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Abstract: Dystrophin-deficient cardiomyopathy (DDC) is currently the leading cause of death 

in patients with dystrophinopathies. Targeting myocardial fibrosis (MF) has become a major 

therapeutic goal in order to prevent the occurrence of DDC. We aimed to review and summarize the 

current evidence about the role of the renin-angiotensin-aldosterone system (RAAS) in the 

development and perpetuation of MF in DCC. We conducted a comprehensive search of peer-

reviewed English literature on PubMed about this subject. We found increasing preclinical evidence 

from studies in animal models during the last 20 years pointing out a central role of RAAS in the 

development of MF in DDC. Local tissue RAAS acts directly mainly through its main fibrotic 

component angiotensin II (ANG2) and its transducer receptor (AT1R) and downstream TGF-b 

pathway. Also, it modulates the actions of most of the remaining pro-fibrotic factors involved in 

DDC. Despite limited clinical evidence, RAAS blockade constitutes the most studied, available and 

promising therapeutic strategy against MF and DDC. Conclusion: Based on the evidence reviewed, 

it would be recommendable to start RAAS blockade therapy through angiotensin converter enzyme 

inhibitors (ACEI) or AT1R blockers (ARBs) alone or in combination with mineralocorticoid receptor 

antagonists (MRa) at the youngest age after the diagnosis of dystrophinopathies, in order to delay 

the occurrence or slow the progression of MF, even before the detection of any cardiovascular 

alteration.  

Keywords: Dystrohinopathy; Duchenne muscular disease; Becker muscular disease; Dystrophic 

deficient cardiomyopathy; Cardiac fibrosis; Renin angiotensin system; Angiotensin 2; Angiotensin 

converter enzyme inhibitors; Angiotensin receptor blockers.  

1. Introduction 

Dystrophinopathies are heterogeneous X-linked recessive disorders with a common genetic 

origin, mutations in the dystrophin gene (DMD OMIM300377; chromosome Xp21.1.) that lead to the 

complete loss or deficient synthesis of the dystrophin protein. Dystrophinopathies include a broad 

genetic and phenotypic spectrum, mainly Duchenne muscular disease (DMD), the most common and 

severe form, and Becker muscular dystrophy (BMD) [1, 2]. The varying degree of dystrophin 

expression explains the different clinical courses of these diseases: while DMD results from a 

complete loss of dystrophin, BMD is due to the expression of a truncated but partially functional 

protein (Table 1). The absence of dystrophin protein in the heart results in these patients invariably 

developing dystrophin-deficient cardiomyopathy (DDC), mainly in the form of dilated 

cardiomyopathy (DCM) with congestive heart failure (CHF) and rhythm disturbances [3].  
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Table 1. Differences between DMD and BMD. 

Characteristic DMD BMD 

Genetic defect Out-of-frame mutation inXp21.1 

chromosome 

In-frame mutation in Xp21.1 

chromosome 

Dystrophin protein Absent Present but partially functional 

Prevalence 1/3,500-5,000 male births 1/18,000-20,000 male births 

Age at diagnosis 3-6 years 10-14 years 

Non-ambulatory phase 12-14 years 30s 

Life expectancy 20s-30s 40s-50s 

Prevalence of DDC Approximately 100% 50% 

Clinically evident DDC 15-18 years; always after skeletal 

muscle symptoms 

Variable; not related with skeletal 

muscle symptoms 

Histological hallmark Cardiac Fibrosis 

Leading cause of death Cardiac (end-stage CHF or VA) 

Adapted from Kamdar et al.[3] Abbreviations: CHF: Congestive heart failure; BMD: Becker muscular 

dystrophy; DMD: Duchenne muscular dystrophy; VA: Ventricular arrhythmias. 

A clinically evident cardiac involvement has been reported in 25% of patients under the age of 

6 years, increasing to 60% of patients between the ages of 6-10 years [3], and is present in virtually all 

patients with DMD over 18 years of age. DDC is currently the leading cause of premature death in 

both entities and reducing its occurrence has become a major therapeutic for dystrophinopathies [4].  

Dystrophin is a large (427 kDa) protein normally found at the cytoplasmic surface of the 

sarcolemma, where is crucial to maintain the structural integrity of membrane of skeletal and cardiac 

muscle cells by connecting the subsarcolemmal cytoskeleton to the extracellular matrix through the 

dystrophin-associated protein complex and laminin. This complex forms a mechanically strong link 

that stabilize the sarcolemma against cycles of intracytoplasmic contractions and relaxations of 

muscular cells, thereby acting like a shock absorber and protecting muscle fibres from their inherent 

associated biomechanical stress [5, 6]. Dystrophin acts also as a pivotal regulator of important 

intracellular processes either directly by regulating membrane-associated proteins, including ion 

channels [7], or indirectly via calcium (Ca2+) [8], nitric oxide (NO) [9], and reactive oxygen species 

(ROS) [4] second messenger cascades.  

The absence or the presence of a deficient dystrophin protein alters the normal interaction and 

signal transduction between the cytoskeleton and the extracellular matrix in the cardiomyocyte [6]. 

The increased vulnerability of the cardiomyocyte sarcolemma to the stretch-induced injury generates 

physical sarcolemmal micro-tears during muscle contraction and sarcolemmal stretch-activated ion 

channels dysregulation [10-13]. These primary events favour an excessive influx of extracellular Ca2+ 

into the cell with cytosolic Ca2+ overload [4, 8], leading to widespread effects on intracellular 

signalling and metabolic pathways [4, 14, 15], including activation of calcium dependent proteases 

[16-19], activation of nuclear factor kappa B (NF-κB), dysregulation of nitric oxide synthase (NOS) 

with altered nitric oxide (NO) production [4, 20-23], and mitochondrial dysfunction with increased 

reactive oxygen species (ROS) production [4, 24-28]. These processes finally culminate in myocyte 

cell death, necrosis, inflammation, and replacement of contractile myocardium by fibrotic tissue, the 

histopathological hallmark of DDC [4, 29-32]. The loss of viable myocardium leads to a rise in wall 

stress and after load excess within healthy myocardium, favouring further losses of a vulnerable 

dystrophin-deficient myocardium and activation of local and circulating renin angiotensin 

aldosterone system (RAAS)[33]. Increasing evidence points out the key role of the renin-angiotensin-

aldosterone system (RAAS), and its major effectors angiotensin II (ANG2) and aldosterone in the 

development and perpetuation of MF and DCC [36-38]. Thus, the inhibition of RAAS has emerged 

one of the main therapeutic targets recommended for the management of DCC.  

In this article, we aim to review the current evidence about the participation of RAAS in the 

genesis and progression of myocardial fibrosis (MF) in DDC. We also will summarize the preclinical 

and clinical results of pharmacologic RAAS blockade, highlighting the relevance to target RAAS to 

prevent, delay or ameliorate the subsequent adverse myocardial remodelling in this setting.   
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Figure 1. Schematic representation integrating the main pathophysiological mechanisms involved in the cellular damage, cell death and subsequent inflammatory response, fibrosis and RAAS 

activation in dystrophic deficient cardiomyopathy. 1) Loss of membrane integrity, that causes a calcium leak to cytosol by passive influx, action of ion channels (TRP/LTCC) or release of calcium 

from SR. 2) Activation of proteases; with degradation of intracellular proteins; 3) Dysregulated nNOS expression and increase of iNOS expression; 4) Mitochondrial dysfunction and increased 

activity of NOX2 with production of ROS. These products cause mitochondrial damage and cell death. 6) Probable impaired microvasculature with recurrent ischemia may be one of the causes 

of cardiac muscle cell, apoptosis and fibrosis.[34, 35] 7) Activation of local and circulating RAAS after accumulating cardiomyocyte necrosis occurs, perpetuating the fibrotic process. 

Abbreviations: ACE: angiotensin-converting enzyme; iNOS: inducible nitric oxide synthase; LTCC: L-type Ca2+ channels; nNOS: neuronal nitric oxide synthase; NOX2: NADPH oxidase 2; 

RAAS: renin-angiotensin-aldosterone system; ROS: reactive oxygen species; TRP: transient receptor potential; RyR2: Ryanodine receptor 2; SERCA2: Sarcoplasmic/endoplasmic reticulum 

calcium ATP-ase.
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2. Literature review and results 

We conducted a comprehensive search of peer-reviewed literature on PubMed in order to 

identify evidence about the role of the RAAS in DDC. We used the following search terms: ‘Duchenne 

muscular dystrophy’, ‘Becker muscular dystrophy’, ‘dystrophic cardiomyopathy’, ‘dystrophin 

deficient cardiomyopathy’, ‘renin-angiotensin system’, ‘angiotensin receptor’, ‘cardiac fibrosis’, 

‘myocardial fibrosis’, ‘angiotensin converter enzyme inhibitors’, ‘angiotensin receptor blockers. 

Reference lists of the articles identified by this strategy were also searched. Inclusion of articles was 

based on relevance to the topic, quality of the manuscript and consistency with the literature. Only 

articles published in English were included in this review. With this search we identified relevant 

articles about the activation and physiopathological actions of RAAS in dystrophic cardiomyocytes, 

about preclinical investigations of RAAS blockade on MF in animal dystrophic models, and about 

clinical evidence of RAAS blockade in humans, that will be summarized in the discussion section.  

3. Discussion 

The development of MF is the cornerstone pathophysiological mechanism in DDC. The 

development of new imaging techniques such as cardiac MRI with LGE has led to an increased 

identification of the presence of MF in children, a population where myocardial biopsies are not 

usually performed [39, 40]. Noteworthy, cardiac MRI is usually performed at the age when sedation 

is not necessary and LGE technique requires a minimum threshold volume of myocardial fibrosis 

before becoming evident on CMR. Consequently, this can lead to a delayed identification or 

underestimation of MF. The detection of early subclinical cardiovascular manifestations long before 

the identification of MF on cardiac MRI points out that MF could be present already at early stages 

of the disease [41], and this period would be a large window of opportunity for interventions aimed 

at preventing MF occurrence [31, 32, 42]. The understanding of the pathophysiologic processes 

leading to the development of MF in DDC is crucial for this purpose. During the last 20 years a 

growing knowledge has been obtained from parallel investigation in animal models and humans 

suggesting that RAAS is a pivotal pathway in the regulation of MF in DDC. RAAS blockade has 

become the hallmark of cardioprotective interventions to ameliorate the adverse myocardial 

remodelling and progression of heart failure that follows cardiomyocyte necrosis in 

dystrophinopathies [43]. Indeed, current guidelines recommend that children with DMD should start 

on RAAS inhibition (including AT1R blockers (ARBs), and ACEI) by age 10 or earlier if myocardial 

dysfunction is detected [44]. 

3.1. Overview of the fibrotic process in DDC 

After the occurrence of cardiac injury and cardiomyocyte death secondary to absent or defective 

dystrophin protein, the inflammatory/immune cells (lymphocytes, macrophages, mast cells) infiltrate 

the wounded myocardium to clear dead tissue and release pro-fibrotic cytokines. This led to 

differentiation of cardiac fibroblasts into myofibroblasts, the major effectors for the pathological MF 

and remodelling observed in DDC [45-49]. The repetitive chronic injurious stimuli that occur in 

dystrophinopathies may cause perpetual activation of myofibroblasts leading to excessive deposits 

of extracellular matrix (ECM) materials, progressive fibrosis and maladaptive cardiac remodelling. 

Major characteristics of muscle biopsies of the dystrophic hearts include necrotic muscle fibres 

surrounded by macrophages, lymphocytes, mast cells and myofibroblasts [31, 42, 50, 51], supporting 

that DDC results from imbalance between muscle fibre necrosis, inflammatory response and 

myofibroblasts regeneration [30, 52-58]. At the molecular level, the fibrotic process is regulated by a 

complex network of signalling pathways that includes inflammatory cells (lymphocytes, 

macrophages, mast cells), inflammatory factors (IL, TNF-a, NF-kB)…), peptides (ANG2, endothelin 

1 (ET-1), aldosterone), growth factors (Transforming growth factor (TGF-β), connective tissue growth 

factor (CTGF), platelet-derived growth factor (PDGF)), ions (Ca2+), oxidative stress molecules 

(NADPH, NOX, LOX…), adhesion molecules (integrins, osteopontin), matrix metalloproteinases 

(MMP), and immunoproteasome (Figure 2) [59-65]. These interdependent factors favour the 

activation and proliferation of myofibroblasts [66-68]. The increased mechanical tension of the 
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myocardium due to the changes in ECM stiffness also acts as alternative regulator of myofibroblasts 

differentiation. The histopathologic findings of a greater degree of fibrotic changes in basal cardiac 

region than the apical region of dystrophic hearts, reinforce that mechanical forces influences in the 

development of MF in DDC [45, 47, 69-75]. 

All the mentioned above mechanisms involved in MF in DDC are similar to those occurring in 

more studied models, such as myocardial infarct or hypertension, where the RAAS has been 

extensively shown to modulate the actions of most of the remaining pro-fibrotic and pro-

inflammatory factors mentioned above, mainly through its primary effector molecule ANG2 and the 

ANG2 type 1 receptor (AT1R) [76-81]. 

3.2. Evidence about sources, activation and actions of RAAS in DDC  

3.2.1. Circulating RAAS 

In the dystrophic myocardium the progressive fibrotic replacement led to loss of myocardial 

contractility and relaxation with decreased cardiac output and increased vulnerability to pressure or 

volume overloading conditions. This provokes the chronic activation of circulating RAAS in the 

kidney, resulting in increased pressure and volume overload for the damaged myocardium, which 

serves as substrate for a positive feed-back to perpetuate the increased plasmatic ANG2 

concentrations observed in these patients [52]. The major counter regulatory hemodynamic effects of 

ANG2 include vasoconstriction, intravascular fluid retention, and increased heart rate and cardiac 

contractility. ANG2 also stimulates the production and release of aldosterone from the adrenal cortex. 

Together, the resulting endocrine effects of ANG2 and aldosterone on their target organs serve to 

maintain blood pressure and restore renal perfusion [82, 83]. 

Cardiac dysfunction with activated circulating RAAS is mostly developed in the later stage of 

DDC, when echocardiographic alterations such as dilated cardiomyopathy or myocardial 

dysfunction are evident [84]. Interestingly, the intramuscular RAAS is activated in dystrophic human 

skeletal muscles, [77] and could be an important source of circulating ANG2 at early stages of 

dystrophinopathies in absence of evident myocardial dysfunction or cardiac overload conditions 

[85]. Circulating ANG2 seems to be a relevant modulator of the autonomic heart function in DDC. 

The AT1R are present on cardiac sympathetic nerve terminals, and the ANG2/AT1R binding 

provokes norepinephrine (NE) exocytosis and release from the adrenal medulla and sympathetic 

nerve endings by stimulating the neuronal Na+/H+ exchanger [86, 87]. It has been shown that 

autonomic dysfunction caused by activation of RAAS and manifested as reduced heart rate 

variability or inappropriate sinus tachycardia, is present at early stages of the disease and worsens 

progressively with age. Of note, the precocity and severity of this autonomic dysfunction predicts 

the severity of DDC at older ages and ANG2/AT1R blockade reduces oxidative stress and fibrosis 

and improved improves autonomic function and cardiac functionality in dystrophic mice [88-90]. 

3.2.2. Local cardiac RAAS.   

Accumulating evidence supports the central role of a local cardiac RAAS mediating the adverse 

myocardial remodelling process in DDC. The local synthesis of RAAS components was documented 

in dystrophic hearts in animal models by Nakamura et al. in 2001. They demonstrated that the RNA 

expression of ANG2 and AT1R was increased in mdx mice as compared to those in wild type mice 

[91]. This over-expression of ACE and AT1 in dystrophic hearts would likely result in the local 

increased production of ANG2 which may act on these cells in an autocrine manner via AT1R. There 

are important and bidirectional local interactions between aldosterone and ANG2 within the 

myocardium, which potentiate the persistent activity of RAAS in DDC [64, 82, 92-98]. The 

pharmacologic RAAS blockade has shown to decrease the inflammatory infiltrate and fibrotic 

changes in hearts of dystrophic mdx mice models, reinforcing the major regulatory role of 

ANG2/Aldosterone in the myocardial fibrotic network in DDC [54, 99-103]. 
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Figure 2. Schematic representation of the complex network of interplayed cellular and molecular mechanisms that participle in the development of myocardial fibrosis leading to the occurrence 

of dystrophin-deficient cardiomyopathy. Notice that angiotensin 2 with its type 1 receptor, have a central role modulating the activation of most of these pathways through its autocrine/paracrine 

actions, mostly via the TFG-β pathway. Angiotensin 2 is also essential in order to maintain and perpetuate the profibrotic response, providing a source for a positive auto-feedback. 

Abbreviations: ACE: angiotensin-converting-enzyme; Akt: protein kinase B; ALK5: activin receptor-like kinase-1; Ang I: angiotensin I; ANG II: angiotensin II; CCN2/CTGF: connective tissue 

growth factor; ET1: endothelin-1; ETA: endothelin receptor A; JNK: Jun N-Terminal Kinase; LAP: latency-associated peptides; MMPs: matrix metalloproteinases; NADH: reduced nicotinamide 

adenine dinucleotide; PDGF: platelet derived growth factor; PI3: phosphoinositide 3; ROS: reactive oxygen species; Smad3/4: mothers against decapentaplegic homolog ¾; TFG-β: transforming 

growth factor-beta; TNF-α: tumor necrosis factor alpha; α-SMA: alpha-smooth muscle actin; βFGF: basic fibroblast growth factor.
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ANG2 mediates the fibrogenic response via AT1R binding (Figure 3) directly with the 

subsequent activation of mainly ERK1/2, JNK, and p38MAPK intracellular signalling networks; and 

indirectly via induction of TGF-β1/SMAD pathway expression and NF-κB pathway activation. 

Finally, these downstream cascades result in the release of pro-inflammatory cytokines (TNF-alfa, 

interleukins), the expression of growth factors (CTGF), angiogenic factors (PDGF), ROS molecules 

generation and the up regulation of synthesis of proteins involved in modulating myofibroblast 

collagen synthesis [54, 61, 72, 73, 104-119].  

The p38-MAPK and ERK 1/2 signalling pathways have been shown to be activated in dko and 

mdx mice hearts, supporting their participation in MF in DDC. [55, 75, 91, 120]. TGF-β1 appears to 

be the most important mediator of myofibroblast activation and ECM protein synthesis at the 

damaged myocardium in DDC (Figure 3) [121-127]. The promotion of MF fibrosis via the TGF-β1 

signalling pathway has been widely documented during the last 20 years in mdx hearts. 

Overexpression of TGF-β signalling pathways in dystrophic hearts correlates with the grade of 

myocardial fibrosis and cardiac dysfunction in DDC [128-135]. Recent investigations in mdx mice 

models showed that TGF-β antagonism with halofuginone and reduction of TGF-β expression 

through gene therapy prevented the development of MF [136, 137]. Remarkably, AT1R blockade with 

losartan in mdx mice has been shown to be associated with a dramatic decrease in fibrotic cardiac 

area and lower levels of serum TFG-b, supporting the direct role of ANG2/ TGF-β complex in the 

development of DDC [54, 138]. CTGF is another key mediator of early and persistent MF in DDC 

models [128]. The up-regulation of CTGF by ANG2 and TGF-β and their relationship with MF has 

been widely described in myocardium in both DMD patients and mdx mice models [128, 130, 139, 

140]. Of note, the onset of cardiac fibrosis is associated with increased CTGF transcript and protein 

expression, and the high levels of TGF-β1 and CTGF are associated with increased histopathologic 

findings of MF. Furthermore, the use of ARBs and mineralocorticoid receptor antagonists (MRa) 

minimizes the expression of CTGF and the induced MF in dystrophic mice models [121, 130]. 

ANG2/TGF-β axis is also known to transactivate the PDGF receptor (PDGFR). The PDGF family is 

reported to mediate MF in patients with DMD and blocking PDGFs can reduce fibrosis the mdx 

mouse model [129, 141]. The accumulation of ECM components in fibrosis can result not only from 

increased expression of matrix components, but also from the decreased degradation of the ECM. 

The primary enzymes responsible for ECM degradation are the MMPs which are blocked by the 

TIMPs. Importantly TIMPs expression is downstream of TGF-β and CTGF signalling. Recent studies 

demonstrated increase levels of MMPs in DMD humans and in mdx mice models, where they were 

correlated with the level of TGF-β. ANG2 is involved in pressure overload-induced cardiac fibrosis 

mediated by MMPs [128, 133, 142-144]. Osteopontin is an adhesion molecule that promotes cardiac 

fibrosis by enhancing macrophage activation and fibroblast proliferation stimulated by ANG2 and 

aldosterone [145]. Reactive oxygen species and activation of members of the MAPK super family 

would mediate this effect. In mdx mice models, osteopontin contributes to the increased amounts of 

MMPs, MF and myocardial dysfunction [146-148].  

Oxidative stress and inflammatory pathways are relevant and interrelated second messengers 

modulating the profibrotic actions of RAAS in the MF process in dystrophin deficient hearts. ANG2 

requires oxidative stress generation in dystrophic myocytes to induce most of its pro-fibrotic (TGF-

β/CTFG and ERK1/2 pathways) and pro-inflammatory (NF-kB pathway) effects [149-152]. The 

ANG2/aldosterone binding with AT1R and MR induces cardiac tissue remodelling and dysfunction 

in DDC mediated by ROS production via the nicotinamide adenine dinucleotide phosphate 

(NADPH) and the Nox family proteins, particularly Nox4 [153-158]. There are multiple reports of 

excessive NADPH oxidase-mediated ROS production contributing to skeletal injury in mdx mice, 

and early and chronic RAAS blockade has shown to protect against fibrosis and inflammation 

reducing the production of ROS and the activation of NF-kB pathways [108]. Although there is no 

direct evidence about RAAS blockade benefits on cardiac tissue remodelling, AT1R inhibition may 

benefit DMD patients by limiting the amplification of myocardial injury secondary to excessive ROS 

production in the dystrophic heart.  
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Figure 3. Integrated schematic representation of the local RAAS (classical (ACE/Angiotensin 2/ATR) and counterregulatory non-classical (ACE2/Angiotensin1-7/Mas-r), 

with its main pro-fibrotic intracellular mechanisms, and its relevant interactions with the profibrotic TGF-β pathway. TGF-β transduce its signal from the membrane to the 

nucleus through its receptors (TGF-βR) and their main downstream effectors, the regulatory SMAD proteins (canonical pathways). [126]. The activation of alternative 

SMAD-independent signalling cascades (non-canonical pathways) by TGF-β, including the ERK, JNK, and p38MAPKs, is also required for myofibroblasts pro-fibrotic 

actions enhancing transcription of pro-fibrotic signals, including TGF-β itself, as part of the positive feedback in fibrosis [127].Abbreviations: ACE: angiotensin-converting-

enzyme; ALK5: activin receptor-like kinase-1; AT1R: angiotensin II receptor type 1; AT2R: angiotensin II receptor type 2; ERK: extracellular signal-regulated kinase; FAK: 

focal adhesion kinase; JNK: Jun N-Terminal Kinase; MAPK: mitogen-activated protein kinase; MasR: Mas receptor; MEK: MAPK/ERK kinase SMAD: mothers against 

decapentaplegic homolog; TAK1: tumor growth factor β-activating kinase-1; TGF-βR: transforming growth factor-β receptor.  
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ANG2 and aldosterone promote cardiac inflammatory response mainly activating the NF-κB 

pro-inflammatory pathway. Increased NF-kB pro-inflammatory factors are associated with MF and 

myocardial dysfunction on echocardiography, and blunting NF-kB signalling in dko and mdx mice 

reduces inflammatory markers, enhances myofiber regeneration, and improves cardiac contractile 

dysfunction [92, 159, 160]. Furthermore, inflammatory cells produce pro-inflammatory factors, such 

as tumour necrosis factor alpha (TNF-α), that further contribute to muscle degeneration and 

substitution of muscle fibers by fibrosis. TNF-α blocking correlated with reductions in MF in mdx 

models [131, 161-164]. ANG2 also induces TNF-α expression, facilitating cardiac interstitial and 

perivascular fibrosis through increased collagen, CTGF, and TGF-β production. In dystrophin-

deficient hearts, this response is dependent on TNF-α-induced ROS production and downstream 

activation of NF-κB, p38MAPK, and JNK. Furthermore, TNF-α exacerbates the ANG2 response 

through feedback regulation of AT1R [55, 165]. Finally, the immunoproteasome has been reported to 

play an important role in controlling immune responses, oxidative stress, and maintaining cellular 

protein homeostasis. Generation and activation of the immunoproteasome is implicated in ANG2-

induced cardiac fibrosis. Interestingly, its dysregulation has been observed in dystrophic hearts of 

mdx mice, and its inhibition ameliorated cardiomyopathy and reduced the development of cardiac 

fibrosis in this setting [166, 167].  
The evidence summarized above point out that ANG2 could be implicated in a wide variety of 

cellular and molecular pro-fibrotic pathways in the DDC setting, and therefore, the RAAS blockade 

could act as a promising antifibrotic therapeutic strategy to prevent MF in dystrophinopathies. 

3.3. Evidence about the effects of the RAAS blockade on MF in dystrophic-deficient cardiomyopathy  

3.3.1. Preclinical evidence from mice models  

Over the past 15 years, several preclinical studies performed with dystrophic murine models 

have provided strong evidence about the beneficial effects of medications blocking RAAS actions on 

DDC. Specifically, blocking ACE/AT1R/MR treatment with ACEI (enalapril/lisinopril), ARBs 

(losartan) and MRa (spironolactone/eplerenone) respectively, has been shown to prevent the 

occurrence, slow the progression or decrease the extension of MF, and also to improve cardiac 

functionality without significant side effects. This reinforces the involvement and the role of RAAS 

as a key regulator of MF in DDC. Here we briefly detail the results of most relevant preclinical studies. 

 

3.3.1.1. Single therapy with ACEI  

 

Bauer et al. [101] investigated the effects of steroids and ACEI on development of left ventricular 

dysfunction in the mdx mouse, a model for DDC. They found that untreated and prednisolone mdx 

mice groups showed reduced myocardial contractility, ventricular dilatation, diastolic dysfunction 

and patchy myocardial fibrosis but preserved stroke volume. Of note, the administration of ACEI 

(captopril) during 8 weeks in mdx mice was associated with improved cardiac function and 

decreased after load. Blain et al. [168] designed a comparative study between single versus combined 

treatment with ACEI (captopril) and beta-blockers in mdx models. They reported that ACEI therapy 

at early stages of DDC improved stroke volume and cardiac output, and reduced maximum systolic 

pressures, with no effect on right ventricular function. They also observed a reduced heart to body 

weight ratios. These findings support beneficial hemodynamic effects of ACEI to reduce or delay the 

occurrence of DDC.  

 

3.3.1.2. Single therapy with ARBs  

 

Spurney et al. [54] assessed cardiac function via in vivo high frequency echocardiography in 

mdx mice and found that chronic treatment with losartan for 6 months lead to a significant 

improvement of cardiac function, reduction cardiac after load, and of note to a significant reduction 

of MF compared to untreated mdx mice. Bish et al. [103] evaluated the cardiac effects of chronic 
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losartan administration in mdx mice with existing DDC. In the treated group they observed a 

significantly preserved cardiac function with decreased areas of MF after 2 years of treatment. They 

also found a 2-fold higher survival associated with losartan therapy (88% vs 44%). These results point 

out that ARB may be an important prophylactic strategy for slow the progression of DDC. Lee et al. 

[138, 169] examined the safety of chronic ARBs therapy. Through histopathological findings and 

serum biochemistry analyses, they observed that losartan inhibits MF and prevented muscular 

degeneration with no significant effects on other organs after 44 weeks of treatment. Besides 

inhibiting MF, losartan also showed important beneficial and protective cardiovascular and 

metabolic effects, being associated with decreased LDH, AST, BUN and triglyceride levels and 

increased high-density lipoprotein (HDL) levels. Sabharwal et al. [88-90] provided interesting 

evidence when studied the effects of ARBs on the autonomic dysregulation casted by ANG2 in 

dystrophic Sgcd−/− mice. They found that early autonomic dysfunction precedes and predicts the 

severity of LV dysfunction and mortality. Of note, treatment with losartan at a young age was 

associated with improved autonomic function, reduced oxidative stress, and fibrosis, with 

subsequent delay in the occurrence of DDC and improved survival. These findings have relevant 

implications. As the early occurrence of subclinical signs of dysautonomia (inappropriate sinus 

tachycardia, low heart rate variability…) is well-known in DMD patients, the initiation of treatment 

with losartan at this time and not waiting to the detection of echocardiographic findings could 

improve the survival of these patients. Recently, Meyers et al. [170] provided relevant evidence about 

the preventive role of losartan in MF. They administered isoproterenol (10 mg/kg) to induce cardiac 

stress and injury in mdx and wild type (C57Bl/10) mice. They found that the administration of 

losartan previous to induce cardiac damage was significantly associated with a reduction in the area 

of MF of mdx mice. They also observed a reduction of the initial inflammatory response to injury. 

These findings strongly suggest that earlier adoption of angiotensin receptor blockers in DMD 

patients could limit MF and subsequent DDC with improvement of the cardiovascular and metabolic 

profile. 

 

3.3.1.3. Single therapy with MRa 

 

Lowe et al. [99] used the MRa finerenone in monotherapy in preclinical dystrophic mice model. 

They observed that treatment with finerenone alone was associated with improvement in functional 

cardiac parameters, with significant reductions in myocardial strain rate, the earliest 

echocardiographic sign of DDC. As finerenone is more selective (non-steroidal) MRa compared with 

eplerenone and spironolactone, this study highlights the chronic use of finerenone without side-

effects of steroidal MRa. Heier et al. [171] investigated the effects of vamorolone, a dissociative 

glucocorticoid receptor ligand with anti-inflammatory efficacy, on dystrophin-deficient hearts using 

mdx mouse models. They showed that vamorolone is effective as MRa to prevent MF without side 

effects, and that these antifibrotic effects are due to its combined anti-inflammatory and MRa 

properties. The results of both authors point out a possible role for MRa in mono therapy in these 

patients. However, testing this scenario is challenging due to the extended clinical practice to use 

MRa always in combination with ACEI or ARBs in the setting of pediatric heart failure. 

 

3.3.1.4. Combined ACEI/ARBs plus MRa therapy 

 

Rafael-Fortney et al. [102] investigated the use of the combination lisinopril plus spironolactone 

on the development of DDC in mdx mice. They found that the group that received this regimen 

presented a 44% of reduction in MF and a further 53% reduction when the treatment started at early 

stages of the disease. Also, they observed the cardiac function decreased 50% slower in the treated 

mice. Therefore, combining MRa with ACEI at an extremely early stage potentially offers superior 

outcomes in patients with DDC. Lowe et al. [172] observed similar efficacy using two different MRa, 

spironolactone and eplerenone, in combination with ACEI (lisinopril). Both therapeutic regimens 

lead to cardiac functional and histopathological improvements with significant side effects. Lowe et 

al. [173] also compared histopathologic findings of DDC in 3 groups of mice model (mdx sedentary, 
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mdx exercised and mdx injured by isoproterenol) treated with the combination ACEI/MRa and they 

did not find any benefit in any model. The authors suggested the relevance of early initiation of 

combined ACEI/MRa treatment to prevent DDC development because the beneficial effects of these 

drugs are likely to occur only during the initial inflammatory phase after the myocardial injury. The 

authors also suggest that continuous use of these drugs could be ineffective based on the absence of 

prolific damage and inflammation in exercised and aged mdx mice. Janssen et al. [174] studied the 

added value of the combinations lisinopril/spironolactone and losartan/spironolactone versus 

corticosteroid therapy alone in mdx mice at early stages of the disease. All treatments were initiated 

at 4 weeks-of-age, and physiological and histological end-point assessments evaluated at 20 weeks-

of-age. They observed an improvement in the phenotype of contractile dysfunction and MF that was 

not different when comparing ACEI/MRa and ARB/MRa groups. Interestingly, treated and steroid 

treatment groups presented increased MF and decreased myocardial function when assessed by 

cardiac MRI. These results suggest the early use of combined treatments blocking RAAS to prevent 

DDC. Interestingly, ACEI and ARBs are reported to block CTGF and TFG-β expression respectively 

in skeletal muscle of mdx mice [175]. These results suggest that both drugs could be complementary 

as they act blocking different pathways involved in MF. Therefore, they would be used in 

combination at early stages of the disease to prevent the occurrence of MF.  

 

3.3.1.5. Limitations to translate preclinical results to the clinical practice in DDC 

 

The results of most preclinical studies regarding the efficacy and safety of RAAS blockade to 

prevent MF in DDC are excellent. Until recently, the only possibility to model DDC was to use animal 

models, overall mice models that do not accurately recapitulate the human disease course (Table 2). 

Mice cardiomyocytes differ from human cells in the expression of key contractile proteins, heart rate, 

electrical properties and ion channel function, often making it challenging to translate results to 

humans and clinical practice. Notably, the most used mice model (mdx) in preclinical studies of DDC, 

is characterized by a milder cardiac and skeletal muscle phenotype than humans with no premature 

death. Several variants of this model have been developed during years, but no one resembles well 

the dystrophic phenotype of humans [53, 176-185]. Dystrophic canine models present many 

similarities to humans, making them an interesting model to use in preclinical therapeutic studies. 

Also, the assessment of heart failure and cardiac function is easy in dogs compared with mice. 

However, there is also some divergence between affected dogs and humans, such as higher mortality 

rates at birth, ambulation maintained in young affected dogs, disease progression stabilizing at 6–10 

months, and observations of increased phenotype divergence. The lower availability and higher 

times to achieve results and costs compared with mice models are also important limitations [186].  

Table 2. Mouse models used in the study of dystrophinopathies and heart phenotype. 

Genotype 
Life 

expectancy 
DDC age of onset Histopathology 

Echocardiographic 

changes 

Wild tipe 2 years None Normal None 

mdx 1.5–2 years 10 months Mild Mild/none 

mdx/Utr 20 weeks 8 weeks Moderate Moderate 

mdx/Dtna 8-10 months 4 weeks Moderate/severe - 

mdx/7 <4 weeks 3 weeks (20 days) Mild None 

mdx/Myod1 12 months 5 months Severe - 

mdx/Cmah 11 months 3 months Moderate/severe - 

mdx/mTR G2 4-12 months 32 weeks Severe Severe 

Adapted from Yucel et al [187]. Abbreviations: DDC: dystrophin-deficient cardiomyopathy. 

In the light of these limitations, recent advances in DDC modelling highlight the most 

remarkable findings obtained from cardiomyocytes derived from patients DMD induced pluripotent 
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stem cells (iPSCs). The discovery of these cells has led to create in vitro DDC models mimicking the 

histological, molecular and clinical characteristics observed in the human disease. Thus, iPSCs offer 

an accurate tool to study human DDC progression and screening or develop potential therapeutic 

approaches [188-190]. 

3.3.2. Clinical evidence from human studies 

The efficacy and safety of therapeutic strategies targeting RAAS have been also evaluated in 

human studies in parallel with those preclinical studies mentioned above. Pharmacological 

approaches used include similar drugs (ACEI, ARBs and MRa) used in dystrophic mice. The marked 

benefits of these therapeutic regimens improving the outcomes of several cardiovascular disorders 

with associated MF (heart failure, hypertension, myocardial infarction, congenital heart disease) 

without relevant side effects, and the positive preclinical effects shown, have led to the use of these 

drugs in daily clinical practice in patients with dystrophinopathies. Notably, beta-blockade per se 

could reduce fibrosis and could be one mechanism of action of RAAS inhibition in reducing MF. 

However, the specific contribution of beta-blockers could not be clearly separated from RAAS 

inhibition intervention on myocardial fibrosis reduction as they are usually used in combination. In 

the last 15 years several studies suggest that the RAAS blockade has the capacity to limit the 

accumulation of fibrosis, delay the occurrence and slow the progression of DDC in humans. 

However, most of the supporting has been gathered from retrospective non-randomized studies 

(Table 3). A recent Cochrane review [191] updated in 2017 including five randomised controlled trials 

(RCTs) with 205 patients with dystrophinopathies (DMD and BMD) concluded that early treatment 

with ACE inhibitors or ARBs may be comparably beneficial, and that adding eplerenone might give 

additional benefit when early cardiomyopathy is detected. However, the quality of evidence resulted 

very low due to the small size and other limitations of the studies. Remarkably, the trials provided 

only low or very low-certainty evidence on side effects.  

4. Conclusions 

The present review has focused on the activation of cardiac RAAS following myocardial damage 

in dystrophinopathies and the regulatory role of ANG2 on cardiac repair/remodelling associated 

with the occurrence of DDC. The field of investigation about potential curative treatments for 

dystrophinopathies has evolved considerably in recent years, leading to multiple therapeutic 

strategies including gene therapy (exon skipping, micro-dystrophins, etc.) for restoration of 

dystrophin expression or increase the expression of utrophin protein, and treatments blocking the 

different pathophysiological mechanisms associated with the absence of dystrophin (oxidative stress, 

calcium homeostasis, NF-kB pathway, mitochondria dysfunction, etc). There are currently more than 

200 clinical trials ongoing in DMD patients with promising results. However, most studies focus on 

the impact of such treatments on skeletal muscle function not in DDC. MF is an early and otherwise 

unavoidable event that determines the occurrence of DDC in patients with dystrophinopathies, 

which should be evaluated promptly because it carries fatal consequences. RAAS, in particular the 

ANG2/AT1R complex, plays a crucial role in the development of MF by means of both, direct 

profibrotic actions and also modulating different inflammatory cells and profibrotic pathways, 

mainly TFG-β. Most of these actions can be interrupted blocking the AT1R and therefore, RAAS 

antagonists (ACEI, ARBs and MRa alone or in combination) represent a promising approach for the 

management of DDC. Extensive preclinical investigations have consistently demonstrated the 

potential of RAAS antagonists to prevent the occurrence and slow the progression of MF and DDC, 

showing improved survival and lack of relevant side effects in dystrophic mice models. The results 

of clinical studies in humans correlates with those in animal models, reinforcing the potential benefit 

and safety of these therapies. Nevertheless, the level of clinical evidence is still very low and on the 

short term, and there are important issues that difficult the translation of preclinical results to 

patients.  
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Table 3. Summary of the different investigations in humans about the inhibition of the RAAS and DDC outcomes. 

Author Type of study Size Interventions Outcomes
 

Hor et al.  

(2011) [192] 

Retrospective cohort study DMD: 136 - Deflazacort or prednisone and lisinopril or 

enalapril or losartan: 92; Glucocorticoid alone: 114 

ACE-I/ARB therapy combined with glucocorticoids did not arrest the decline in cardiac function. 

Raman et al  

(2019) [193] 

Double-blind, randomized, 

noninferiority trial  

DMD: 52 - Eplerenone: 26/52; Spironolactone: 26/52  Spironolactone added to background therapy is noninferior to eplerenone in preserving heart function. 

Raman et al  

(2015) [194] 

Randomized, double-blind, 

placebo-controlled trial  

DMD: 42 

 

- Eplerenone : 20/42;Placebo: 22/42 Eplerenone added to ACEI or ARB therapy attenuates the progressive decline ventricular function.  

Raman et al  

(2017) [195] 

Randomized, double-blind, 

placebo-controlled trial  

DMD: 11 - Eplerenone; Placebo Eplerenone is a useful if is initiated in the first phases with no relevant dysfunction. 

Duboc et al  

(2007) [196] 

Randomized Control Trial 

 

DMD: 57 - Phase I (3 years): 56/57 Perindopril or Placebo. 

- Phase II (2 years): 51/57 Perindopril 

Phase I: improvement of ventricular function in 55/56 patients. 

Phase I and II: Early treatment with perindopril delayed the onset and progression of prominent left 

ventricle dysfunction. 

Jefferies et 

al (2005) 

[197] 

Retrospective case series. DMD: 62; BMD: 7 -ACE inhibitors: 13/31; ACE inhibitor and β-

blocker: 18/31 

2/29: showed no deterioration in LV function. 

8/29: showed improvement in LV size or function or both. 

19/29: showed normalization of LV size or function or both. 

Duboc et al  

(2005) [198] 

Randomized Control Trial 

 

DMD: 57 - Placebo: 29/57;- Perindopril: 28/57 Early initiation of treatment with perindopril is associated with a lower mortality in patients with DMD 

with normal LV ejection fraction at study entry. 

Ramaciotti 

et al (2006) 

[199] 

Retrospective case series DMD: 50 - Enalapril. 10/26 (43%) presented improvement with the use of enalapril normalizing the shortening fraction. 

Kajimoto et 

al (2006) 

[200] 

Randomized Control Trial 

 

DMD: 25; FMD: 2 

EDMD: 1 

- Enalapril or Cilazapril and Carvedilol: 13/28 

- ACE-I alone: 15/28 

No significant change was observed in patients who received ACE-I monotherapy. Carvedilol plus an 

ACEI improves left ventricular systolic function in patients with muscular dystrophy. 

Ogata et al.  

(2009) [201] 

Retrospective cohort study 

 

DMD: 52 - Enalapril or Lisinopril and Bisoprolol or 

Metoprolol or Cavedilol 

In DMD patients with heart failure the combination of an ACE inhibitor and a beta-blocker had a 

beneficial effect on survival. 

Kwon et al.  

(2012) [202] 

Retrospective cohort study DMD: 22; BMD: 1 - Enalapril 13/23;- Carvedilol: 10/23 Carvedilol or Enalapril could improve LV systolic function in patients with muscular dystrophy. 

Viollet et al. 

(2012) [203] 

Retrospective cohort study DMD: 42 - Lisinopril and metoprolol/atenolol;- Lisinopril. Treatment with ACE inhibitor or ACE inhibitor plus BB can delay progression of cardiomyopathy. 

Allen et al.  

(2013) [204] 

Randomized Control Trial 

 

DMD: 23 - Losartan: 11/23; Lisinopril: 12/23; LV Ejection fraction 

improved equally with two difference therapeutic. 

Silva et al.  

(2016) [205] 

Randomized Control Trial 

 

DMD: 70; BMD: 6 - Placebo: 21/76; Enalapril: 21/76 ACEI slows Myocardial fibrosis progression at a 2-year follow-up 

DMD (Duchenne muscular dystrophy); BMD (Becker muscular dystrophy); ACEI (angiotensin-converting enzyme inhibitors); ARBs (angiotensin receptor blocker); LV: left ventricle; FMD (Fukuyama muscular dystrophy); 

EDMD (Emery-Dreifuss muscular dystrophy). 
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Despite these limitations and until the future implementation of novel therapies under 

investigation mentioned above can be feasible, the RAAS blocking constitutes the more studied, 

available and promising therapeutic strategy against MF and DDC. Based on the evidence reviewed, 

it would be recommendable to start RAAS blockade therapy through ACEI or ARB in combination 

with MRa at the youngest age after the diagnosis of dystrophinopathies in order to delay the 

occurrence or slow the progression of MF, even before the detection of any cardiovascular alteration. 

Further investigations to expand the understanding of the pathophysiological mechanisms leading 

to MF are essential to improve intervention strategies for DDC. 
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Abbreviations: 

ACE Angiotensin-converting-enzyme 

Akt Protein kinase B 

ALK5 Activin receptor-like kinase-1 

Ang I Angiotensin I 

ANG II Angiotensin II 

ARBs AT1R blockers 

AT1R Angiotensin II receptor type 1 

AT2R Angiotensin II receptor type 2 

BMD Becker muscular dystrophy 

CCN2/CT

GF 

connective tissue growth factor 

CHF  Congestive heart failure 

CF Cardiac fibrosis 

cTn Cardiac troponin 

DCM Dilated cardiomyopathy 

DDC Dystrophin-deficient cardiomyopathy 

DMD Duchenne muscular dystrophy 

ERK Extracellular signal-regulated kinase 

ET1 Endothelin-1 

ETA Endothelin receptor A 

FAK Focal adhesion kinase 

JNK Jun N-Terminal Kinase 
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iNOS Inducible nitric oxide synthase 

LTCC L-type Ca2+ channels 

LVH Left ventricular hypertrophy 

LVSD Left ventricular systolic dysfunction 

LVDD Left ventricular diastolic dysfunction 

MAPK Mitogen-activated protein kinase 

MasR Mas receptor 

MEK MAPK/ERK kinase 

MF Myocardial fibrosis 

MMPs Matrix metalloproteinases 

MP Myopericarditis 

MRI Magnetic resonance imaging 

NADH Reduced nicotinamide adenine dinucleotide 

NF-κB Nuclear factor kappa B 

nNOS  neuronal nitric oxide synthase  

NOX2 NADPH oxidase 2 

NP Natriuretic peptides 

PDGF Platelet derived growth factor 

PI3 Phosphoinositide 3 

ROS Reactive oxygen species 

TAK1 Tumor growth factor β-activating kinase-1 

TGF-β Transforming growth factor-β  

TGF-βR Transforming growth factor-β receptor 

TIMPs Tissue inhibitors of metalloproteinases 

TRP Transient receptor potential 

RyR2 Ryanodine receptor 2 

SMAD Mothers against decapentaplegic homolog 

SERCA2 Sarcoplasmic/endoplasmic reticulum calcium ATP-ase 

TFG-β Transforming growth factor-beta 

TNF-α Tumor necrosis factor alpha 

VA Ventricular arrhythmias 

α-SMA Alpha-smooth muscle actin 

βFGF basic fibroblast growth factor 
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