days, the distance to the moon is again 384,400,000 meters. Some will possibly
protest as the Huygens [37] formula is often mentioned to only be a good approximation if the angle of the
pendulum is small. This is only partly true; the Huygens formula is a good approximation for a small angle, it
is inaccurate for a large angle, but it is actually exact for a 360◦ angle, based on the assumption of a perfect
circular orbit, see [38]. So by plugging in the orbital velocity of the moon we get

g =
4π2L

T 2
≈ 4π2 × 384400000

(27.23× 24× 60× 60)2
≈ 0.00274 m/s2 (39)

This is the gravitational acceleration from the Earth at the distance of the Moon. This means we have all the
input to find the reduced Compton wavelength of the Earth, which is equal to

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 December 2020                   



16

Figure 1: Low-budget modern Cavendish apparatus combining old mechanics with modern electronics that feed directly
to your computer through a USB cable. It is remarkable that, in using such an instrument, we can measure the Planck
mass with only about 5% error.

λ̄E =
λ̄e/Cyclotron frequency ratio

Number of protons in the large Cavendish sphere
× gR2

gER2
E

≈ 5.8× 10−68 m (40)

where RE is the distance from the center of the Earth to the center of the Moon. We could naturally have found
the reduced Compton wavelength of the Earth by using the known Compton wavelength formula λ̄E = ~

MEc
;

however, this would in general require both knowledge of ~ and G, as one in this method would need G in general
to find the kg mass of the Earth. An important point here is that these two constants are not needed. We now
have all we need to find the Planck length from the orbital time of the Moon, we get

lp =
2π
√
λ̄MR3

Tc
≈ 2π

√
5.8× 10−68 × 3844000003

27.322× 24× 60× 60× 299792458
≈ 1.61× 10−35 m (41)

And, based on knowledge of lp and c, we do not need any other constant to predict observable gravity
phenomena, or at least not any of the well-known phenomena we are looking at here, as clearly demonstrated
in Table 4.

So how can it be that G plays such an important role in modern gravitational theory if we do not need it?
We think the reason is that G is needed to turn an incomplete mass definition, the kg, into a mass definition
that is complete, or at least more complete. We have

GM =
l2pc

3

~
~
λ̄M

1

c
= c3 × lp

c

lp

λ̄M
(42)

We have shown this before in this paper, but it is a reason we here write it as c3 multiplied by the Planck
time, tp =

lp
c

, that is multiplied again with
lp
λ̄M

, we will suggest that GM at a deeper level indeed represents c3

multiplied by a complete or at least more complete mass definition. This new rest mass definition will be

M̄ =
lp
c

lp

λ̄M
= tp

lp

λ̄M
(43)

We will claim that standard physics is using two different mass definitions, and that this has been one of two
main reasons why nobody has been able to unify gravity with quantum mechanics. This new mass definition
is already embedded in standard gravity theory, but unknowingly so. In non-gravitational physics, one does
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not multiply the kg mass with G and thereby indirectly use a different mass definition in gravity physics and
non-gravity physics. This new mass definition has output dimensions of time and we have previously [60] called
this mass definition collision time. We will soon discuss the interpretation of this mass definition. We naturally
do not mean Newton or his precursors in any way knew this and were hiding c and the Planck length in their
formula. But G can simply be seen as something missing in the formula, that we get in the formula after first
calibration to a gravity phenomenon. The gravity constant also depends on the mass definition. The kg mass
definition contains no information about the Planck length, and by getting the Planck length into the kg mass
formula by multiplying it with G, one is also getting the Planck constant out, as it has nothing to do with
gravity.

Frequency, how long is the ding?

We showed in section 2 that the kg mass can be seen as a Compton frequency ratio. To observe a frequency, we
will claim one must observe something changing. Assume a clock making beeping every hour. The clock has a
frequency of one beep per hour, and 24 in a day-and-night period. Assume there were no silent periods between
the beeps, then it would just be one long beep, then there could not be a frequency. At the other extreme, if the
beep had zero duration, then we would just have silence, and again no frequency. Therefore, a frequency means
we must have at minimum two distinguishable states, and not only that, each state must have a duration in time,
if not we cannot have a frequency. A frequency ratio that is linked to the Compton frequency, which is what the
kg definition is, says nothing about the duration of the “beep”, it has no change of state, so then it cannot be
a frequency, or more precisely it must be an incomplete description of a frequency. However, by multiplying G
with M we keep the frequency, but, as we will see, we then in addition know how long the two different states in
the frequency last. We will propose a new theory of matter which, in our view, is already embedded in today’s
gravity theory through GM , but by understanding what GM truly represents at a deeper level, we will get a
simpler gravity theory that will also be a quantum gravity theory, that then again can potentially be unified
with quantum mechanics.

Back to the indivisible particles of Newton and the ancient Greeks

Newton claimed in Principia, part 3, which was mostly about gravity, that indivisible particles were behind all
his philosophy, and in the same chapter he also mentioned indivisible moments of time, in other words we will
claim quantized time. Few of today’s physicists seem to be aware of this. Very similar to Newton and the ancient
Greek atomists, we will base our theory on two postulates,

• Everything ultimately consists of indivisible particles that move at a constant speed, except when they
collide with another indivisible particle.

• and empty space that the indivisible particles can move in.

Assume the diameter of such an indivisible particle is the unknown x, but we will see when calibrated to
gravity it is lp. No observable diameter can naturally be smaller than this, as all mass and energy are assumed
to be built from this particle (and empty space). When not colliding this particle moves at a constant unknown
speed y, that we will see is c. The duration of the collision between two such particles we will assume is x

y
, which

we will see is
lp
c

. This time interval is directly linked to how far an indivisible particle moves during the period
two indivisible particles are colliding. In elementary particles such as the electron we assume we have collisions
at a Compton periodicity; that is to say, at every reduced Compton time there is an internal collision inside the

elementary particle between two indivisible particles. So
x
y

λ̄
c

= x
λ̄

, will be the percentage of a time window the

particle is in collision state.
The indivisible particle itself is massless, and it moves at speed c. The distance between two indivisible

particles moving after each other corresponds to the wavelength of a photon. In this model a monochrome
light beam simply consists of a “train” of indivisible particles moving after each other. This is very similar
to Newton’s corpuscular theory of light, which was perhaps abandoned too early. In elementary particles such
as the electron, the indivisible particles are moving back and forth, each over a distance equal to the reduced
Compton wavelength at the speed of light, but colliding with each other at the reduced Compton frequency. In
other words, as in the kg mass we have a reduced Compton frequency. However, at the end of each Compton
time period we have a collision between two indivisible particles. That is to say, our frequency consists of two
different states, which is the minimum needed to actually define a real frequency. The collision lasts the Planck
time, and the non-collision state lasts the Compton time of the particle minus the Planck time. In other words,
pure mass is collisions, and pure energy is non-collisions. A mass that is defined as collision time sounds very
different from what we are used to, namely mass in terms of kg, but this new mass definition is much closer to
the kg mass than one would first think. The kg mass we demonstrated was a Compton frequency ratio. If we
find the collision time mass of one kg – and all we need to do this is to know the Compton wavelength of one kg
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and the Planck length and the speed of light – and in addition divide another mass collision time on the collision
time of one kg, then we get (in other words a collision time mass ratio).

m̄

m̄1kg
=

lp
c

lp
λ̄

lp
c

lp
λ̄1kg

=
f

f1kg
=

c
λ̄
c

λ̄1kg

(44)

This is identical to the kg definition of matter, when the kg definition of matter is understood from a deeper
perspective as we looked at in section 2. However, we see when we take the collision time ratio as performed
in the formula above, then anything about the Planck length cancels out. That is to say, we are left with a
frequency ratio (identical to the frequency ratio in the kg definition of mass), but anything about the Planck
length and thereby the Planck time has dropped out of the definition. Namely, the duration and everything
about the special event that is needed for a proper frequency has dropped out of the equation. The special event,
the second state of the frequency, is simply the collision between two indivisible particles. And it is this collision,
and the duration of it, that is the very essence of gravity in our view. Standard physics has built into its kg
mass the frequency periodicity, but has no information about the duration of the special event. The duration of
the special event inside the Compton frequency, that actually even makes a frequency possible, is missing in the
standard mass definition. The standard kg mass definition has an incomplete frequency definition, as it does not
have two distinguishable states in each frequency, which are the minimum needed to have a complete frequency
definition.

However, standard physics surprisingly gets the collision state and the non-collision state into gravity by
multiplying M with G. For the other mass m in the Newton formula it is not important that this mass is
missing something essential related to gravity, because the small mass cancels out in derivations to predict
anything observable from the formula; remember all observable gravitational phenomena depends on GM and
not GMm. Based on this new view we can represent Newtonian gravity with the formula

F̄ = c3
M̄m̄

R2
(45)

This formula has different dimensions from the modern Newton formula, its output unit is m/s. Actually it
will be the quantity . However, again the gravity force itself is never observed directly, at least not the modern
version of the Newton formula. Even if this formula is different to the modern Newton formula it is, as we will
see, close to the original Newton formula. Most important is give all the same predictions for observable gravity
phenomena as the modern version of the Newton formula, as demonstrated in Table 5.

Our new simplified gravity formula only needs two constants, lp and c. From these two constants plus some
variables we can predict all observable Newtonian gravitational phenomena. The new theory is now founded
on the Planck length, and is therefore directly linked to the Planck scale. We can solve any of the formulas
for observable Newton gravity phenomena with respect to lpc (the unknown x times the unknown y with no
knowledge of G. For example, by simply solving the gravitational acceleration field with respect to lpc (the
unknown xy) we get

xy = clp = R

√
gλ̄ (46)

Actually, all Newtonian gravitational phenomena contain lpc. For example, [61] has recently shown how lpc can
be extracted from a Newton gravity force spring without any knowledge of G or ~. We have already shown how
to find the Compton frequency for any mass size. We can easily also extract c from only gravity phenomena
without any prior knowledge of the speed of light. We have that

c = R

√
g
λ̄

l2p
= R

√
2g

rs
(47)

where rs is the Schwarzschild radius, rs = 2GM
c2

= 2lp
lp
λ̄

. The Schwarzschild radius of the Sun we can, for
example, find by observing the deflection of light. It is important that we are not predicting the deflection of
light, as this in general would require general relativity theory that assumes the speed of gravity is the speed
of light, we are only observing the deflection, not predicting it. Also be aware that the Schwarzschild radius
is not unique for general relativity theory. Already by 1784 Michell [62] calculated a radius identical to the
Schwarzschild radius for a hypotetical object with 500 times the radius of the Sun, but with same density as
the Sun. Michell predicted that such an object would be a dark star as the escape velocity at just inside this
radius would be larger than the speed of light, somewhat similar to general relativity theory and Schwarzschild’s
solution that lead to the idea about black holes. What is important here is that we can easily extract a length
equal to the Schwarzschild radius indirectly from just “simple” gravity observations of objects in our solar system.
From the observed deflection of light δ we have

rs =
δR

4
(48)
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Modern Newton: Alternative:

Mass M = ~
λ̄M

1
c

(kg) M̄ =
lp
c

lp
λ̄M

(collision time, see [60])

Non observable (contains GMm)

Gravitational constant G,

(
G =

l2pc
3

~

)
c3

Gravity force F = GMm
R2 (kg ·m · s−2) F = c3 M̄m̄

R2 (m · s−1)

Observable predictions, identical for the two methods: (contains only GM)

Gravity acceleration g = GM
R2 = c2

R2

l2p
λ̄M

g = c3M̄
R2 = c2

R2

l2p
λ̄M

Orbital velocity vo =
√
GM
R

= clp
√

1
Rλ̄M

vo =
√
c3M̄
R

= clp

√
l2p

Rλ̄M

Orbital time T = 2πR√
GM
R

= 2π
√
λ̄R3

clp
T = 2πR√

c3M̄
R

= 2π
√
λ̄R3

clp

Velocity ball Newton cradle vout =
√

2GM
R2 H =

clp
R

√
H
λ̄

vout =
√

2 c
3M̄
R2 H =

clp
R

√
H
λ̄

Periodicity Pendulum (clock) T = 2π
√
L
g

= 2πR
√

L
GM

= 2πR
clp

√
Lλ̄ T = 2π

√
L
g

= T = 2πR
√

L
c3M̄

= 2πR
clp

√
Lλ̄

Frequency Newton spring f = 1
2π

√
k
m

= 1
2πR

√
GM
x

=
clp
2πR

√
1
λ̄x

f = 1
2π

√
k
m

= 1
2πR

√
c3M̄
x

=
clp
2πR

√
1
λ̄x

Observable predictions (from GR): (contains only GM)

Gravitational red-shift z =

√
1− 2GM

R1c
2√

1− 2GM
R2c

2

− 1 =

√
1−

2l2p
R1λ̄M√

1−
2l2p

R2λ̄M

− 1 z =

√
1− 2c3M̄

R1c
2√

1− 2c3M̄
R2c

2

− 1 =

√
1−

2l2p
R1λ̄M√

1−
2l2p

R2λ̄M

− 1

Time dilation TR = Tf

√
1−

√
2GM
R

2

/c2 = Tf

√
1−

2l2p
Rλ̄M

TR = Tf

√
1−

√
2c3M̄
R

2

/c2 = Tf

√
1−

2l2p
Rλ̄M

Gravitational deflection (GR) δ = 4GM
c2R

= 4
R

l2p
λ̄M

δ = 4c3M̄
c2R

= 4
R

l2p
λ̄M

Advance of perihelion σ = 6πGM
a(1−e2)c2

= 6π
a(1−e2)

l2p
λ̄M

σ = 6πc3M̄
a(1−e2)c2

= 6π
a(1−e2)

l2p
λ̄M

Indirectly/“hypothetical“ observable predictions: (contains only GM)

Escape velocity ve =
√

2GM
R

= clp
√

2 1
Rλ̄M

ve =
√

2c3M̄
R

= clp
√

2 1
Rλ̄M

Schwarzschild radius rs = 2GM
c2

= 2
l2p
λ̄M

rs = 2c3M̄
c2

= 2
l2p
λ̄M

Gravitational parameter µ = GM = c2
l2p
λ̄M

µ = c3M̄ = c2
l2p
λ̄M

Two body problem µ = G(M1 +M2) = c2
l2p
λ̄1

+ c2
l2p
λ̄1

c3(M̄1 + M̄2) = c2
l2p
λ̄1

+ c2
l2p
λ̄2

Quantum analysis:
Constants needed G, ~, and c or lp, ~, and c lp and c, for some phenomena only lp
Variable needed one for mass size one for mass size

Table 5: The table shows that all observable gravity phenomena are linked to the Planck length and the speed of
gravity, which is equal to the speed of light. For all observable gravity phenomena, we have GM and not GMm. This
means that the embedded Planck constant cancels out, and all observable gravity phenomena are linked to the Planck
length and the speed of gravity, that again are identical to the speed of light. When this is understood, one can even
rewrite Newton and GR gravity formulas in a simpler form which still gives all of the same results.

Next, we can find the Schwarzschild radius of the Earth as the relative Schwarzschild radius of the Earth
relative to the Sun can be found by using the following relations; this is basically the same as equation 24.

rs,1
rs,2

=
R3

1T
2
2

R3
2T

2
1

(49)

So, when we have the Schwarzschild radius of the Earth, we can apply it to the formula 47, we now can
extract the speed of light (gravity) from the gravitational acceleration field. It is beyond this paper’s main
topic, but it is assumed that the Newton theory is only compatible with the idea that gravity is infinite. This
is because when looking at the Newton formula, if on the surface, it looks like it will only be dependent on the
variable R and the mass M , one has failed to understand that the gravity constant and also the mass embedded
contains c, not by assumption, but by calibration. Also, the Gauss law of gravity, also known as the Newtonian
field equation, that normally (in differential form) is given as ∇2φ = 4πGρ, where ρ is the mass density, can
when G and M , when understood at a deeper level, be re-written as ∇2φ = 2πc2 rs

V
. It seems strange to divide

the Schwarzschild radius by the volume, to get some type of Schwarzschild radius density; however, soon we will
understand that this remarkably corresponds to a gravity energy density. The point is that c now is embedded
in the Newtonian gravitational theory, but this is outside the main topics of this paper and has been discussed
in great detail in one of our recent paper [63]. We just mention this so the reader understands that we have
thought much about possible weakness and inconsistencies in our model, and we have not found any so far.

In addition, we do not need the Planck constant ~ in our model. Standard gravity theory indirectly needs
three constants, G, ~ and c, to predict gravity phenomena, at least if we also want to describe the kg mass with
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constants and quantum-related variables, such as the matter wavelength of the particle. This is in contrast to
our theory where we only need two constants, c and lp. Actually, superstring theory suggests that the speed of
light c and that the Planck length are the two universal fundamental constants, see, for example, [64]. However,
superstring theory has not led to a way to find the Planck length independent of G, nor has it led to other
testable predictions that distinguish it experimentally from other theories. Our new view gives us an idea that
we may have been using two different mass definitions all along without being aware of it, as explained in the
section above. When one understands this, one can see that even standard Newton theory at a deeper level is
directly linked to the Planck scale, not by assumption, but by calibration to gravity phenomena. All gravity
phenomena can be predicted with c and lp and some only with lp. To observe something affected by gravity is,
from this view, actually to observe or at least detect the Planck scale.

In the special case that we link the time unit to a length unit through the speed of light, as is often also done
in standard physics [65], we can set c = 1, (this does not imply that we also set G = 1 and ~ = 1 as these are
not even needed) our new gravity force formula then simplifies to Newton’s original formula F = M̄m̄

R2 . We can
still use this simple formula to predict all Newtonian gravity phenomena, and to also find the Planck length.
Instead of calibrating the formula to a constant, it is then directly calibrated to a mass, and when c = 1 this
mass is M̄ =

lp
1

lp
λ̄

, which is also identical to half the Schwarzschild radius.
Newton naturally did not have this in mind with his formula, but, that said, Newton actually knew the

approximate speed of light (possibly from as Ole Rømer’s 1676 experiment), in Principia, he predicted the time
it would take for light to travel from the Sun to the Earth was around 7 to 8 minutes (the modern value is
8 minutes 19 seconds), so he could theoretically have done so. Anyway, if one calibrates his original formula
F = M̄m̄

R2 to a gravity observation, this involves only M̄ as in this case the small mass, m̄, also cancels out
in derivations of observable phenomena, then one finds a mass that is fully compatible with Newton’s view
that mass was the quantity of matter and that the ultimate particles were indivisible and even that there were
indivisible units of time.

It is important to be aware that we can always go back and forth between our new mass detection collision
time and the modern kg mass definition. The new collision time mass is linked to the kg mass simply by

m̄ = G
c3
m =

l2p
~ m. This means we have

F̄ = c3
M̄m̄

R2
= c3

G
c3
M G

c3
m

R2
= G

M G
c3
m

R2
(50)

That is our new gravity force formula, where we have now simply incorporated the new mass definition in both
masses in the force formula. To get a unified theory this new mass definition must not only be incorporated in
gravity theory, but in all areas of physics. In gravity we strictly only need to do it with one mass in the Newton
type formula, as the other mass cancels out to get a predictable phenomenon that we can observe. It is in other
areas of physics where we need to do it for all masses. One could achieve this by, for everywhere one has a
mass, replacing the mass m with G

c3
m; however, this would give a very ugly notation that contained information

that is not needed; remember that G =
l2pc

3

~ and m = ~
λ̄

1
c

contains more information than the finished product

GM = c3
lp
c

lp
λ̄

, because the ~ always cancels out. It is first when we understand that

G

c3
m =

l2pc
3

~
c3
× ~
λ̄

1

c
=
lp
c

lp

λ̄
= m̄, (51)

that we can get a simple and elegant theory with nice notation that also unifies gravity with quantum mechanics.

4 Quantum probability embedded in the mass definition

Our new mass definition is collision time

m̄ =
lp
c

lp

λ̄
(52)

The first part
lp
c

= tp represents the durations of the collision between two indivisible particles. In an
elementary particle that has a “physical” Compton wavelength such a collision happens at the reduced Compton
periodicity. This is because, in our model, the indivisible particles making up the particle move back and forth,
each over a distance equal to the reduced Compton wavelength at the speed of light, to then to collide when
they meet. This journey takes the reduced Compton time, tc = λ̄

c
, while the collision itself lasts the Planck

time, tp =
lp
c

. This means the percentage of the observational time window the particle has been in collision

state is
tp
tc

=
lp
c
/
(
λ̄
c

)
=

lp
λ̄

, and the percentage of time it has not been in collision state is 1− lp
λ̄

. If we observe

an electron for one second it has been in collision state in only
lp
λ̄e
≈ 4.18× 10−23 seconds. This is a very small

fraction of the total time, but still this means it has been in collision states 4.18× 10−23/tp ≈ 7.76× 1020 times
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per second. Assume next that we use an observational time window equal to the Planck time. Now the last
term in our mass definition represent a probability

Pc =
lp

λ̄
(53)

This is because we only have one collision per Compton time period. Therefore, this is now the probability
for an elementary particle to be in a collision state for this Planck time observational time window. Until we
actually observe this Planck time observational time window we cannot know if the electron is in a collision state
or not in that time window. So we could even try to claim it is both in a collision state and in a non-collision
state at the same time until observed, and that we can only say something about the probability of these two
states before we actually look to see if the particle is in a collision state or not in this time window. Such an
interpretation however, we think would be somewhat incorrect. It is not that the electron at any time can be
both in a collision state and at the same time in a non-collision state inside a Planck time window, it can only
be in one of the two states, it is simply that we do not know before we observe it. If we kept track of every
Planck time, and knew when it was in collision state last time, then this was no longer a probability, but then
just the percentage of time the particle is in a collision state. It could even be more complicated than that, as
a real observation could disturb the system, but the observation effect, where the observer disturbs the system
is outside the topic of this paper.

This probability can also not be higher than one, because if the reduced Compton wavelength is the distance
between two indivisible particles (center to center), then this distance cannot be shorter than lp. This is
because lp is the diameter of the indivisible particle and if two indivisibles lie side by side (the collision state)
they cannot get closer to each other. We will soon study how it is only is a Planck mass particle that has
collision probability Pc =

lp
lp

= 1. An exception to the rule that
lp
λ̄
≤ 1 is for composite particles (composite

mass). For example a one kg mass has a reduced Compton wavelength much shorter than the Planck length,

λ̄1kg = ~
1kg×c ≈ 3.52 × 10−43 m. This will give

lp
λ̄1kg

≈ 45994327.12, this cannot be a probability as it is above

one, the integer part here represents the number of collisions in the one kg during one Planck time, and the
decimal part 0.12 represents the probability for one more collision. When the Compton wavelength is shorter
than the Planck length, then Pc will be a sum of probabilities, and only the decimal part is then what we normally
consider a real probability, as the integer parts are the aggregates of 100% probabilities. The case of

lp
λ̄
> 1,

can then only happen with composite masses; remember the reduced Compton wavelength of a composite mass
consists of the Compton wavelength of many particles and is given by formula 26. So, even if no elementary
particles can have a reduced Compton wavelength shorter than the Planck length, a composite mass can have a
composite Compton wavelength shorter than the Planck length, but when interpreting it we have to be careful
with interpretations, as we have been here.

And for a given particle type the probability of not being in a collision state in a Planck time observational
time window is simply

Pn = 1− lp

λ̄
(54)

This probability is for the Planck mass particle (that we will soon discuss in detail) always zero, as λ̄ = lp
for a Planck mass particle. This again is consistent with the idea that the Planck mass particle is the collision
between two indivisible particles. While all other elementary particles, such as an electron, consist of the Planck
mass particles coming in and out of existence at the reduced Compton frequency, in this model there is no other
mass in an electron or any particle other than the Planck mass coming in and out of existence. In terms of kg,
the Planck mass is much larger than the electron – so is this not contradictory? Well one must multiply the
Planck mass by the percentage of time an electron is in a collision state, that is in a Planck mass state, the
electron mass in kg is

me = mp
lp

λ̄e
= femptp (55)

where fe is the reduced Compton frequency. That is to say the electron is a Planck mass coming in and out
of existence fe = 7.76 × 1020 times per second. This is somewhat similar to Schrödinger’s [66] 1930 hypothesis

of a tremble motion (Zitterbewegung) in the electron that he predicted to have a frequency of 2mec
2

~ = 2fe.
The Zitterbewegung has never been observed, and this would not be so strange if it is an internal frequency in
the electron (and other elementary particles). If the observational time window of the electron is smaller than
the Compton time of the electron; well let us assume the observational time window is the Planck time. Then
the electron can be seen as a probabilistic Planck mass – this is true for any observational time window shorter
than the Compton time, as there is only one collision per reduced Compton time. If working with kg mass the
electron is the Planck mass, 2.17× 10−8 kg multiplied by the probability it is in a collision state (Planck mass

state), which is Pc =
lp
λ̄e

, this gives the well-known kg mass of the electron.
Next let us move to incorporate relativistic effects. The shortest possible reduced Compton wavelength is

the distance between two indivisible particles when they collide, and this distance is λ̄ = lp. This distance can
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also only be observed from this particle itself. This because the Planck mass particle dissolves after the Planck
time, and to observe it from a distance would mean even a light signal could not reach it or leave it before the
collision state has dissolved.

Again, the reduced Compton wavelength is the distance between indivisible particles. This length can undergo
length contraction until the two indivisible particles making up the fundamental particle lie side by side (collide).
To understand this in relation to relativistic effects let us first look at the standard mass broken down in quantum
variables and constants, we then have

mγ =
m√

1− v2

c2

=
~
λ̄

1
c√

1− v2

c2

=
~

λ̄
√

1− v2

c2

1

c
(56)

This formula will always give the correct kg mass of a particle. This basically means that the reduced
Compton wavelength undergoes standard length contraction, and there is no limit on how much it can length-
contract as long as v < c. This also means there is basically no limit on how big the relativistic mass (and
thereby the kinetic energy) even for a single electron can be, as long as it is smaller than infinite. There is
considerable room between very large and infinitely large, that the electron kinetic energy then can contain.
The mass of the Milky Way is around 1012 solar masses. Assume for a moment an electron moves at a velocity

equal to v ≈ c
√

1− m2
e

M2
m
≈ c× (1− 1.04× 10−145). This velocity is still < c, so fully valid inside Einstein’s [67]

special relativity theory. This would mean there is nothing forbidding a single electron to have a kinetic energy
basically equal to the rest-mass energy of our galaxy. Even if the Earth was hit by one such electron it would
likely pulverize the entire planet. This has clearly not happened in the billions of years the Earth has existed,
because the Earth is still here. In a theory one should not only look to see if what it predicts and that has been
confirmed by observations, one should also look for what the model predicts that has never been observed even
in billions of years. Therefore, either such electrons must be extremely remote or they simply do not exist or
cannot exist. One could go into a long discussion on why this has not happened – one possibility is that it is
simply absurd that electrons can take such a high kinetic energy, as discussed by [68, 69]. Maybe our new mass
definition can give us a better explanation as to why we do not observe such electrons. Our collision time mass
in a relativistic settings must be

m̄γ =
m̄√

1− v2

c2

=

lp
c

lp
λ̄√

1− v2

c2

=
lp
c

lp

λ̄
√

1− v2

c2

(57)

The formula is structurally not that different from the standard formula (it is just multiplying the standard

relativistic mass formula with
l2p
~ ), but here we will claim the Compton wavelength cannot contract to a length

smaller than the Planck length, as the Compton wavelength is the distance between two indivisible particles,

and they have a diameter of the Planck length. This means we must have that λ̄
√

1− v2

c2
≥ lp, this means we

must also have

m̄γ ≥ lp
c

lp
lp

lp
c

lp

λ̄
√

1− v2

c2

≥ lp
c

lp
lp

v ≤ c

√
1−

l2p

λ̄2
(58)

That is to say we get a new exact maximum velocity limit for elementary particles, as has been suggested by
Haug [55, 70]7. The maximum speed of the electron would then be approximately vmax ≤ c(1−8.78×10−46) m/s,
which is below c, but considerably higher than the velocity one can achieve in the Large Hadron Collider.
Therefore, at present no experiment exists that has been performed that can prove this hypothesis on maximum
velocity of elementary particles wrong. However, if such a maximum speed limit exists for elementary particles,
then it would indeed explain why the Earth has not been observed to be hit by, for example, electrons with a
kinetic energy equal to the rest-mass energy of our Sun, the Milky Way or even much higher. The maximum
kinetic energy of any elementary particle based on our new models seems to be equal to the rest-mass energy of
the Planck mass. This is still a lot of energy, but considerably much less energy than we have discussed above.
There is a lot of energy between the Planck mass energy and infinity. Our new maximum velocity offers a clear
cut-off at the Planck scale. For a composite mass such as a proton the maximum velocity of the proton will then
likely depend on the elementary particle making up the proton with the shortest reduced Compton wavelength,

7We actually suggested such a maximum velocity based on a more general formula at a presentation we gave at the Royal Institution
in London October 15, 2015.
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that is to say the most massive fundamental particle embedded in the proton. Haug [70] suggested that the
proton will then likely start to dissolve when reaching this speed – this is currently a hard-to-test hypothesis as
this speed will be far above what we can observe in LHC for example.

Another important point is that special relativity without incorporating our maximum velocity is not com-
patible with the idea often used in quantum gravity, that the shortest possible length is the Planck length. One

can take any particle or object with length L > lp, then, by moving this object at a speed of v > c

√
1− l2p

L2 < c,
and then the length contracted observation of L will be below the Planck length. This we have discussed in more
detail in [69, 71]. On the other hand, by incorporating our suggested maximum speed limit one will likely ensure
that we have a relativity theory that is always compatible with the idea that the shortest possible observable
length is lp. We are here thinking about an ideal observer, that is even an electron, and, as we will see, that
even the building blocks of a photon can be an observer – we are not talking about the technical possibilities to
observe this directly.

Let us go back to our newly introduced quantum probabilities, for the rest-mass particle we said that Pc =
lp
λ̄

could be interpreted as the probability for an elementary particle to be in a collision state when using a
observational time window of the Planck-time. At the moment we observe it, if we observe a particle in the
Planck time observational time window, it will either be in Planck mass state (collision state) or not. For a
moving particle, that is for a relativistic mass (particle), we find that this quantum frequency probability is now
given by

Pc =
lp

λ̄
γ =

lp

λ̄
√

1− v2

c2

(59)

Based on standard physics assumptions, where the only speed limit for a mass is v < c, then this probability
can become larger than one and can therefore not be a valid probability (inside standard frequency probability

theory). However, since we have vmax = c

√
1− l2p

λ̄2 we see that the maximum probability is

Pc,max =
lp

λ̄

√
1− v2

max
c2

=
lp

λ̄

√
1−

(
c

√
1−

l2p

λ̄2

)2

c2

=
lp
lp

= 1 (60)

That is to say, the frequency probability for an elementary particle to be in a collision state (Planck mass
particle state) can never be higher than one for any elementary particles. It can be higher for composite particles,
but again it can then be seen as an aggregate of probabilities, where the integer part then represents the number
of collision events per Planck time, and the decimal part represent the probability for one more event. This
means masses with relativistic mass of the Planck mass and upwards will be dominated by determinism and
relativistic masses considerably below mp will be dominated by probability (uncertainty).

5 The Planck mass particle and its unique quantum frequency
probability

The Planck mass particle plays an extremely important role in our theory, so we must take a closer look at it.
Planck, in 1899, suggested what is today known as the Planck mass, but said little about what it represented
except for indicating it was potentially a very important mass. Lloyd Motz, while working at the Rutherford
Laboratory, [72–74] was likely the first to suggest there could be an important particle (in 1962) that had a mass
equal to the Planck mass. Motz coined this particle the uniton, see also Markov [75] that, in 1967, introduced a
similar particle that he coined maximon. Motz was naturally fully aware that his suggested Planck mass particle
(uniton) had an enormous mass compared to the mass of any particles which had been observed. He tried to
get around this challenge by suggesting the unitons had radiated most of their energy away:

According to this point of view, electrons and nucleons are the lowest bound states of two or more
unitons that have collapsed down to the appropriate dimensions gravitationally and radiated away
most of their energy in the process. – Lloyd Motz

Others [76] have similarly suggested that Planck mass particles only existed just after the Big Bang and that
most of their mass has radiated away, to become today’s known observed particles, such as the electron and the
proton. Others, including Motz and Hawking, have suggested that the Planck mass particles could exist today as
micro-black holes [77–79]. Planck mass particles have also been suggested as a candidate for cosmological dark
matter [80, 81]. Our theory is in many ways much simpler – we have shown that the Planck mass is observational
time dependent. It is only if the Planck mass particle, the collision between two indivisible particles, is observed
in the Planck time that it has the assumed mass of mp ≈ 2.17× 10−8 kg (per Planck time), and it can only be
directly observed in the Planck time window. This is because the Planck mass is one collision, and the kg mass
is a collision frequency ratio. The reduced Compton frequency of one kg in a Planck time observational time
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window is c
λ̄1kg

tp ≈ 45994327. The collision frequency of the Planck mass particle is 1. So we have that the

Planck mass particle in kg as observed in the Planck time is mp ≈ 1
45994327

≈ 2.17× 10−8 kg (per Planck time),
which is the well-known Planck mass. However, it is important to pay attention to the fact that the Planck mass
particle can only be directly observed inside a Planck time observational time window, as this is the lifetime of
the particle. One has to be part of the Planck mass particle to observe the Planck mass particle. This again is
because the maximum speed of a signal is the speed of light. The Planck mass particle has a radius equal to
the Planck length, and only lasts the Planck time before dissolving into its two indivisible particles, that again
are energy. The Planck mass particle still has many indirect effects outside a timeframe of the Plank time that
can be observed. Assume we have a one-second resolution observational time window, the collision frequency
inside one kg is now c

λ̄1kg
≈ 8.52 × 1050, while a single Planck mass particle is still only one collision, because

that is the very definition of a Planck mass particle – that it is one collision between two indivisible particles.
Its mass in kg is now 1

8.52×1050 ≈ 1.17× 10−51 kg. That is a super-small mass, much smaller than the electron

mass ≈ 10−31. This mass is also equal to an energy with frequency one per second, as ~fp = ~× 1 = 1.05−34 J
since this corresponds to a res-mass of ~f

c2
= ~×1

c2
= 1

8.52×1050 ≈ 1.17× 10−51 kg. This corresponds closely to the
suggested photon mass in several studies, see, for example, the review article by [82]. Furthermore, the Planck
mass particles are the building blocks of all masses and all energy. At the observational time windows we tend
to operate, such as the second, the Planck mass particle corresponds to an incredibly small mass in terms of
kg. This resolves the puzzle of why the Planck mass particle is much larger than any observed particle such
as the electron, it is actually a much smaller mass in the observational time window that we observe with our
technology. Nonetheless, it is the standard Planck mass size if observed directly in its lifetime of the Planck
time.

Back to the maximum velocity of particles, which we gave in the section above as vmax = c

√
1− l2p

λ̄2 . For a

Planck mass particle we have λ̄ = lp, the maximum velocity for a Planck mass particle relative to an observer is

vmax = c

√
1−

l2p
l2p

= 0 (61)

That means the velocity of a the Planck mass particle must always be zero. This seems to be absurd at first,
and in conflict with aspects such as Lorentz symmetry and the relativity principle itself. However, it is fully
consistent with the idea that the Planck mass particles are simply a collision between two indivisible particles
and that this collision only lasts the Planck time. In the Planck time the speed of a light signal can only move the
Planck length, since ctp = lp. And since lp is the radius of the Planck mass particle (two indivisibles colliding),
then one must be part of the Planck mass particle itself to observe it. In other words, one is at rest with the
Planck mass particle in order to observe it directly – again this does not mean we cannot observe a series of
indirect effects from this collision from other reference frames, such as gravity. This makes the Planck mass
particle unique; it can only be observed from its own frame of reference, and it is therefore invariant, not because
it is the same as observed from a series of reference frames, but because it can only be observed (directly) from
its own reference frame. We therefore actually have what we can call a legal break with Lorentz symmetry. We
have a unique reference frame, because this frame can only be observed from its own rest frame. We already
know that light has a unique and constant speed – this also means that light particles have a unique rest-mass
frame when colliding. It is a reference frame that only lasts the Planck time. So the Planck time, the Planck
length, are invariant, and they are both directly linked to the collision between two indivisible (light) particles,
which is then making up the Planck mass particle. In other words, the Planck mass particle is in our view a
photon-photon collision, and it is also predicted by standard theory that when two photons collide we get mass,
see for example [83].One should ask oneself, if a photon hits another photon and is reflected, then why should
this event take zero time? And from our theory it clearly looks like it takes the Planck time.

Also the relativistic collision time mass of the Planck mass particle is given by

m̄ = m̄0γ =
lp
c

lp

lp

√
1− v2

c2

(62)

but since the maximum velocity vmax = 0, then we are left with

m̄ = m̄0γ =
lp
c

lp

lp

√
1− 0

c2

= tp
lp
lp

= tp (63)

Interestingly, here we see that, as we have mentioned before, the last part
lp
λ̄

=
lp
lp

= 1, is a probability for

the particle to be in a collision state inside a Planck time window. That is to say, because the Planck mass
particle is always in a collision state (when it exist) in the observational time window an ideal observer can
observe it directly, namely the Planck time. This because this is the lifetime of the Planck mass particle, and
if we observe the Planck mass particle, it is in collision state, as the collision state is the Planck mass particle.
All other particles go in and out of the collision state, and known observed particles such as an electron are for
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the majority of the time not in a collision state, but still in a collision state c
λ̄e

times per second. We are here

talking about internal collisions in the electron (and any other particle), not external. That the Planck mass
particle is the only particle with a collision state probability of always one will be essential to understand the
limitations of the Heisenberg uncertainty principle, and to also unify quantum mechanics with gravity.

Still, this is only a hypothesis so long as we cannot observe a consequence linked to the Planck mass particle.
The collision time from one collision event is only the duration of the Planck time; this is a time interval far
shorter than anything we have instruments to detect today. But what if one has an enormous amount of such
collisions, each lasting one Planck time, then we should be able to detect and measure the aggregate of them.
And we will claim this is exactly what we can do in gravity observations, and is why we now, unlike before,
assumed that it is possible to extract the Planck length independently of knowledge of G. Gravity is directly
linked to the Planck scale, and we claim it is easy to detect the Planck scale for large masses, it is any effect
observable related to gravity.

6 Energy

The standard energy relation for rest-mass particles is E = mc2. There is nothing wrong with dividing both
sides by c, so E

c
= mc, and we could then re-define the energy to a new energy as En = E

c
, and then simply

write En = mc – this would simply give a different output dimension of energy than the one used today. We can
always multiply existing equations with known constants on both sides, for example we could multiply E = mc2

with c2.5 on each side; however, this would just make the equation and the output units more complex. To
multiply or divide each side of a known equation by known constants each side must have a purpose, such as
simplifying without losing something that is already there. To divide E = mc2 to get En = mc does not seem
much of a simplification, but perhaps a little, the standard energy is joule, which is kg ·m2/s2 and joule divided
by c is kg · m/s. Even if the output dimensions are slightly simplified, it does not seem worth doing, and it
would also require an explanation as to why we would do something like that. However, when we switch the
mass definition to collision time, then we see that if we define Ĕ = m̄c2, then the energy output dimensions are

m2/s, but if we divide by c on each side, that is redefine the energy to Ē = Ĕ
c

then the output unit for energy
is simply meter (m), that is to say we end up with that mass is collision time and energy is collision length.
However, we must be very careful that we not are manipulating the energy units/dimensions in ways that make
them inconsistent with observations, and be aware that this is still fully consistent with the fact that E = mc2,
but it is unnecessarily complex. We can, as described in section 2, easily run experiments showing kinetic energy
is a function of v2 and not v, if we have the following energy mass relation

Ē = m̄cγ (64)

and a kinetic energy as
Ēk = m̄cγ − m̄c (65)

then the approximation for this when v << c is the first series of a Taylor expansion then we get Ēk ≈ 1
2
m̄ v2

c
, that

is it is dependent on v2 for low velocities as has been tested. This is also fully consistent with E = mc2γ −mc2,
because we can always multiply our collision time mass m̄ with ~

l2p
, and multiply both sides of Ē = m̄c with c on

both sides. We have performed extensive research on this outside that which we can describe in this paper, and
have found no inconsistencies, but readers should naturally not take this for granted, but investigate it further.
That is to say our new energy definition is identical to our Compton momentum. That in our new theory there
is actually no need for both momentum and energy, all we need is energy and mass (or Compton momentum
and mass, which are the same thing). At the deeper level our energy is given by

Ē = m̄cγ = lp
lp

λ̄
√

1− v2

c2

(66)

Namely, energy at the deepest quantum level is a collision length lp multiplied by a probability of collision

state of
lp

λ̄

√
1− v2

c2

. In pure energy we have that vmax = 0, this seems contradictory to the idea that energy moves

at speed c. However, to observe energy, a photon, we need to collide it with another light particle (building
block of photon and all matter). We need a photon-to-photon collision to observe a photon. Keep in mind that
in our model matter is built of light particles, that is to say indivisible particles traveling at speed c when not
colliding with another such particle. The photon is then longer a photon as it is colliding with another photon,
it is then a Planck mass particle, that lasts one Planck time. Light does not only have an invariant upper speed,
c, but also an invariant lower speed v = 0, but it is then no longer light, but in a Planck particle mass state. We
end up with what we could call a sandwich model, where both the upper and lower speed limit are defined by
light particles. Nothing can move faster than these and they move with speed c, and this speed is the same as
observed from any reference frame (with Einstein-Poincaré synchronized clocks). However, they also define the
lowest speed limit which is always v = 0, as the collision between two indivisibles can only be observed from the
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indivisible particle itself. The collision itself can be seen as an observation, by an ideal observer, not directly by
our instruments.

For energy we are used to thinking of frequency times the Planck constant. Our new energy definition is
a length that we call collision length, that is equal to half the Schwarzschild radius and also the Compton
momentum, all of these three are the same. However, we can easily go from collision length to frequency by
simply dividing energy by the Planck length. Our new energy is the Planck length multiplied by the collision
frequency per Planck time, which is equal to the reduced Compton frequency per Planck time. For example, an
electron has a collision frequency per Planck time (which is the reduced Compton frequency per Planck time)
of simply

f =
Ē

lp
=
m̄ec

lp
=

lp

λ̄e
= 4.19× 10−23 per plank time (67)

Therefore, the frequency is less than one per Planck time – actually all masses smaller than the Planck mass
will have such a frequency less than one, so it is an expected frequency. In other words, it is identical to the
probability of the electron being in a collision state. To obtain the more familiar reduced Compton frequency
per second, we simply have to multiply the above frequency (frequency probability) with the number of Planck
times in one second, 1

tp
, this gives 7.76 × 1020 per second which is identical to c

λ̄e
. Thus, to convert collision

length to joule we simply do the following Ē
lp

1
tp
× 1

8.52×1050 = Ē ~
l2p
c = E. In other words, standard energy in

terms of joule is just collision length multiplied by a composite constant, ~
l2p
c, we can at any time go back and

forth between standard energy to collision time energy, or from our collision time mass to kg mass. The standard
energy and the standard mass are dependent on the same variable, the reduced Compton wavelength. We have
to ask ourselves what is easier to understand intuitively, a length (collision length in meter) or joule (kg ·m2/s2)?
We clearly think the first. And this is also in our view much more than just a fancy change of output units and
dimensions, as the new view gives a significant new insight into the quantum world as it is even compatible with
gravity and quantum gravity.

7 The connection between the energy, the Schwarzschild radius
and quantum gravity

Half the Schwarzschild radius is given by

1

2
rs =

GM

c2
= lp

lp

λ̄
(68)

This is equal to the rest-mass energy in our model Ē = m̄c = lp
lp
λ̄

. The Schwarzschild radius is therefore
what we can call rest-mass energy, or we could even call it gravity energy as it can also be used to predict
observable gravity phenomena. Half the Schwarzschild radius is simply our collision length, which is a more
complete description of energy than standard energy. For all particles we have observed, such as electrons and
also composite particles like protons, then λ̄ >> lp. This means the Schwarzschild radius of such particles is
smaller than the Planck length, which should be impossible in a theory that claims to be consistent with the
idea that the Planck length is the shortest possible length. Actually, we will claim all elementary particles have
a Schwarzschild radius equal to the Planck length, which is the radius of the collision between two indivisible
particles that go in and out in collision state. In fact, particles with mass smaller than the Planck mass do not
have a stable Schwarzschild radius, but a Schwarzschild radius equal to the Planck length, that comes in and out
of existence with a probability of

lp
λ̄

, in an observational time window of the Planck time. We have not derived
general relativity theory from our theory, and we have scarcely investigated general relativity theory in this paper
– this we leave for another time. So how can it be that we can now suddenly incorporate the Schwarzschild
radius into our theory? It is important to be aware that the Schwarzschild radius is not only unique for general
relativity theory. The Schwarzschild radius is simply the radius a mass must be inside where the escape velocity
is c for that radius. As we mentioned earlier, an identical radius was also calculated and presented by Michell
[62] n 1784 based on Newton mechanics.

Based on formula 68 also means that the Schwarzschild radius, and thereby the gravity, are probabilistic
for particles below the Planck mass, as they have λ̄ > lp, and remember

lp
λ̄

can be seen as a probability for
the particle to be in a collision state if the observation time window is the Planck time. For mass sizes from
and above Planck mass particles the Schwarzschild radius is stable, that is so say deterministic. This means for
Planck mass size and up the gravity is stable and not probabilistic. Also be aware that the Planck mass particle,
the collision between two indivisible particles, surprisingly has many of the same mathematical properties as a
micro black hole, but with very different interpretations. The two indivisible particles indeed leave each other
at the speed of light, and the calculated escape velocity of a Planck mass with radius equal to the Planck length
is the speed of light. For more detailed discussion on this in relation to our theory see [60].
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If we know the speed of light (gravity) c, that we, for example, can find from simply measuring the speed of
light of a laser beam, then we from any Newton gravitational phenomena can very easily extract the Schwarzschild
radius, which is the rest-mass collision length energy. This we can see by looking closely at Table 5. For example
we can find the Schwarzschild radius from the Earth by simply observing the gravitational acceleration on the
surface of the Earth, if we solve the gravitational acceleration formula in Table 5 with respect to the Schwarzschild
radius we get

p̄r = m̄c =
1

2
rs = g

R2

c2
(69)

Next, we only need the Schwarzschild radius and the speed of light to predict other gravity phenomena, we
do not need G or ~. Moreover, we do not need the Compton wavelength in this case, see Table 6.

What to measure/predict Formula

Schwarzschild radius / rest mass Compton momentum 1
2rs = m̄c = gR2

c2

Gravitational acceleration field g = rs
2R2 c

2

Orbital time T = 2π
c

√
2R3

rs

Orbital velocity vo = c
√

rs
2R t

Velocity ball Newton cradle vout = c
R

√
Hrs

2

Periodicity Pendulum (clock) T = 2πR
c

√
2L
rs

Advance of perihelion σ = 3πrs
a(1−e2)

Time dilation t2 = t1
√

1− 2 rs
2R

GR bending of light δ = 4 rs
2R

Gravitational red-shift limR→+∞ z(R) = rs
2R

Microlensing θE =
√

2rs(dS−dL)
(dSdL)

Table 6: The table shows how a series of common gravitational measurements and predictions can be done without any
knowledge of the traditional mass size or knowledge of G, when we rely on the Schwarzschild radius which is identical
to the rest-mass Compton momentum, and in our view actually represents the collision length, which is the collision
time mass multiplied by the speed of light.

We are here working with the aggregates of Planck particle events, and extract their rest-mass energy, which is
the sum of the collision lengths, 1

2
rs. To know the Compton wavelength is only needed if we want to separate out

how long one single Planck-mass event (collision event is). That we can predict all observable gravity phenomena
from the collision length energy (the Schwarzschild radius) and c is quite remarkable from an interpretative point
of view. Because if mass is what is causing gravity, and we do not need to find the traditional kg mass and also
not G to do so, then it is perhaps because the collision time contains everything about the mass we need to
know to predict gravity, and this is exactly what our theory tells us. This also explains why we can re-write the
Gaussian law of gravity as ∇2φ = 4πGρ = 2πc2 rs

V
= 4πc2 Ē

V
, in other words the so-called Schwarzschild radius

represents the collision length energy that is directly linked to gravity. If the Schwarzschild radius only relates
to black holes why is it we can then predict all observable gravity phenomena from it combined with only c and
some variables such as R? This should perhaps make us re-think what it truly represents.

Table 7 summarizes how mass and energy and also the Schwarzschild radius can be looked at as probabilistic.

8 Partial derivatives with respect to space and time gives us
frequency probabilities and a differential equation

It is interesting to note that we have

∂m̄

∂tp
=

∂tp
lp

λ̄

√
1− v2

c2

∂tp
=

lp

λ̄
√

1− v2

c2

(70)

and

∂Ē

∂lp
=
∂p̄t
∂lp

=

∂lp
lp

λ̄

√
1− v2

c2

∂lp
=

lp

λ̄
√

1− v2

c2

(71)
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Probabilistic approach

Electron mass m̄e = m̄e√
1− v2

c2

=
lp
c

lp

λ̄e

√
1− v2

c2

= m̄pPc

as collision time

Proton mass m̄P = m̄P√
1− v2

c2

=
lp
c

lp

λ̄P

√
1− v2

c2

= m̄pPc

as collision time

Planck particle mass m̄p =
m̄p√
1− v2

c2

=
lp
c

lp

lp

√
1− o2

c2

=
lp
c = m̄pPc = mp × 1

as collision time

Schwarzschild radius 1
2rs = Ē = m̄c√

1− v2

c2

= lp
lp

λ̄
√

1− v2

c2

= lpPc

as collision length

Schwarzschild radius Planck mass 1
2rs = Ēp =

m̄pc√
1− v2

c2

= lp
lp

lp

√
1− 02

c2

= lpPc = lp × 1

as collision-space

Electron rest mass collision state probability Pc =
lp
λ̄e

= 4.19× 10−23 in the Planck time

Proton rest mass collision state probability Pc =
lp
λ̄P

= 7.69× 10−20 in the Planck time

Proton rest mass collision state probability Pc =
lp
λ̄p

=
lp
lp

= 1 in the Planck time

Table 7: This table shows the “standard” relativistic collision time mass as well as the probabilistic approach. Be
aware of the notation difference between the Planck mass mp and the proton rest-mass mP. All masses and even such
things as the Schwarzschild radius can be expressed as Planck units multiplied by a frequency probability Pc.

This means we can describe the change in energy and gravity (or the Compton momentum, which is the same
thing) with respect to change in space: x = lp, and the change in mass with respect to change in time t = tp,
with the following simple differential equation

∂Ē

∂lp
=
∂m̄

∂tp
(72)

which describes the relation between how energy changes as we move in space and how mass changes as we move
in time, and the result is we have two identical quantum frequency probabilities

lp
λ̄
γ =

lp
λ̄
γ. Furthermore, in the

special case of the Planck mass particle, we have

∂m̄p

∂tp
=

∂tp
lp

lp

√
1− v2

c2

∂tp
=

lp

lp

√
1− 02

c2

= 1 (73)

and

∂p̄t
∂lp

=
∂Ēp
∂lp

=

∂lp
lp

lp

√
1− v2

c2

∂lp
=

lp

lp

√
1− 02

c2

= 1 (74)

Again this simply means the Planck mass particle always has a probability of one for being in a collision
state, and the same with the Planck mass Compton momentum. However, one can question if it even makes
sense to look at change in time and space with respect to the Planck mass particle, as it will dissolve after the
Planck time and the minimum time unit we can move is tp and the minimum space length we can move is x = lp.

We also have that

lp
∂Ē

∂lp
= ctp

∂M̄

∂tp

Ēp
∂Ē

∂lp
= cm̄p

∂M̄

∂tp

Ēp
lp

λ̄
√

1− v2

c2

= cm̄p
lp

λ̄
√

1− v2

c2

(75)

where Ēp is the Planck mass energy in terms of collision length, and m̄p is the Planck mass in terms of collision
time. That basically means that all elementary particles and even the mass of composite particles can be
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described as a frequency probability multiplied by the Planck mass. For composite masses this will be an
aggregate of probabilities.

Furthermore, since Ē = 1
2
rs we also have that

1

2

∂rs
∂lp

=
lp

λ̄
√

1− v2

c2

(76)

and also

1

2

∂rs
∂lp

=
∂m̄

∂tp
(77)

that is the change in the Schwarzschild radius with respect to change in space is identical to the change in the
mass with respect to change in time.

9 A fresh view on the Heisenberg uncertainty principle

We now return to the Heisenberg uncertainty principle and look at it from a new perspective. Our perspective is
controversial, but we ask the reader to try to look at it without prejudice. The Heisenberg uncertainty principle
is again given by

∆p∆x ≥ ~ (78)

Keep in mind that, in standard physics, we have two momentum formulas, one for photons and one for
particles with rest-mass. Let us start with particles with rest mass, the momentum broken down in physical
constants and quantum entities such as the de Broglie matter wavelength is in our view given by

p = mvγ =
mv√
1− v2

c2

=

~
λ̄b

1
v
v√

1− v2

c2

=
~

λ̄b

√
1− v2

c2

(79)

This is the momentum as well as the kg mass as derived from the de Broglie wavelength – in other words it
is the other side of the coin of the de Broglie wavelength relativistic formula, and therefore fully compatible with
the de Broglie wavelength. We could call the standard momentum the de Broglie momentum. Since the Planck

constant and the speed of light are constants, the only variable is the de Broglie wavelength, well λ̄b

√
1− v2

c2

is the relativistic de Broglie wavelength. The de Broglie wavelength is a function of the type of particle and its
velocity. Assume we are dealing with a known type of particle, for example an electron. For a given velocity the
de Broglie wavelength is then given. The only uncertain variable is therefore the velocity of the particle. We
therefore will claim one can re-write the Heisenberg uncertainty principle as

~

λ̄b

√
1− (∆v)2

c2

∆x ≥ ~ (80)

As the Planck constant is a constant, we will claim there is no fundamental uncertainty around it, except
measuring uncertainty, but that is not what the Heisenberg uncertainty principle concerns; it should not be
confused with the observer effect. Assume that we have ∆x = λ̄b, this gives

~

λ̄b

√
1− (∆v)2

c2

λ̄b ≥ ~

~√
1− (∆v)2

c2

≥ ~

1√
1− (∆v)2

c2

≥ 1 (81)

We can only have that 1√
1− (∆v)2

c2

= 1 if ∆v = 0, but we know we cannot have v = 0 as the de Broglie wavelength

is not defined for v = 0 and also not the standard momentum consistent with a de Broglie wavelength. One
could protest here and say that ∆v = 0 does not mean v = 0, as we are talking about the uncertainty in the
velocity and not in the velocity itself. This we believe would be a misinterpretation, as we will claim only a
velocity that is always v = 0 has an uncertainty in the velocity of zero, something that will become clear later
on when we get to the Planck mass particle. But then the standard Heisenberg uncertainty principle is not valid
for the Planck mass particle, which is the very essence of gravity. We claim the Heisenberg uncertainty principle
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is basically nothing more than to say that v < c and that before we have measured the velocity of a particle,
then the particle can have any velocity between zero and v < c, as this indeed will give

∞ >
1√

1− v2

c2

≥ 1 (82)

This simply means v < c that again corresponds to a de Broglie wavelength λ̄b > 0. However, since the
standard momentum is not valid for v = 0 we must for the standard Heisenberg uncertainty principle actually
have

∞ >
1√

1− v2

c2

> 1 (83)

and

∆p∆x > ~ (84)

That is to say, we will claim the Heisenberg uncertainty principle, in its current form, linked to the standard
momentum, is not valid for v = 0, i.e. it can say nothing about rest-mass particles. One could try to interpret
this as all particles with mass will always have a velocity 0 < v < c, and that a particle can therefore never stand
still, and that it therefore does not matter that the de Broglie wavelength and thereby the momentum is not
valid for v = 0, this we think would be a grave mistake. The correct interpretation we believe is to understand
that the Heisenberg uncertainty principle is rooted in the standard momentum, which is not mathematically
defined for rest-mass particles, so that the Heisenberg uncertainty principle can say nothing about rest-mass
particles in its current form.

Let us assume that we try to incorporate a Planck length limit and just speculatively set ∆x ≥ lp. We can
then, in the special case, set ∆x = lp, and this gives

~

λ̄b

√
1− (∆v)2

c2

lp ≥ ~ (85)

Solved with respect to ∆v this gives ∆v ≤
√

1− l2p
λ̄2
b
, which is different to our previously derived maximum

velocity of matter. This maximum velocity does not make much sense as it is a function of the de Broglie
wavelength, λ̄b, that itself is a function of the velocity, so we get a maximum velocity that again is a function
of the velocity of the particle. Secondly, as long as we work with the kg mass definition that contains no
information about the Planck length, then setting a Planck length limit is only a speculative hypothesis with no
solid foundation as to why this should be the case.

10 Uncertainty principle based on the Compton momentum

Next, let us, instead of using the standard momentum as the foundation for the uncertainty principle, suggest
an uncertainty principle based on the Compton momentum, from this we get, if we still work with the kg mass
definition, the following

∆pt∆x ≥ ~
mcγ∆x ≥ ~

~
λ̄

1
c
c√

1− (∆v)2

c2

∆x ≥ ~

~

λ̄
√

1− (∆v)2

c2

∆x ≥ ~

1

λ̄
√

1− (∆v)2

c2

∆x ≥ 1 (86)

This modified Heisenberg uncertainty principle based on the Compton momentum is compatible with ∆v = 0
and a particle at absolute rest. We can also here speculatively assume ∆x ≥ lp, and then in the special case

where we have ∆x = lp and solve with respect to ∆v, we get ∆v = c

√
1− l2p

λ̄2 , which is the maximum velocity
formula we have derived before, but here linked to maximum uncertainty in velocity. In this maximum velocity
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uncertainty formula, we do not have the problematic issue that the maximum velocity formula itself is a function
of velocity, that we obtained from the maximum uncertainty in velocity formula, that we again got from the
standard Heisenberg uncertainty principle, when we assumed ∆x ≥ lp. However, still there is no clear reason
from this uncertainty principle based on the Compton momentum with the kg definition of mass, that we should
have a minimum limit on uncertainty in the position equal to the Planck length.

Let us also incorporate our new mass definition in the Compton momentum. We start with the Compton
momentum and the kg mass

∆pt∆x ≥ ~
mcγ∆x ≥ ~

mc√
1− (∆v)2

c2

∆x ≥ ~ (87)

Next we turn the kg mass into a collision time mass – remember we have m̄ = m
l2p
~ . That is to say, we simply

need to multiply both sides with
l2p
~ (a more formal derivation based on quantum mechanics is given in section

12), this gives

m̄c√
1− (∆v)2

c2

∆x ≥ l2p

lp
c

lp
λ̄
c√

1− (∆v)2

c2

∆x ≥ l2p

lp

λ̄
√

1− (∆v)2

c2

≥ lp
∆x

(88)

Following this, we can try to investigate the boundary conditions for this new uncertainty principle. We
know the minimum uncertainty in ∆v cannot be below zero, so we set ∆v = 0, which is the case of a particle
we know is at rest, then solved with respect to ∆x we get ∆x = λ̄. That is the maximum uncertainty in ∆x
is up to the reduced Compton wavelength of the rest mass of the particle in question, in other words we have
∆x ≤ λ̄. That is to say, we must have

lp

λ̄
√

1− (∆v)2

c2

≥ lp
∆x

lp

λ̄
√

1− (0)2

c2

≥ lp

λ̄
(89)

Keep in mind that
lp

λ̄

√
1− (∆v)2

c2

is a frequency probability of the particle being in a collision state as observed

in the Planck time observational time window, and it is also the percentage of time in a longer observational
time interval that the particle is in collision state. This, in other words, puts a lower limit on this collision state
quantum probability for a given particle equal to Pc ≥ lp

λ̄
.

Next, from our previous analysis we have that vmax = c

√
1− l2p

λ̄2 , this mean we also must have ∆v ≤

c

√
1− l2p

λ̄2 . If we now set ∆v = c

√
1− l2p

λ̄2 , this leads to

lp

λ̄

√
1−

(
c

√
1−

l2p

λ̄2

)2

c2

∆x ≥ lp

lp
lp

∆x ≥ lp

∆x ≥ lp (90)

This means we must have lp ≥ ∆X ≤ λ̄ and 0 ≥ ∆v ≤ c

√
1− l2p

λ̄2 . And, unlike in the standard framework,
in our collision time mass theory we also have very good reasons to assume ∆x ≥ lp. In contrast to standard
theory, here we have a solid foundation to suggest so, as lp is the diameter of the indivisible particles making
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up all particles. And because the reduced Compton wavelength is the distance to distance between indivisible

particles. If we set ∆x = lp, we must also have ∆v = c

√
1− l2p

λ̄2 , and this gives

∆p̄t∆x ≥ l2p

m̄pcγlp ≥ l2p

lp
lp

λ̄
√

1− (∆v)2

c2

≥ l2p

lp
lp

λ̄

√
1−

(c

√
1−

l2p

λ̄2 )2

c2

lp ≥ l2p

1 ≥ 1 (91)

We cannot have 1 > 1, so ≥ can be replaced with = sign in the case ∆x = lp. That is to say our new
uncertainty principle gives us a range for the quantum probability of a particle being in a collision state, we end
up with

lp

λ̄
≤ lp

λ̄
√

1− v2

c2

≤ 1

lp

λ̄
≤ Pc ≤ 1 (92)

Again, pay attention to the fact that Pc =
lp

λ̄

√
1− v2

c2

is the frequency probability for the particle to be in a

collision state as observed in the Planck time. On the other hand, if we mistakenly only incorporate the velocity
limit we have in standard theory v < c, and thereby also assume ∆v < c, directly or indirectly, then we do not
get an upper unit limit on this probability; that is to say, at a deeper level the standard Heisenberg uncertainty
principle likely indirectly allows probabilities above unity. We are not going to investigate this further here, but
we can speculate that this could potentially be one of the reasons why we sometimes need negative probabilities
[84–87] in standard quantum physics, perhaps to compensate for the embedded and we would say concealed,
> 1, probabilities in the standard Heisenberg uncertainty principle. In other words, we would think the negative
“pseudo” probabilities (or extended probability theories) in parts of quantum physics could potentially be linked
to make an incomplete uncertainty principle and its corresponding incomplete quantum mechanics somehow still
also work ( a type of replacement for the special case of rest mass particles). That one can use negative pseudo
probabilities to get a get an incomplete model to still work is known from quantitative finance, see [88] (for
example when one work outside the state-space of the model). However, in finance, it is typically easy to find
out why the underlying model is incomplete as the models and the assets markets are much easier to understand
and observe than the subatomic world. Therefore, negative probabilities have not become popular in finance,
as one has instead been able to fix the incomplete model, and thereby have probabilities staying in the interval
zero to one. Could it be that we are on to something similar here, that is to discover and then potential fix an
incomplete model for uncertainty in the quantum realm?

The special case of the Planck mass particle

In the special case of the Planck mass particle we have

∆p̄t∆x ≥ l2p
lp
c

lp
lp
c√

1− (∆v)2

c2

∆x ≥ l2p

lp

lp

√
1− (∆v)2

c2

∆x ≥ lp

lp
c

lp
lp
c√

1− (∆v)2

c2

∆x ≥ l2p

1√
1− (∆v)2

c2

∆x ≥ lp (93)
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As the Planck mass particle is always at rest if it is observed, as it must be observed from itself. We have
that ∆v must be zero for this special case. Well, we have from previous that the maximum uncertainty in

∆v = c

√
1− l2p

λ̄2 . And since the reduced Compton wavelength of a Planck mass particle is λ̄ = lp we get that its

maximum uncertainty in velocity is ∆v = c

√
1− l2p

l2p
= 0, this gives

lp

lp

√
1− 02

c2

∆x ≥ lp

∆x ≥ lp (94)

Actually we must have ∆x = lp for the Planck mass particle as the radius of the particle only is lp, and it
only can be observed inside its own radius before it dissolves, this gives

∆p̄tlp ≥ lp
lp
c

lp
lp
c√

1− (∆v)2

c2

lp ≥ lp

1√
1− 02

c2

≥ 1

1 ≥ 1 (95)

In other words, the ≥ sign should actually be replaced with = for the Planck mass particle, as we know 1 = 1,
and 1 ≥ 1 does not give much meaning. This simply means the quantum probability for a Planck mass particle
to be in a collision state must always be one. If it is not in a collision state it simply does not exist. That is to
say, for a Planck mass particle we have zero uncertainty. This is because the Planck mass particle dissolves into
its indivisible particles after the Planck time. The Planck mass particle only has one state, that is a collision
state, while all other particles made up of Planck mass particles going in and out of existence have two different
states, collision state and non-collision state. The Planck mass particle is simply two indivisible particles lying
next to each other in a collision state, it has a radius equal to the Planck length. A signal cannot travel faster
than light, and in the lifetime of the Planck mass particle we therefore have to be part of it to observe it.

Energy time uncertainty principle

Our collision length energy leads to the following energy time uncertainty principle

∆E∆t ≥
l2p
c

m̄c√
1− (∆v)2

c2

∆t ≥
l2p
c

lp
c

lp
λ̄
c√

1− (∆v)2

c2

∆t ≥
l2p
c

lp

λ̄
√

1− (∆v)2

c2

≥ lp
c∆t

(96)

Assume now the minimum uncertainty in time is ∆t = tp =
lp
c

, and we put this into the equation above, this
gives

lp

λ̄
√

1− (∆v)2

c2

≥ lp

c
lp
c

lp

λ̄
√

1− (∆v)2

c2

≥ 1 (97)

Solved with respect to ∆v this gives ∆v = c

√
1− l2p

λ̄2 , and since for a Planck mass particle λ̄ = lp this

gives ∆v = c

√
1− l2p

l2p
= 0. So, this confirms that in the special case of the Planck mass particle, we have zero
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uncertainty. Namely, for the Planck mass particle. the ≥ sign in the uncertainty principle becomes an equal
sign.

11 An attempt to make a new and simplified quantum mechan-
ics

So far in our paper we are very confident that we have a mathematically rigorous theory that is consistent
with all experiments and observations that have been performed in physics. In the next sections we attempt to
develop a new and simplified quantum mechanics. However, we are here breaking into uncharted territory on
a rather complex topic, so we are less certain about the completeness and interpretation of the theory we will
present here than in the rest of the paper. However, we think it, as a minimum, should be seen as an interesting
introduction to a potential new path. First of all, it is important to understand that our theory in general is
fully consistent with existing quantum mechanics, as our theory also leads to the standard relativistic energy
momentum relationship as shown in section 2. Furthermore, we can always switch back from our collision time
mass to the standard kg mass simply by multiplying it by the composite constant ~

l2p
; however, this will only lead

to a more complex theory. That is to say, the existing standard theory that also without modifications cannot
lead to unification of gravity with quantum mechanics.

We already have shown in section 2 the standard relativistic energy momentum relation, E2 = p2c2 +m2c4,
is just a function of the much simpler relativistic energy Compton momentum relation, that is given by

E = ptc = mc2γ (98)

If we in addition replace the kg mass with the collision time mass and the energy with collision length we get

Ē = p̄t = m̄cγ (99)

Before we suggest a relativistic wave equation we also have to know if the collision length energy Ē, and
the Compton momentum p̄t, and the collision time mass, m̄, can best be described as scalars or vectors. This
must also be chosen in a way that ensures a consistent mathematical theory, that also makes logical sense with
respect to our assumptions about the quantum world. In modern physics mass is considered a scalar, the same
is the case with energy, while momentum is a vector. Here, we will try to take a closer look at the assumptions
behind this based on our new view on matter and energy and momentum.

Assume the smallest possible particle is a spherical indivisible particle, as shown in Figure 2. It clearly has
no direction in space as it is perfectly spherical, so it must be a scalar and not a vector. In standard physics
elementary particles are point particles, but they also have wave-particle duality. In standard physics it is
assumed that the matter wave that has length equal to the de Broglie wavelength spreads out symmetrically
in all directions, this is at least one of several possible interpretation of standard physics (?). So yes, standard
physics assume a rest-mass is a scalar.

Figure 2: The figure shows one indivisible particle, if it is at rest it is a scalar. However, indivisible particles not
colliding are energy that moves at speed c (velocity ccc), since the motion is in a direction they are vectors.

When it comes to macroscopic objects all will likely agree a parked car is standing in a given direction, so
it seems like it can better be described by a vector than a scalar (one could naturally come up with a perfectly
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symmetrical car, but that is beyond the point we are making here). However, a ball lying on the ground is
symmetrical and is a scalar. Still, we could imagine that if the building blocks of the ball were many oval-shaped
particles, then the individual building blocks of the ball would be vectors. What we are interested in is if the
most fundamental particles are vectors or scalars. In our model the ultimate particle is indeed indivisible, but
this is a particle that always travels at velocity ccc, except when colliding with other particles. This particle makes
up both energy and mass. When it moves, and it moves with velocity ccc, then it is what we call energy. So, if
the particle in Figure 1 moves relative to the observer in a given direction then it can likely best be described
as a vector. That is to say, energy is likely to be a vector at the deepest level, not a scalar. In this model a
photon is a series of such particles moving after each other with distance to distance between them equal to the
photon wavelength. A mass in our model is two colliding indivisible particles, the Planck mass particle, this is
illustrated in Figure 3.

Figure 3: The figure shows two indivisible particles colliding; this structure is what we call mass, it can simplified be
described as a vector as the two-sphere structure has direction in space.

The Planck mass particle, consisting of two colliding indivisibles, is not symmetrical, it has a direction in
space, so it is a vector. Non-Planck-mass particles in our model consist of indivisible particles, each moving back
and forth over a distance equal to the reduced Compton wavelength of that particle and then colliding – this
can be illustrated by Figure 4, this is also clearly a vector as such a structure also have a direction in space.

Figure 4: The figure shows two indivisible particles traveling after each other with a distance center to center equal
to the Compton wave, this is a vector.

From this perspective we have the kg mass as a vector

mmm = (mx,my,mz) =

(
~
λ̄

1

c
iii,

~
λ̄

1

c
jjj,

~
λ̄

1

c
kkk

)
, (100)

where λ̄ = |λ̄̄λ̄λ|, and iii, jjj, kkk are the unit vectors of the Compton wavlength. Or in terms of collision time mass
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m̄̄m̄m = (m̄x, m̄y, m̄z) =

(
lp
c

lp

λ̄
iii,
lp
c

lp

λ̄
jjj,
lp
c

lp

λ̄
kkk

)
, (101)

where λ̄ = |λ̄̄λ̄λ|, and iii, jjj, kkk are the unit vectors of the Compton wavlength.
that is the reduced Compton wavelength in our model is not spreading out in all directions for elementary

particles, but has a direction in space, as illustrated in Figures 3 and 4, where the reduced Compton wavelength
is the distance center to center between the indivisible particles. This also means the Compton momentum is a
vector, as we have

p̄̄p̄pt = (p̄x, p̄y, p̄z) = m̄̄m̄mcγ = (m̄xcγ, m̄ycγ, m̄zcγ) (102)

Another alternative to assuming that mass is a vector and that the Compton momentum and also energy
for this reason is a vector, is to assume the mass is a scalar, but that the Compton momentum and energy
still can be vectors by assuming the velocity of light is a vector velocity-field. This would mean we have
p̄̄p̄p = m̄cccγ, and Ē̄ĒE = m̄cccγ. Another way to “turn” the Compton momentum and energy into vectors is to
multiply each with a unit velocity vector v̂̂v̂v, this gives p̄̄p̄p = m̄cγv̂̂v̂v and Ē̄ĒE = m̄cγv̂̂v̂v, and we also have relativistic
mass m̄̄m̄mr = m̄γv̂̂v̂v. That is to say, there are several ways to get our theory mathematically consistent, but
each method would likely lead to different interpretations, so it is not sufficient just to have it mathematically
consistent. A small side step is the photon mass; the photon mass is in general given by simply p = ~

λγ
.

There is no need for velocity in the standard photon momentum. The way standard physics turns photon
momentum into a vector is by assuming one has a light velocity field and now writing the momentum as fourth

momentum, Pγ = (pt, px, py, pz) =
(
E
c
, Evx
c2
,
Evy
c2
, Evz
c2

)
, however what if it is the wavelength of the photon that

has a direction in space? We could then alternatively obtain a vector from the photon momentum in this way,

pppγ = (px, py, pz) =
(

~
λγ
iii, ~
λγ
jjj, ~

λγ
kkk
)

, this just to illustrates that perhaps our idea of mass being a vector due to

assuming the Compton wavelength having a direction in space is likely to be closer to standard theory than one
can initially get the impression of it being.

Anyway, let us assume mass, energy and momentum are vectors. Remember the Compton momentum is
identical to our new energy definition. This is unlike standard physics. So we have the following relativistic
energy momentum relation

Ē̄ĒE = m̄̄m̄mc = pppt (103)

We can replace the energy vector with the following energy time operator ˆ̄E = ilp∇t = lp
∂
∂tx

iii+lp
∂
∂ty

jjj+lp
∂
∂tz

kkk,

where iii, jjj,kkk are the standard unit vectors in the directions of the x, y and z coordinates. Further the Compton
momentum space operator with ˆ̄pt = il2p∇ = il2p

∂
∂x
iii + il2p

∂
∂y
jjj + il2p

∂
∂z
kkk. This gives the following quantum wave

equation8

ilp∇tψ = −il2p∇ψ, (104)

that should be consistent with our relativistic energy Compton momentum relation, and therefore indirectly also
the standard relativistic energy momentum relation, see section 2. Here ψ is a scalar wave-function. We can
divide by ilp on each side and simplify further to

∇tψ + lp∇ψ = 0 (105)

That is to say we have three-dimensional time and three-dimensional space, so one could even claim six-
dimensional collision space-time (3+3), but it is more like the familiar three dimensions in space are both
connected to space and time, this because mass is collision time, and mass also has a physical extension at the
deepest subatomic level, collision length (energy) also has extension and direction. Collision time and collision
length are two sides of the same coin, we cannot observe space without time, and we cannot observe time without
space. In this theory it is not like we can move only along the x-axis and at the same time we can decide to move
in any of the three time directions: tx, ty, tz. To move only in the x direction in space means we also can only
move in the tx direction in time, the time direction follows the space direction as they are ultimately two sides
of the same coin (subatomic reality). Calling our six-dimensional theory simply ‘three dimensional space-time”
would perhaps be a better way to coin our theory than six dimensional, after all three-dimensional space-time is

8We [55] have performed a very similar attempt before, where we got ∂ψ
∂t

= ccc · ∇ψ, we now have discovered we had made an error

there with respect to the energy operator, and that this wave equation should be corrected to ∂ψ
∂t

= lpccc · ∇ψ. The reason we have
pmbc there and not in our new wave-equation is due to we worked with a mass operator actually then. Back then we also had some
inconsistencies with respect to use of vectors and scalars. This time we have also carefully considered if mass and energy are vectors or
scalars and paid attention to getting the math consistent here, which leads us to our new and this time we hope complete and robust
quantum wave equation of ∇tψ = lp∇ψ. Our previous wave equation could likely not handle gravity, but after the fix it should handle
gravity, energy, momentum and mass. Remember in our new theory energy (collision-length) is equal to the Compton momentum, that
again is equal to the Schwarzschild “radius”, so our wave-equation at the same time modells all these, as they at the deepest level are
the same.
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three dimensions in space and three in time. In our theory time just means something was standing still while
something was moving relative to it. Time simply means we can move in three dimensions. If we could not
move, then the world would be 100% static, and could not even be observed. To observe space we need to move
in space, and to also observe time we need to be able to move in space.

We are not the first to seriously consider the quantum world to have three time dimensions and three space
dimensions, see for example [89–99] that also suggested there could be three time dimensions and three space
dimensions (3+3). Still, this line of thought does not appear to have gained momentum and was principally
discussed in the 1970s to 1980s, and is now partly forgotten. Perhaps we are now much closer to understanding
the possibility of three time dimensions in addition to three space dimensions.

Our new relativistic quantum equation has quite a different plane wave solution than the Klein–Gordon and
Schrödinger equations, but at first glance it looks exactly the same:

ψ = ei(kx−ωt) (106)

In our theory, we should have k = 2π
λ

, where λ is the relativistic Compton wavelength and not the de Broglie
wavelength as it is assumed to be in standard wave mechanics, see for example [23, 100]. We have

p̄t = m̄tc =
lp
c

lp2π

λ
c = kl2p (107)

and we have the relativistic frequency per Planck time is given by Ē
lp

=
lp

λ̄

√
1− v2

c2

, this means if ω is the relativistic

frequency per Planck time then we have

Ē = m̄tcγ =
lp
c

lp

λ
√

1− v2

c2

c = lp
lp

λ̄
√

1− v2

c2

= lpω (108)

One normally thinks of frequency as c
λ̄

(or in relativistic form
lp
λ̄
γ), but this is the frequency per second.

The frequency per Planck time is c
λ̄
tp =

lp
λ̄

. An important point is that the Planck mass particle only lasts the
Planck time, so to operate with frequencies above the Planck time will likely not be able to properly describe
the full depth of reality. Therefore, standard physics is working with the de Broglie frequency per second, while
we are working with the reduced Compton frequency per Planck time.

Based on the above, we can rewrite the plane wave solution as

ψ = ei(kx−ωt) = e
i

(
p̄t
l2p
lp− Ēlp tp

)
(109)

where p̄t is the total Compton momentum as defined earlier. So, our quantum wave function is rooted in the
Compton wavelength instead of the de Broglie wavelength, and in the collision-time mass instead of the standard
kg mass. For the formality of it, we look at the momentum and energy operators and see that they are correctly
specified

∂ψ

∂x
=
ip̄t
l2p
e
i

(
p̄t
l2p
x− Ē

lp
t

)
(110)

This means the momentum operator must be

ˆ̄pt = −il2p∇· (111)

and for energy we have

∂ψ

∂t
= − iĒ

lp
e
i

(
p̄t
l2p
x− Ē

lp
t

)
(112)

and this gives us an energy operator of

ˆ̄E = ilp∇t (113)

We see that also the momentum and energy operators are not the same as under standard quantum mechanics.

12 Formal re-derivation of Heisenberg uncertainty principle based
on collision time mass

Based on our Compton momentum operator ˆ̄pt = il2p∇, or in the special case when only dealing with the x
axis dimension we have the Compton momentum operator: ˆ̄pt = l2p

∂
∂x
iii. We can then check if our Compton

momentum operator commute with the space operator x̂. We should have
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[ ˆ̄pt, x̂]ψ = [ˆ̄ptx̂− x̂ ˆ̄pt]ψ

= ˆ̄ptx̂ψ − x̂ ˆ̄ptψ

= l2pi
∂

∂x
iii(ψx)− xl2pi

∂

∂x
iiiψ

= il2p

(
x
∂

∂x
iiiψ + ψ

∂

∂x
iiix− x ∂

∂x
iiiψ

)
= il2pψ (114)

That is to say, ˆ̄pt and x̂ as expected do not commute, just as in the case for the standard Heisenberg
uncertainty principle, and we must have

∆p̄t∆x ≥ |
ˆ
ψ∗[ ˆ̄pt, x̂]ψdx|

∆p̄t∆x ≥ |il2p
ˆ
ψ∗ψdx|

∆p̄t∆x ≥ |il2p|
∆p̄t∆x ≥ l2p (115)

This looks unfamiliar, but is nothing more mysterious than the fact that our new mass definition is the kg

mass definition multiplied by
l2p
~ , and also that our momentum is different than the standard momentum, so we

end up with ∆p̄t∆x ≥ l2p instead of ∆p̄t∆x > ~. In the special case of the Planck mass particle we will challenge
whether the procedure above can be used, or at least how it should be interpreted. The Planck mass particle
only has a lifetime equal to the Planck time, and the Planck time is the shortest time interval that can exist in
our theory, and the Planck length is the shortest space interval one can observe. And we are not thinking about
what we can observe from the most advanced technical instruments here, but an ideal quantum observer, which
could even be a single photon, or in this case even a single indivisible particle, that in our theory is the building
block of all energy and matter. This particle has a diameter equal to the Planck length. The Planck mass particle
is two such indivisible particles standing side by side (in a collision) for the Planck time, to then leave each other
again at the speed of light. In other words, we cannot look at change in space or change in time for a Planck
mass particle, as it would already have dissolved as we went from tp to 2tp, and tp is the shortest possible time
interval, and lp the shortest length interval. We have shown that a new type of quantum frequency probability
is always one for a Planck mass particle. We think it is likely that the Heisenberg uncertainty principle collapses
from an uncertainty principle to a certainty principle for the Planck mass particle. One interpretation is that
the ≥ sign in the uncertainty principle above then simply switches (or simplifies) to an equal sign, and that we
in this special case of the Planck mass particle simply have

p̄tlp ≥ l2p

mpcγlp ≥ l2p
lp
c

lp
lp√

1− (∆v)2

c2

lp ≥ l2p

lp
c

lp
lp√

1− 02

c2

lp ≥ l2p

lplp ≥ l2p

1 ≥ 1 (116)

And naturally we cannot have 1 ≥ 1, but only 1 = 1. It is as if in the very limit the principle above goes from
≥ to just =, and this also means the uncertainty collapses. In terms of uncertainty this would naturally mean
that we, for the Planck mass particle, have ∆p̄t∆x = 0.

If we are right, this could potentially have major implications for a series of interpretations in quantum
mechanics. For example, we would expect there to be implications for entanglement and Bells theorem [101].
Bells theorem was a response to Einstein, Podolsky, and Rosen’s hidden variable theory [102], where it is assumed
that Bell proved that Einstein, Podolsky, and Rosen’s idea about hidden variable theories was wrong. However,
Bells theorem is based on what we could say is the hidden assumption that Heisenberg’s uncertainty principle
always holds, see for example [103, 104]. If the Heisenberg uncertainty principle, when understood from a deeper
perspective, is not an uncertainty principle for the Planck mass particle, but becomes a certainty principle in
this very limit (or alternatively is simply not valid for Planck mass particles), then we can no longer exclude
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the possibility of hidden variables. We think this is a path worthy of further investigation. After all, we have
clearly shown in the gravity sections in this paper that the Planck length can easily be extracted from Newtonian
gravity phenomena and only by knowing one other constant c. The Planck length we have shown is likely to be
linked to a Planck mass particle. And we have reason to think the Planck mass particle has been misunderstood
in the past. We have been searching for an enormously large particle mass, 10−8 kg, that is nowhere to be
found. Well, this is the mass of the Planck mass particle, but it only exists for the Planck time, and it is
therefore observational time window dependent. In terms of kg and in relation to the time unit of one second it
corresponds to only about 10−51 kg. Even in an electron we claim the Planck mass particle comes into existence
at the reduced Compton frequency of the electron, that is fe = c

λ̄e
≈ 7.76 × 1020 times per second. That is an

enormous number of times per second that we have a Heisenberg uncertainty principle potentially break down
– by break down we simply mean ≥ is limited to = and that the uncertainty then disappears. However, this is
very hard to detect as the standard Heisenberg uncertainty principle is valid 1− lp

λ̄e
≈ 1− 4.1× 10−23 fraction

of the observational time. To detect the Heisenberg uncertainty breakdown in a single electron would likely
mean being able to measure observable gravity effects from a single electron. This we are not able to do, but we
are able to measure gravity effects from massive amounts of protons, that again consist of elementary particles.
So in our view can easily measure the breakdown of the Heisenberg uncertainty principle, it is any observable
gravity observation.

13 Three dimensional Space-time geometry (3 + 3 = 6)

Our quantum wave equation ∇tψ = lp∇ψ, must be inconsistent with Minkowski [105] spacetime as our rela-
tivistic quantum wave equation only is consistent with six dimensions (three dimensional space-time, three time
dimensions plus three space dimensions). An alternative would be to try to re-formulate it as a four-dimensional
space-time theory. Actually it is not even clear if Minkowski space-time is fully consistent with standard quantum
mechanics, see for example [106] for a discussion on this.

Minkowski space-time is basically given by

dt2c2 − dx2 − dy2 − dz2 = ds2 (117)

where the space-time interval ds2 is invariant. It is a four-dimensional space-time, with three space dimensions
and one time dimension. In the case where we deal with the simplified case of one dimension in space and time
we have the well-known relation

dt2c2 − dx2 = ds2 (118)

This relation is directly linked to the Lorentz transformation, as we have

t′2c2 − x′2 =

 t− L
c2
v√

1− v2

c2

2

c2 −

 L− tv√
1− v2

c2

2

= s2 (119)

Next, assume we now are working with two events that are distance L apart which are linked with causality.
For the two events to be linked by causality, information needs to be sent between them. This could be, for
example, in the form of a bullet coming from event one and hitting event two, or for example a sound signal.
The signal moves at speed v2 as observed from the rest frame of L. This means the time between the cause and
effect between the two events is t = L

v2
. We also have a speed v, which is the velocity of the frame where L is

at rest with respect to another reference frame. From this we have

t′2c2 − x′2 =

 L
v2
− L

c2
v√

1− v2

c2

2

c2 −

 L− L
v2
v√

1− v2

c2

2

(120)

The Minkowski space-time interval is invariant because s2 = t′2c2 − x′2 is invariant. This naturally means
it is observed to be the same, no matter what reference frame it is observed from. One way to understand why
this is the case is to look at the following derivation
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s2 = t′2c2 − x′2 =

 L
v2
− L

c2
v√

1− v2

c2

2

c2 −

 L− L
v2
v√

1− v2

c2

2

=

L c
v2
− L v

c√
1− v2

c2

2

−

 L− L v
v2√

1− v2

c2

2

=
L2 − 2L2 v

v2
+ L2 v2

v2
2

1− v2

c2

−
L2 c2

v2
2
− 2L2 v

v2
+ L2 v2

c2

1− v2

c2

=
L2 + L2 v2

v2
2
− L2 c2

v2
2
− L2 v2

c2

1− v2

c2

=
L2
(

1− v2

c2
+ v2

v2
2
− c2

v2
2

)
1− v2

c2

=
L2
(

1− v2

c2

)(
1− c2

v2
2

)
1− v2

c2

= L2

(
1− c2

v2
2

)
(121)

That is to say, v is falling out of the equation, and the Minkowski space-time interval is therefore proven
invariant. For a given signal speed v2 between two events, the space-time interval is the same from every reference
frame. In the special case where the signal between the two causal events is always moving at v2 = c, then things
simplify considerably. In this special case, we have

s2 = t′2c2 − x′2 =

 L
v2
− L

c2
v√

1− v2

c2

2

c2 −

 L− L
v2
v√

1− v2

c2

2

=

L c
v2
− L v

c√
1− v2

c2

2

−

 L− L v
v2√

1− v2

c2

2

=
L2 − 2L2 v

c
+ L2 v2

c2

1− v2

c2

−
L2 c2

c2
− 2L2 v

c
+ L2 v2

c2

1− v2

c2

= 0 (122)

Namely, in this case the space-time interval is always zero and naturally also invariant. Already in 1960, Rindler9

[107] showed that the Minkowski space-time could be simplified from dt2c2 − dx2 − dy2 − dz2 = ds2 to dt2c2 −
dx2−dy2−dz2 = 0 when dealing with light signals, and also in the moving system dt′2c2−dx′2−dy′2−dz′2 = 0,
see also [108].

Next, let us replace L with the reduced Compton wavelength, as this is the distance indivisible particles
travel inside particles at the speed of light and then collide. In other words, internally in matter at the very
quantum level we only have causality events linked at the speed of light, this gives

s2 = t′2c2 − x′2 =

 λ̄
v2
− λ̄

c2
v√

1− v2

c2

2

c2 −

 λ̄− L
v2
v√

1− v2

c2

2

=
λ̄2 − 2λ̄2 v

c
+ L2 v2

c2

1− v2

c2

−
L2 c2

c2
− 2L2 v

c
+ L2 v2

c2

1− v2

c2

= 0 (123)

In the special case of a Planck mass particle, we have λ̄ = lp and further we have v = 0 since vmax for a
Planck mass particle is zero. This gives

9And perhaps others had showed the same long before him?
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s2 = t′2c2 − x′2 =

 λ̄
c
− λ̄

c2
0√

1− v2

c2

2

c2 −

 λ̄− L
v2

0√
1− v2

c2

2

= 0 (124)

Which simply means our theory also on this is consistent with the Planck scale. Again the reason why we
always have v = 0 for the Planck mass particle is that it can only be observed directly from itself. It lasts
one Planck time, and its “radius” is the Planck length, it can only “communicate” with itself and can only be
observed from one of the two indivisible particles that are part of the Planck mass particle, and that stand next
to each other in a collision. The Planck mass particle is always the same, it is invariant, but due to very special
reasons, as we have discussed through this paper.

However, our theory likely need the following space-time geometry at the deepest level of reality (needed to
describe collision space-time)

dx2 − dy2 − dz2 − c2dt2x + c2dt2y + c2dt2z = 0 (125)

An important point mentioned by Cole [89] is that, while x, y and z are observable separately, it is often
thought that the quantity t =

√
t2x + t2y + t2z, is observable only in one time measurement, t. The drawback of

this interpretation, as pointed out by Cole, is that if the transformations for the six co-ordinates x, y, z, tx, ty, tz
are linear, then the transformations for the quantities x, y, z and t become nonlinear. In other words it seems to
lead to simplification to add two time dimensions.

Our theory is three-dimensional space-time theory, and since space-time consists of space and time, it means
we have three time dimensions and three space dimensions that are closely tied together. We cannot observe
space without motion, and motion requires time, and time requires motion in space. If we, for example, move
only in the y direction, then time also has to move in the y direction. That is to say, y in the space directly
linked directly to ty. Collision-space and collision time are two sides of the same coin, which is why we call it
collision space-time. A three dimensional space-time geometry is actually nothing more than space plus motion,
as time in our theory always is linked to length divided by the speed of the indivisible particle.

14 Summary

We have claimed that the Compton wavelength is the true matter wavelength and that the de Broglie wavelength
is simply a mathematical function of this deeper reality. Furthermore, we claim that the standard momentum
is also just a mathematical function of what we have coined the Compton momentum. This has led to an
unnecessarily complex theory. In addition, we have shown that the de Broglie wavelength and the standard
momentum cannot be mathematically defined for rest-mass particles, v = 0, so anything that is built on standard
momentum, such as standard quantum mechanics and the Heisenberg uncertainty principle, cannot be valid to
say anything about rest-mass particles. We have also shown that the Planck mass particle is the very essence of
gravity and that it could be the building block of all other masses, and that it is always at rest in its lifetime,
but its lifetime is only the Planck time. We have a quantum mechanical theory and a uncertainty principle that
are not compatible with rest-mass particles and rest is the very essence of gravity. Therefore, it is perhaps not
so strange that we not have been able to unify gravity with quantum mechanics.

We have also shown that standard physics indirectly used two different mass definitions. There is, in our
view, an embedded, more correct, mass definition in gravity theory that one obtains from multiplying the kg
mass with G. In all non-gravity parts of physics, one is using an incomplete mass definition, and this also makes
it impossible to unify gravity and quantum mechanics, before this is understood and fixed, as we have attempted
to start to do in this paper. When this is done it seems that we obtain a deeper and simpler theory, and we can,
from this theory, derive “all” the most well-known formulas in physics, and it can then be shown that many of
them are unnecessarily complex, and that they often cannot describe rest-mass particles. On the other hand,
the new and deeper theory is also fully consistent with rest-mass particles. Rest-mass particles are the essence
to understanding gravity from a quantum perspective, as it seems like gravity is directly linked the Planck mass
particle where rest (v = 0) is essential.

Table 8 summarizes some of our key findings. In column two we show a theory built around the de Broglie
wavelength, and in column three a theory built around the Compton wavelength. A theory consistently built
around the de Broglie wavelength has a momentum and actually a mass that is not valid for rest v = 0. When
one then builds a quantum theory based on this, this theory also cannot say anything about rest-masses, and in
our theory it is essential to understand rest to be able to unify quantum mechanics with gravity.

15 Conclusion

We have discussed how the Compton wavelength is potentially the real matter wavelength, and how the de
Broglie wavelength is likely to be a mathematical function (derivative) of the Compton wavelength. We have
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“Standard” physics: Deeper reality:
derivatives of deeper reality, Compton wavelength

de Broglie wavelength consistent: consistent:
Matter wavelength λ̄b de Broglie λ̄ Compton

Relativistic mass m = ~
λ̄b

1
vγ m̄ =

lp
c
lp
λ̄
γ

Rest mass m = ~
λ̄b

1
v Not valid for v = 0 m̄ =

lp
c
lp
λ̄

Not valid rest-mass valid for v = 0
Momentum p = mvγ de Broglie based (not valid v = 0) p̄t = m̄cγ Compton based

Energy E = mc2γ Ē = m̄cγ
Energy momentum relation E2 = p2c2 +m2c4 Ē = p̄t = m̄cγ

Collision-state probability not defined (concealed), implicit also above one
lp
λ̄
≤ lp

λ̄
γ ≤ 1

Maximum velocity mass v < c v ≤ c
√

1− l2p
λ̄2

Uncertainty principle ∆p∆x > ~ ∆p∆x ≥ l2p
Relativistic wave equation ∂2ψ

∂t2 = ∇2ψ + m2c2

~2 ψ Klein-Gordon ∇tψ = −lp∇ψ
Space-time geometry dtc2 − dx2 − dy2 − dz2 = ds2 dt2x + dt2y + dt2z = dx2 + dy2 + dz2

Newtonian type gravity F = GMm
R2 F = c3 M̄m̄

R2

Gauss law of gravity ∇2φ = 4πGρ ∇2φ = 2πc2 rsV
Number of universal constants G, ~, c lp, c

Table 8: The table shows a summary of how our theory leads to simplification of series of equations/relationships, and
still our theory is compatible with the standard equations, but we have shown that many of the standard equations not
are compatible with such things as rest-mass particles.

also shown how the standard momentum must be consistent and can also be derived from the de Broglie
wavelength. In contrast to the Compton wavelength, the de Broglie wavelength is not mathematically valid for
rest-mass particles. Furthermore, we claim that the standard momentum since it must be consistent with the
de Broglie wavelength cannot be valid for rest-mass particles. Quantum mechanics, including the Heisenberg
uncertainty principle, has its foundation in the standard momentum and or the de Broglie wavelength. Much
of our existing theory can therefore say nothing about rest mass particles. We have however introduced a new
momentum that is directly linked to the Compton wavelength and is also fully valid for rest-mass particles.

In addition, we have shown that physics uses two mass definitions without being aware of it. In gravity theory,
standard physics is using a more complete mass definition than the standard kg definition, that is embedded in
G multiplied by M . This is without being aware of it, while in the rest of physics one is using an incomplete
kg mass definition. We must both switch to the Compton wavelength from the de Broglie wavelength and from
the kg mass to a new mass definition that is already embedded in existing gravity physics in order to have a
chance to unify gravity with quantum mechanics. We have attempted to do so in this paper. This seems to also
lead to a simplification of quantum mechanics. We get a quantum mechanical setup that seems to represent a
three-dimensional space-time, i.e. three dimensions in space and their correspondent three dimensions in time.
Our new and deeper understanding of mass and gravity also makes us able to extract the Planck length and also
the speed of gravity directly from observable gravity phenomena without any prior knowledge to other constants.
It seems as if the three universal constants, G, ~ and c can be replaced with only two universal constants, namely
lp and c. All masses can be seen as a Planck mass multiplied by a quantum probability for the particle to be in
a collision state, the same with energy. In our theory mass is collision time and energy is collision length.
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[45] M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the
English translation “The Theory of Radiation” (1959) Dover, 1906.
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