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Abstract: The motion of a circular elastic plate floating on the surface is investigated in the
time–domain. The solution is found from the single frequency solutions and the method to solve
for the circular plate is given using the eigenfunction matching method. Simple plane incident
waves with a Gaussian profile in wavenumber space are considered and a more complex focused
wave group is considered. Results are given for a range of plate and incident wave parameters are
investigated. Code is provided to show how to simulate the complex motion.
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1. Introduction

The single frequency solution for the linear water wave problem is extensively used to model the
hydroelastic response of a very large floating structures, container ships, or an ice floe [? ? ? ? ]. The
simplest example problem in hydroelasticity is the floating elastic plate and this has been the subject of
extensive research. Many different method of solution have been developed, including Green function
methods [4,5], eigenfunction matching [1,7? ], multi-mode methods [? ] and the Wiener-Hopf method
[3? ].

The problem becomes more complicated if we consider the time–dependent problem. If the
floating plate is assumed of infinite extent the problem becomes simpler and a spatial Fourier transform
gives the solution [10–16]. The forced vibration of a finite floating elastic plate was solved by [17]
using a variational formulation and the Rayleigh–Ritz method. The problem was analyzed in shallow
water by [21–23] and in finite depth by [? ]. The solution for incident waves in two-dimensions was
given in the case of finite depth by [18–20] and for the case of shallow water in two–dimensions by
[21,22] and in three–dimensions by [23]. A comparison of two methods for the time–dependent motion
in two-dimensions for an initial condition was given in [24]. The solution for finite water depth in
three–dimensions was found by [25–28] and was experimentally investigate by [29]. The solution due
to a transient incident wave forcing was given in [30]. Recently there has been extensive work on
nonlinear simulations using computational fluid dynamics to investigate nonlinear phenomena [? ? ?
? ]. However, even for the case of high amplitude waves the linear wave problem remains valid for a
floating plate [? ] and this model continues to the basis of offshore engineering and scattering by ice
floe.

The eigenfunction matching method has been applied to many floating elastic plate problems and
has proved to give the simplest solutions, provided that the geometry is sufficiently simple that it can
be applied. The solution method was first described in [1] and this is where the solution of the special
dispersion equation for a floating elastic plate was introduced. This method was extended to circular
elastic plates [7], multiple elastic plates [31–33], submerged elastic plates [34,35] and to many other
problems.

We present here a solution to the time–dependent problem of floating circular plate subject
to incident wave forcing. In part the purpose of this work is to show how simply the complex
time-domain motion of such systems can easily be computed using the frequency–domain solution.
We also extend the formulation to a Gaussian incident beam. The outline is as follows. In §2 we derive
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the equations of motion in the time and frequency domain. In §3 we show how the solution can be
found using eigenfunction matching in the frequency domain. In §4 we show how the solution in the
time domain can be found straightforwardly from the frequency domain solutions.

2. Equations of Motion

We consider here a floating elastic plate of uniform thickness and negligible draft. The plate is
assumed circular with radius a. The fluid is of constant depth H with the z axis pointing vertically
up and the free surface at z = 0. Such a plate has been the subject of extensive research []. The
displacement of the plate we denote by w and the velocity potential for the fluid we denote by φ. The
equation The plate has uniform thickness h. It has been the subject of laboratory experiments [36,37].
It has proved to be a robust model, and it reduces to that of a rigid body in the case of long waves.
We begin by stating the governing equations for the plate–water system, which [9] discusses in detail,
assuming that the problem is governed by the equation of linear water waves. The kinematic condition
is

∂tw = ∂zΦ, z = 0; (1)

where w is the displacement of the fluid surface (which is also the displacement of the plate for r < a)
and Φ is the velocity potential of the fluid . The dynamic condition is

ρgw + ρ∂tΦ =

{
E h3

12 (1−ν2)
∂4

xw + ρih∂2
t w, r < a,

0, r > a
z = 0; (2)

where ρ is the water density, g is the gravitational acceleration, E is the Young’s modulus of the plate,
ν is its Poisson’s ratio, and ρi is its density. Laplace’s equation applies throughout the fluid

∆Φ = 0, −h < z < 0 (3)

and the usual non-flow condition at the bottom surface

∂zΦ = 0, z = −H. (4)

Assuming that all motions are time harmonic with radian frequency ω, the velocity potential of the
water, Φ, can be expressed as

Φ(x, z, t) = Re {φ(x, z)e−iωt} and w(x, t) = Re {η(x)e−iωt}, (5)

where the reduced velocity potential φ is complex-valued, and x = (x, y) is the horizontal spatial
variable.

The frequency-domain potential satisfies the boundary value problem

∆φ = 0, −H < z < 0, (6a)

∂zφ = 0, z = −H, (6b)

∂zφ = α φ, z = 0, x /∈ Ω, (6c)

(β∆̄2 + 1− α γ)∂zφ = α φ, z = 0, x ∈ Ω, (6d)

where ∆̄ is the Laplacian operator in the horizontal plane. The constant α = ω2/g and β and γ are

β =
E h3

12 (1− ν2) ρ g
and γ =

ρi h
ρ

, (7)
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(β∆2 + 1− α γ)∂zφ = α φ

∂zφ = 0

∂zφ = α φ

z
x

∆φ = 0

Figure 1. Frequency Domain Equations for a Floating Circular Plate.

The free plate boundary conditions and the radiation condition need to be applied. Figure 1 gives a
schematic diagram of the problem.

3. Eigenfunction Matching

We derive the solution by the eigenfunction matching method here. The solution in
two-dimensions first appeared in [1] and the three–dimensional solution was given in [7]. We begin by
separating variables and writing

φ(x, z) = ζ(z)X(x). (8)

Applying Laplace’s equation we obtain

ζzz + µ2ζ = 0, (9)

so that
ζ = cos µ(z + H), (10)

where the separation constant µ2 must satisfy the standard dispersion equations

k tan (kH) = −α, x /∈ Ω, (11)

κ tan(κH) =
−α

βκ4 + 1− αγ
, x ∈ Ω. (12)

Note that we have set µ = k under the free surface and µ = κ under the plate. The dispersion equations
are discussed in detail in [1]. We denote the negative imaginary solution of (11) by k0 and the positive
real solutions by km, m ≥ 1. The solutions of (12) will be denoted by κm, m ≥ −2. The fully complex
solutions with positive real part are κ−2 and κ−1 (where κ−1 = κ−2), the negative imaginary solution
is κ0 and the positive real solutions are κm, m ≥ 1. We define

φm (z) =
cos km(z + H)

cos kmH
, m ≥ 0, (13)

as the vertical eigenfunction of the potential in the open water region and

ψm (z) =
cos κm(z + H)

cos κm H
, m ≥ −2, (14)

as the vertical eigenfunction of the potential in the plate covered region.
We now use circular symmetry to write

X(x) = ρn(r)einθ (15)
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where (r, θ) are the polar coordinates in the x direction. We now solve for the function ρn(r). Using
Laplace’s equation in polar coordinates we obtain

d2ρn

dr2 +
1
r

dρn

dr
−
(

n2

r2 + µ2
)

ρn = 0, (16)

where µ is km or κm, depending on whether r is greater or less than a. We can convert this equation to
the standard form by substituting y = µr to obtain

y2 d2ρn

dy2 + y
dρn

dy
− (n2 + y2)ρn = 0. (17)

The solution of this equation is a linear combination of the modified Bessel functions of order n,
In(y) and Kn(y). Since the solution must be bounded we know that under the plate the solution will
be a linear combination of In(y) while outside the plate the solution will be a linear combination of
Kn(y). Therefore the potential can be expanded as

φ(r, θ, z) =
∞

∑
n=−∞

∞

∑
m=0

amnKn(kmr)einθφm(z), r > a, (18)

φ(r, θ, z) =
∞

∑
n=−∞

∞

∑
m=−2

bmn In(κmr)einθψm(z), r < a, (19)

where amn and bmn are the coefficients of the potential in the open water and the plate covered region
respectively.

The incident potential is a wave of amplitude A in displacement travelling in the positive
x-direction. Following [? ] the incident potential can therefore be written as

φI =
A

i
√

α
ek0xφ0 (z) =

∞

∑
n=−∞

en In(k0r)φ0 (z) einθ (20)

where en = A/
(
i
√

α
)
.

The boundary conditions for the plate also have to be considered. The vertical force and bending
moment must vanish, which can be written as[

∆̄− 1− ν

r

(
∂

∂r
+

1
r

∂2

∂θ2

)]
η = 0, (21)

and [
∂

∂r
∆̄− 1− ν

r2

(
∂

∂r
+

1
r

)
∂2

∂θ2

]
η = 0, (22)

where w is the time-independent surface displacement, ν is Poisson’s ratio, and ∆̄ is the in polar
coordinates is

∆̄ =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 (23)

The surface displacement and the water velocity potential at the water surface are linked through
the kinematic boundary condition

φz = −i
√

αη , z = 0 (24)

The relationship between the potential and the surface displacement is

η = i
√

αφ, r > a (25)

(β∆̄2 + 1− αγ)η = i
√

αφ, r < a. (26)
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The surface displacement can also be expanded in eigenfunctions as

η(r, θ) =
∞

∑
n=−∞

∞

∑
m=0

i
√

αamnKn(kmr)einθ , r > a, (27)

η(r, θ) =
∞

∑
n=−∞

∞

∑
m=−2

i
√

α(βκ4
m + 1− αγ)−1bmn In(κmr)einθ , r < a,

using the fact that
∆̄
(

In(κmr)einθ
)
= κ2

m In(κmr)einθ . (28)

The boundary conditions (21) and (22) can be expressed in terms of the potential using (28). Since
the angular modes are uncoupled the conditions apply to each mode, giving

∞

∑
m=−2

(βκ4
m + 1− αγ)−1bmn× (29)(

κ2
m In(κma)− 1− ν

a

(
κm I′n(κma)− n2

a
In(κma)

))
= 0,

and

∞

∑
m=−2

(βκ4
m + 1− αγ)−1bmn× (30)(

κ3
m I′n(κma) + n2 1− ν

a2

(
κm I′n(κma) +

1
a

In(κma)
))

= 0.

The potential and its derivative must be continuous across the transition from open water to the plate
covered region. Therefore, the potentials and their derivatives at r = a have to be equal. Again we
know that this must be true for each angle and we obtain

en In(k0a)φ0 (z) +
∞

∑
m=0

amnKn(kma)φm (z) (31)

=
∞

∑
m=−2

bmn In(κma)ψm(z),

and

enk0 I′n(k0a)φ0 (z) +
∞

∑
m=0

amnkmK′n(kma)φm (z) (32)

=
∞

∑
m=−2

bmnκm I′n(κma)ψm(z),

for each n. We solve these equations by multiplying both equations by φl(z) and integrating from −H
to 0 to obtain

en In(k0a)A0δ0l + alnKn(kla)Al =
∞

∑
m=−2

bmn In(κma)Bml (33)

enk0 I′n(k0a)A0δ0l + alnklK′n(kla)Al (34)

=
∞

∑
m=−2

bmnκm I′n(κma)Bml ,
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where ˆ 0

−H
φm(z)φn(z)dz = Amδmn, (35)

where

Am =
1
2

(
cos kmH sin kmH + km H

km cos2 km H

)
, (36)

and ˆ 0

−H
φn(z)ψm(z)dz = Bmn, (37)

where
Bmn =

kn sin kn H cos κmH − κm cos kn H sin κm H
(cos knH cos κm H) (k2

n − κ2
m) .

(38)

Equation (33) can be solved for the open water coefficients amn

aln = −en
In(k0a)
Kn(k0a)

δ0l +
∞

∑
m=−2

bmn
In(κma)Bml
Kn(kla)Al

, (39)

which can then be substituted into equation (34) to give us(
k0 I′n(k0a)− k0

K′n(k0a)
Kn(k0a)

In(k0a)
)

en A0δ0l (40)

=
∞

∑
m=−2

(
κm I′n(κma)− kl

K′n(kla)
Kn(kla)

In(κma)
)

Bmlbmn,

for each n. Together with equations (29) and (30) equation (40) gives the required equations to solve for
the coefficients of the water velocity potential in the plate covered region. For the numerical solution
we truncate the sum at N and then we have N + 1 equations from matching through the depth and 2
extra equations from the boundary conditions.

It should be noted that the solutions for positive and negative n are complex conjugates so that
they do not both need to be calculated. There are some minor simplifications which are a consequence
of this which are discussed in more detail in [? ].

4. Time–dependent forcing and numerical results

We have denoted the surface displacement in the frequency domain is given by η(x). However
the surface displacement is a function of ω and ω is in turn a function of wavenumber k. We have
also only considered waves incident from the positive x direction (θ = 0). This makes sense given
the circular symmetry, but we can consider waves incident from other angles (which are found by
rotation of the solution by the angle). Therefore we denote the complex frequency domain surface
displacement by η((x), θ, k).

4.1. Plane incident wave forcing

The simplest time-dependent problem is to consider a place incident wave from the positive x
direction. We assume that the incident wave is a Gaussian at t = 0. Therefore the time–dependent
displacement is then given by the following Fourier integral

w(x, t) = Re
{ˆ ∞

0
f̂ (k)η(x, 0, k)eiωt dk

}
, (41)

where f̂ (k) is

f̂ (k) =
√

σ

π
exp(σ(k− k0)

2). (42)
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Figure 2. The time–dependent motion β = 1× 10−1, γ = 0, h = 1 and a = 2 for the times shown. The
full animation can be found in movie 1.

where σ is a scale factor and we set σ− 0.1 and k0 is the central wavenumber we set k0 = 3.

4.2. Focused wave group

It is more interesting to consider a two-dimensional incident waves. A simple focused wave
group can be constructed as from the following formula

w(x, t) = Re

{ˆ π/2

−π/2

ˆ ∞

0
f̂ (k)e−θσk2 sin2(θ)η(x, θ, k)eiωt dk dθ

}
, (43)

where θσ is another scaling parameters which we set to be θσ = 0.1
The numerical results we present are a subset of the possible motions which are possible. We fix

the mass γ = 0, the water depth h = 1 and the floe radius a = 2 for all calculations. The solution is
shown as an animation in movies 1 to 8 which are given as supplementary material. Figures 2 to 5
show snapshots from movies 1 to 4 respectively for the times t = −5, 0, 5, 10. We change the stiffness
from β = 1× 10−1 in Figure 2to β = 1× 10−4 in Figure 5. The plate goes from being virtually stiff
to highly flexible. The complex motion of the plate and fluid systems can be seen, especially in the
movies in the supplementary material.

Figures 6 to 9 show the solution for the more complicated and interesting case of an incident wave
packet. The complex and resonant behaviour of the plate and fluid system is clear visible.

5. Conclusions

The purpose of this work is to show how we can easily visualise the complex time-domain
behaviour of complex wave scattering problems such as those which arise from the scattering by a
flexible plate. While the frequency–domain solution is central to our calculations, the scattering results
from the frequency domain solution are often difficult to interpret in the context of incident wave
packets. By the simple visualisation using the suitable superposition of incident waves we can bring
the complex motion to life. The authors hopes that these results, and the accompanying computer code,
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Figure 3. As in Figure 2 except β = 1× 10−2. The full animation can be found in movie 2.

Figure 4. As in Figure 2 except β = 1× 10−3. The full animation can be found in movie 3.
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Figure 5. As in Figure 2 except β = 1× 10−4. The full animation can be found in movie 4.

Figure 6. The time–dependent motion β = 1× 10−1, γ = 0, h = 1 and a = 2 for the times shown. The
full animation can be found in movie 5.
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Figure 7. As in Figure 6 except β = 1× 10−3. The full animation can be found in movie 6.

Figure 8. As in Figure 6 except β = 1× 10−4. The full animation can be found in movie 7.
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Figure 9. As in Figure 6 except β = 1× 10−2. The full animation can be found in movie 8.

will encourage others to also investigate such visualisations for their complex wave wave scattering
problem.
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