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Abstract: Is it possible to measure the dispersion of ex-ante chances (i.e. chances “before the event”) 8 
among people, be it gambling, health, or social opportunities? We explore this question and provide 9 
some tools, including a statistical test, to evidence the actual dispersion of ex-ante chances in various 10 
areas with a focus on chronic diseases. Using the principle of maximum entropy, we derive the 11 
distribution of the risk to become ill in the global population as well as in the population of affected 12 
people. We find that affected people are either at very low risk like the overwhelming majority of 13 
the population but still were unlucky to become ill, or are at extremely high risk and were bound to 14 
become ill. 15 

Keywords: ex-ante chances; dispersion of chances; chronic diseases; gambling; statistical test; twin 16 
studies; principle of maximum entropy. 17 
 18 

1. Introduction 19 
“That evening he was lucky”: what do we mean by this? And even weirder when we 20 

say: “the luck turned”. Does this mean that we could be visited by fortune? Or that some 21 
people are luckier than others on certain days? Of course, we cannot rule out the fact that 22 
some people may bias the chances of success simply by cheating. But is there any way to 23 
assess the dispersion of chances among gamblers (or just the fraction of cheaters)?  24 

This kind of question is part of the field of probability calculus, which aims at deter- 25 
mining the relative likelihoods of events. The probability calculus started during summer 26 
1654 with the correspondence between Pascal and Fermat precisely on elementary prob- 27 
lems of gambling. Symmetry arguments are at the heart of this calculus: for example, for 28 
an unbiased coin, the two results, heads or tails, are a priori equivalent and therefore have 29 
the same probability of occurrence 1/2. This is why it is not anecdotal that Pascal wanted 30 
to give his treatise the “astonishing” title “Geometry of Chance”. Another illustration of 31 
the power of symmetry arguments is the tour de force of Maxwell who managed to cal- 32 
culate the velocity distribution of particles in idealized gases. At the time when he derived 33 
what is called since the Maxwell–Boltzmann distribution, there was no possibility to 34 
measure this distribution. It was almost 60 years before Otto Stern could achieve the first 35 
experimental verification of this distribution [1], around the same time when he con- 36 
firmed with Walther Gerlach the existence of the electron spin, for which he won the No- 37 
bel Prize in 1944. The agreement between theoretical and experimental distributions was 38 
surprisingly good. 39 

In probability theory, events are usually associated with random variables that are 40 
measurable. For example, in the heads or tails game, heads may be associated with 1 and 41 
tails with 0. Then for a given number 𝑁 of draws, one can count the number of times the 42 
heads are flipped. This number 𝑘  is between 0 and 𝑁 and the ratio 𝑘 𝑁⁄  is the fre- 43 
quency of the heads. If the coin is unbiased, this frequency fluctuates around 1/2 when 44 
the game (𝑁 draws for each game) is played many times. Importantly, the frequency is 45 
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observed ex-post, i.e. after the game is played, then the mean frequency is used as a meas- 46 
ure of the probability of getting a head. This is the usual way of assessing probabilities in 47 
the frequentist perspective of statistics. Remember that assessing probabilities for antici- 48 
pating the outcome of future events is the very purpose of statistics. However, it is not 49 
always possible to deduce probabilities from frequency measurements. For example, sup- 50 
pose that each coin is tossed only once. Can we still assess the dispersion of chances among 51 
gamblers? 52 

Dispersion of chances is far from being limited to gamblers. Disease risk is another 53 
area where people may be and actually are unequal for genetic or environmental reasons. 54 
In this case, the result of a “draw” is whether or not you have a disease 𝐷. The “game” is 55 
then limited to one “draw” per person. Of course, the mean probability to become ill can 56 
still be observed. But can we assess the dispersion of disease risks? And if so, how can we? 57 
As a last emblematic example, we mention social opportunities. Measuring inequality of 58 
opportunity is a crucial issue with considerable political stakes, though it is extremely 59 
difficult to assess. On this last point, we postpone the in-depth study of the measure of 60 
unequal opportunities to a further work. 61 

In all these examples, be it gambling, disease, or social opportunity, the ex-ante 62 
chances are themselves random variables that cannot be deduced from frequency meas- 63 
urements nor be induced by symmetry arguments. They are hidden variables. Neverthe- 64 
less, we argue here that the probability distribution function (pdf) of the ex-ante chances 65 
can be assessed and we propose some tools to (i) first test the existence of some dispersion 66 
of chances in the population; (ii) then infer the pdf of the ex-ante chances; and (iii) explore 67 
more specifically the relevance of those tools to and their consequences in the field of 68 
chronic diseases. Importantly we do not assume any hypothetical functional form for the 69 
pdf of chances and then infer its parameters by Bayesian inference as is usually done. Here 70 
we first test the inequality of chances in the population, then infer the functional form of 71 
the pdf by means of the principle of maximum entropy. 72 

2. A simple draw is not enough. 73 
Let us first assume that there is a sample of 𝑛 people tossing a coin and that each of 74 

them has a probability 𝑝! to win (hence 1 − 𝑝! to lose). In an unbiased game, all the 𝑝! 75 
are identical and equal to 1/2. Imagine that some gamblers are luckier, others less fortu- 76 
nate, hence some 𝑝! are greater than 1/2, others less than 1/2. This means that the 𝑝! 77 
are random variables that are drawn from a probability distribution 𝑓(𝑝) that is different 78 
from 𝛿(𝑝 − 1/2), where 𝛿 is the Dirac delta function. Let 𝛷 and 𝛴" be the mean and 79 
variance of 𝑓(𝑝). Let us assume now that each individual plays 𝑁 times. The result of 80 
each draw 𝑗 of the individual 𝑖 is a random variable 𝑋!

#, either 1 in case of success or 0 81 
in case of failure. This is a Bernoulli process: for each 𝑖 the random variables 𝑋!

# are i.i.d. 82 
(independent, identically distributed, i.e. the probability of success 𝑝! is the same for the 83 
𝑁 draws of 𝑖). Let us define 𝑆! = ∑ 𝑋!

#$
#%&  the score over 𝑁 draws. It is the number of 84 

times the individual 𝑖 has won. 𝑆! is a random variable that follows a binomial distribu- 85 
tion 𝐵(𝑁, 𝑝!). The mean and the variance of 𝑆! for a given 𝑝! are 86 

𝐸[𝑆!|𝑝!] = 𝑁𝑝! 	 87 

𝑉𝑎𝑟[𝑆!|𝑝!] = 𝑁𝑝!(1 − 𝑝!)	 88 

Once every individual has played 𝑁 times, we obtain an estimation of the distribu- 89 
tion of the 𝑛 random variables 𝑆! as a histogram over the 𝑁 + 1 values 𝑘 = 0, 1, 2, … ,𝑁. 90 
These random variables 𝑆! are independent but non identically distributed as the 𝑝! are 91 
different from one individual to another. 92 

Just as the 𝑝! are drawn from the distribution 𝑓(𝑝), the 𝑆! are the realizations of a 93 
random variable 𝑆 (which takes the 𝑁 + 1 discrete values 𝑘 = 0, 1, 2, … ,𝑁). The under- 94 
lying distribution is no longer only on the random variable 𝑆, but on the joint probability 95 
of 𝑆 and 𝑝. Thus, the marginal probability distribution function of 𝑆 is given as follows: 96 
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∀𝑘 = 0, 1,… ,𝑁		𝑃$[𝑆 = 𝑘] = 𝐸'F𝑃$[𝑆 = 𝑘|𝑝]G = 𝐸'[𝐶$(𝑝((1 − 𝑝)$)(] = I 𝑑𝑝𝑓(𝑝)𝐶$(𝑝((1 − 𝑝)$)(
&

*
(1)	 97 

where 𝐸'[⋅] is expected value of ⋅ with the probability distribution of 𝑝, 𝑓(𝑝). The 98 
mean of 𝑆 is 99 

𝐸+[𝑆] = 𝐸'F𝐸+[𝑆|𝑝]G = 𝐸' LM𝑘𝐶$(𝑝((1 − 𝑝)$)(
$

(%*

N = 𝐸'[𝑁𝑝]	 100 

where 𝐸+[⋅] is the expected value of ⋅ with the probability distribution of 𝑆, 𝑃$(S) 101 
and 𝐸+[𝑆|𝑝] is the conditional expected value of 𝑆 for a given underlying probability 𝑝, 102 
i.e. the Bernoulli distribution. Since 𝛷 is the mean of the distribution 𝑓(𝑝), 103 

𝐸+[𝑆] = 𝑁𝐸'[𝑝] = 𝑁𝛷 (2)	 104 

and the variance of 𝑆 is 105 

𝑉𝑎𝑟(𝑆) = 𝐸+[𝑆"] − 𝐸+[𝑆]"	 106 

where 107 

𝐸+[𝑆"] = 𝐸'F𝐸+[𝑆"|𝑝]G = 𝐸' LM𝑘"𝐶$(𝑝((1 − 𝑝)$)(
$

(%*

N = 𝐸'[𝑁𝑝(1 − 𝑝) + (𝑁𝑝)"]	 108 

hence 109 

𝐸+[𝑆"] = 𝑁O𝐸'[𝑝] − 𝐸'[𝑝"]P + 𝑁"𝐸'[𝑝"]	 110 

and 111 

𝑉𝑎𝑟(𝑆) = 𝑁O𝐸'[𝑝] − 𝐸'[𝑝"]P + 𝑁"𝐸'[𝑝"] − 𝑁"𝐸'[𝑝]"	 112 

Now, we recall the first two moments of 𝑓(𝑝), given its mean 𝛷 and its variance 𝛴" 113 

𝐸'[𝑝] = 𝛷	 114 

𝐸'[𝑝"] = 𝛴" +𝛷"	 115 

so that 116 

𝑉𝑎𝑟(𝑆) = 𝑁𝛷(1 − 𝛷) + 𝑁(𝑁 − 1)𝛴" = 𝑁(𝛷(1 − 𝛷) − 𝛴") + 𝑁"𝛴" (3)	 117 

Note that within the limit 𝑁 → ∞, the probability distribution function of the re- 118 
duced variable 𝑥 = 𝑘 𝑁⁄  (where 𝑘 = 0,  1,  2, … ,𝑁) converges to the distribution 𝑓(𝑝). 119 

Equation (3) shows that, if 𝑁 = 1, the variance 𝑉𝑎𝑟(𝑆) = 𝛷(1 − 𝛷) does not depend 120 
on the variance Σ2 of 𝑓(𝑝). As a matter of fact, when 𝑁 = 1, the gains are either 0 or 1 121 
so that the histogram of gains has only two bins, one at 0, the other at 1. The mean of 122 
gains is 𝛷 and the variance is 𝛷(1 − 𝛷). Neither the mean nor the variance depends on 123 
the variance 𝛴" of 𝑓(𝑝). Moreover, according to equation (1), the histogram of gains it- 124 
self depends only on the mean of the distribution 𝑓(𝑝): 125 

𝑃&[𝑆 = 0] = 𝐸'[1 − 𝑝] = 1 − 𝛷	 126 

𝑃&[𝑆 = 1] = 𝐸'[𝑝] = 𝛷	 127 

The histogram of gains cannot therefore provide information on the dispersion of 128 
chances. For example, the two following distributions: 129 

𝑓&(𝑝) = 𝛿 W𝑝 −
1
2X	 130 

and 131 
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𝑓"(𝑝) =
1
2
[𝛿(𝑝) + 𝛿(1 − 𝑝)] (4)	 132 

have the same mean 𝛷 = 1/2, hence result in the same histograms (Figure 1 for 𝑁 = 133 
1). However, the variance of 𝑓& is null whereas the variance of 𝑓" is 1/4. (Note that 1/4 134 
is the maximal variance that a probability distribution 𝑓(𝑝) can take). This means that a 135 
simple draw is not enough to extract the variance of 𝑓(𝑝) from the histogram of gains; mul- 136 
tiple draws are necessary, though are they sufficient? 137 

 138 
Figure 1. Histograms of gains 𝑆 for two distributions 𝑓! and 𝑓": on the left-hand side 𝑓!(𝑝) = 139 
𝛿(𝑝 − 1/2) and on the right-hand side 𝑓"(𝑝) =

!
"
[𝛿(𝑝) + 𝛿(1 − 𝑝)]. In each case, the histogram of 140 

success is plotted for increasing values of the number 𝑁 of draws (𝑁 = 1,2,3,4) and for two num- 141 
bers 𝑛 of gamblers: 𝑛 = 10 (in blue) and 100 (in orange). For 𝑁 = 1 note that the histogram for 142 
𝑓! is similar to the histogram for 𝑓" and both histograms converge to the same limit as 𝑛 goes to 143 
infinity. On the contrary, for each 𝑁 ≥ 2 the histograms for 𝑓! and 𝑓" diverge as 𝑛 increases. 144 

3. A statistical test of the dispersion of chances. 145 
We then note on Figure 1 that the histogram of gains for two draws (𝑁 = 2) has three 146 

bins, one at 0, the second at 1 and the third at 2, with the following values: 147 

𝑃"[𝑆 = 0] = 𝐸'[(1 − 𝑝)"] = (1 − 𝛷)" + 𝛴"	 148 

𝑃"[𝑆 = 1] = 𝐸'[2𝑝(1 − 𝑝)] = 2𝛷(1 − 𝛷) − 2𝛴" (5)	 149 

𝑃"[𝑆 = 2] = 𝐸'[𝑝"] = 𝛷"+𝛴" (6)	 150 

Hence the histogram of gains now depends on (and only on) both the mean and the 151 
variance of 𝑓(𝑝). Note that equation (5) shows that 𝛴" ≤ 𝛷(1 − 𝛷) since 𝑃"[𝑆 = 1] ≥ 0; 152 
moreover 𝛷(1 − 𝛷) is maximal when 𝛷 = 1/2. For three or more draws, we could also 153 
have access to higher order moments of 𝑓(𝑝). Nevertheless, the minimum condition for 154 
the presence of a probability dispersion is that the variance of 𝑓(𝑝) is non-zero. We there- 155 
fore propose to design a statistical test that will be able to discriminate between both fol- 156 
lowing hypotheses: 157 

 158 
i. Null hypothesis 𝐻* : everybody has the same probability 𝛷 of gain. This 159 

means that 𝑓(𝑝) = 𝛿(𝑝 − 𝛷) whose mean is 𝐸'[𝑝] = 𝛷 and variance 𝛴" = 160 
0; 161 
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ii. Alternative hypothesis 𝐻&: 𝑓 has the same mean 𝛷 but there is some dis- 162 
persion of chances among the population, so that some people are luckier 163 
than others, hence 𝑓 has a non-zero variance 𝛴". 164 

 165 
According to 𝐻*  the mean of 𝑁  draws is 𝛷  and the variance is 𝑁𝛷(1 − 𝛷) , 166 

whereas according to 𝐻&  the mean of 𝑁  draws is also 𝛷  but the variance is 167 
𝑁(𝛷(1 − 𝛷) − 𝛴") + 𝑁"𝛴". Hence if the	variance	 𝑉𝑎𝑟(𝑆)	 grows linearly with 𝑁, then all 168 
individuals have the same probability 𝑝 of success. If on the contrary 𝑉𝑎𝑟(𝑆)	 grows 169 
quadratically with 𝑁 then not all individuals have the same chance of success. We can 170 
therefore rephrase our hypothesis test in the following alternative based on the depend- 171 
ence of the variance 𝑉𝑎𝑟(𝑆) on the number 𝑁 of draws: 172 

 173 
i. Null hypothesis 𝐻*:	the	variance	 𝑉𝑎𝑟(𝑆)	 grows linearly with 𝑁; 174 
ii. Alternative hypothesis 𝐻&:	the	variance	 𝑉𝑎𝑟(𝑆)	 grows quadratically with 𝑁. 175 

 176 
Figure 2 plots the variance of the two distributions 𝑓& and 𝑓" as a function of the 177 

number 𝑁 of draws for 𝑛 = 100 gamblers. 178 

 179 
Figure 2. Linear regression fits 𝑉𝑎𝑟(𝑆) for 𝑓!, with 𝑎 = 0.251 ± 0.005 in agreement with equation 180 
(3) when 𝛴" = 0. Moreover, a agrees with the expected value 𝛷(1 − 𝛷) = 1 4⁄ . At odds with 𝑓!, 181 
the linear regression does not fit 𝑉𝑎𝑟(𝑆) for 𝑓" whereas the quadratic fit is excellent, with: 𝑎 = 182 
0.244 ± 0.006 and 𝑏 = 0.01 ± 0.01. Here a agrees with the expected value 𝛴" = 1 4⁄  and b with 183 
the expected value 𝛷(1 − 𝛷) − 𝛴" = 0. 184 

A relevant statistical test is needed to discriminate between the two hypotheses 𝐻* 185 
and 𝐻&, or at least to reject the null hypothesis 𝐻*. Moreover, in the remainder of this 186 
paper, we are more particularly interested in the case 𝑁 = 2. It is then necessary to refor- 187 
mulate our hypotheses, because it becomes difficult to discriminate the quadratic behav- 188 
ior from the linear behavior with only three points. Therefore, we rephrase our hypothesis 189 
test, based on the fact that the number of draws is limited to 𝑁 = 2: 190 

 191 
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i. Null hypothesis 𝐻*: the variance of 𝑆 reads 𝑉𝑎𝑟*[𝑆] = 2𝛷(1 − 𝛷), i.e. 𝛴" = 192 
0; 193 

ii. Alternative hypothesis 𝐻& : the variance of 𝑆  reads 𝑉𝑎𝑟-![𝑆] = 2𝛷(1 − 194 
𝛷) + 2𝛴" with 𝛴" > 0. 195 

 196 
To estimate the variance of 𝑆 from a sample of 𝑛 individuals, the unbiased variance es- 197 
timator is used: 198 

𝑉. =
1

𝑛 − 1M
(𝑆! −	𝑆̅)"

.

!%&

	 199 

where 𝑆̅ is the mean estimator 200 

𝑆̅ =
1
𝑛M𝑆!

.

!%&

	 201 

The estimation of the variance of 𝑆, 𝑉., from a sample of finite size 𝑛 is subject to 202 
statistical fluctuations. Thus, our hypotheses become: 203 

 204 
i. Null hypothesis 𝐻*: 𝑉. − 2𝛷(1 − 𝛷) is compatible with 0 considering the 205 

error bars, i.e. the standard deviation of 𝑉.; 206 
ii. Alternative hypothesis 𝐻&: 𝑉. − 2𝛷(1 − 𝛷) = 2𝛴" > 0. 207 
 208 
The variance of 𝑉. is (see Appendix 1) 209 

𝑉𝑎𝑟[𝑉.] =
2𝑛

(𝑛 − 1)"
(𝛹(1 − 2𝛹) + 7(1 − 4𝛹)𝛴" − 2𝛴/) +

8
(𝑛 − 1)"

(𝛹 + 𝛴")" (7) 210 

where 𝛹 = 𝛷(1 − 𝛷). 211 

 212 
Figure 3. Evolution of the variance 𝑉# of 𝑆 for 𝑁 = 2 as a function of the number 𝑛 of players. 213 
The blue dots are simulated with Φ = 0.5 and Σ" = 0.15. The black dashed line corresponds to 214 
the expected variance according to the equation (7). The grey dashed line corresponds to the lead- 215 
ing-order term in 1/𝑛 of the expected variance in equation (7). 216 
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It can be noted that the distribution of 𝑉.  tends towards a normal distribution 217 
𝒩(𝐸[𝑉.], 𝑉𝑎𝑟[𝑉.]) of mean 𝐸[𝑉.] = 𝑉𝑎𝑟[𝑆] and variance 𝑉𝑎𝑟[𝑉.]. Now we wish to esti- 218 
mate the probability of having obtained a value as high as 𝑉. under the null hypothesis 219 
𝐻*, i.e. the p-value. Since 𝑉. follows a normal distribution, the p-value can be expressed 220 
as follows 221 

p-value =
1
2W1 − erf W

𝑧
√2
XX =

1
2 erfc W

𝑧
√2
X (8)	 222 

where erf and erfc are respectively the error function and the complementary error 223 
function. By posing 𝐸*[𝑉.] and 𝑉𝑎𝑟*[𝑉.] as the mean and the variance of 𝑉. under the 224 
null hypothesis 𝐻*, i.e. 𝛴" = 0, we have 225 

𝑧 =
𝑉. − 𝐸*[𝑉.]
u𝑉𝑎𝑟*[𝑉.]

=
𝑉. − 2𝛷(1 − 𝛷)
u𝑉𝑎𝑟*[𝑉.]

	 226 

Within the limit of large sample sizes 𝑛 ≫ 1 , one can write using again 𝛹 = 227 
𝛷(1 − 𝛷) : 228 

𝑧 ∼
√2𝑛	𝛴"

u𝛹(1 − 2𝛹)
	 229 

4. Dispersion of disease risks for twins. 230 
Inequality in disease risk is a major public health issue. Of course, part of this ine- 231 

quality is known to depend on genetic and environmental factors. The mean frequency 232 
that an individual will become ill in a given population, specified by genetic and environ- 233 
mental factors, can be measured. And, as usual, this frequency can be used as a measure 234 
of the probability to become ill. But can we assess the dispersion of disease risk, if only it 235 
exists, in this specific population? And more generally, is there any way to assess the dis- 236 
persion of risk in a more objective manner, without any a priori assumption on presumed 237 
risk factors? Here comes into play a providential help from the existence of twins. Identi- 238 
cal twins, also called monozygotic twins, have the same genome, shared the same fetal 239 
environment and generally share the same living conditions. So that they are most likely 240 
to share also the same probability to become ill, whatever the disease. Identical twins are 241 
therefore like a player betting twice. This is much related to the gambling question ad- 242 
dressed above for 𝑁 = 2 (two draws). Indeed, as both twins have the same probability 𝑝 243 
to have disease 𝐷, the status – healthy or ill – of each of the two twins is equivalent re- 244 
spectively to the outcome – loss or gain – of each of the two draws by one and the same 245 
gambler. In this situation probability 𝑝 is called a risk. Let 𝑓(𝑝) be the probability distri- 246 
bution function of the risk to have disease 𝐷 in the population. We define the random 247 
variable 𝑆 as above, i.e. 𝑆 = 0 if both twins are healthy, 𝑆 = 1 if only one of the two 248 
twins is ill and 𝑆 = 2 if both twins are ill. The mean 𝛷 and variance 𝛴" of 𝑆 are given 249 
by equations (2) and (3) respectively, hence for 𝑁 = 2 250 

𝐸[𝑆] = 2𝛷 (9)	 251 

𝑉𝑎𝑟(𝑆) = 2𝛷(1 − 𝛷) + 2𝛴"	 252 

Then if 𝑉. is significantly greater than 𝑆̅(1 − 𝑆̅ 2⁄ ), which amounts to carry out the 253 
hypothesis test presented in the above section, we can conclude that there is some disper- 254 
sion of the disease risk. As we will see below the dispersion is in fact unusually large. But 255 
before that, let us calculate the twin concordance rate of the disease 𝐷. In genetics, the 256 
twin concordance rate is the probability 𝜏 that a twin is affected given that his/her co- 257 
twin is affected: 258 

𝜏 = 𝑃(𝑋" = 1|𝑋& = 1) =
𝑃(𝑋& = 1, 𝑋" = 1)

𝑃(𝑋& = 1) =
𝑃(𝑆 = 2)

𝑃(𝑋& = 1, 𝑋" = 1) + 𝑃(𝑋& = 1, 𝑋" = 0) 259 
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 260 
hence 261 

𝜏 =
𝑃(𝑆 = 2)

𝑃(𝑆 = 2) + 12𝑃(𝑆 = 1)
 262 

Note that 𝜏 is equal to the probandwise concordance rate, which is known to best 263 
assess the twin concordance rate [2]. 264 

Using equations (2) and (6), we can also reformulate the concordance rate of twins in 265 
terms of the moments of the distribution 𝑓(𝑝): 266 

𝜏 =
2𝑃"[𝑆 = 2]
𝐸+[𝑆]

=
𝐸'[𝑝"]
𝐸'[𝑝]

	 267 

Note we can generalize the concordance rate for a 𝑁-tuple: 268 

𝜏$ =
𝑁𝑃$[𝑆 = 𝑁]

𝐸+[𝑆]
=
𝐸'[𝑝$]
𝐸'[𝑝]

	 269 

Using equations (6) and (9) we get 270 

𝜏 =
𝛷"+𝛴"

𝛷
(10)	 271 

so that the relative risk 𝑅𝑅 = 𝜏/𝛷 is equal to 272 

𝑅𝑅 =
𝛷"+𝛴"

𝛷" = 1 +
𝛴"

𝛷" (11) 273 

The twin concordance rate can also be computed using the probability density func- 274 
tion 𝑓0(𝑝) restricted to the population of affected people. Let 𝑓(𝑋, 𝑝) be the joint proba- 275 
bility of an individual to have a risk 𝑝 ∈ [0,1] and to be in the state 𝑋 ∈ {0,1}. Accord- 276 
ing to Bayes theorem we write 277 

𝑓(𝑋, 𝑝) = 𝑓(𝑝|𝑋)𝑃(𝑋) = 𝑓(𝑋|𝑝)𝑓(𝑝)	 278 

hence  279 

𝑓(𝑝|𝑋) =
𝑓(𝑋|𝑝)𝑓(𝑝)

𝑃(𝑋) 	 280 

Then 𝑓(𝑝|𝑋 = 1) is the distribution of the risk 𝑝 in the population of affected peo- 281 
ple 282 

𝑓(𝑝|𝑋 = 1) = 𝑓0(𝑝)	 283 

Now by definition we have 284 

𝑓(𝑋 = 1|𝑝) = 𝑝	 285 

and by noting that 𝑃[𝑋 = 1] = 𝑃&[𝑆 = 1], we also have 286 

𝑃[𝑋 = 1] = 𝐸'[𝑓(𝑋 = 1|𝑝)] = 𝐸'[𝑝]	 287 

This leads to the following expression of the risk distribution function among af- 288 
fected people 289 

𝑓0(𝑝) =
𝑝𝑓(𝑝)
𝐸'[𝑝]

	 290 

Note that 𝑓0(𝑝) is the so-called “size-biased law” of the risk 𝑝 to become ill. Size- 291 
biased laws are found in many contexts, notably rare events [3], Poisson point processes 292 
[4] or familial risk of disease [5]. 293 

The mean risk in the affected population is then 294 
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𝐸0[𝑝] = I 𝑝𝑓0(𝑝)𝑑𝑝
&

*
=
∫ 𝑝"𝑓(𝑝)𝑑𝑝&
*
𝐸'[𝑝]

=
𝐸'[𝑝"]
𝐸'[𝑝]

	 295 

where 𝐸0[⋅] is the expected value of ⋅ among affected people, with the probability 296 
distribution 𝑓0(𝑝). Using again equations (6) we get 297 

𝐸0[𝑝] =
𝛷"+𝛴"

𝛷
(12) 298 

which proves that the twin concordance rate (10) is equal to the mean risk in the 299 
affected population (11) 300 

𝜏 = 𝐸0[𝑝] (13) 301 

We proceed now to evaluate the functional form of the distribution 𝑓(𝑝). Using the 302 
prevalence and the twin concordance rate of the disease 𝐷, we have access to, and only to 303 
the mean 𝛷 and standard deviation 𝛴 of 𝑓(𝑝). The principle of maximum entropy then 304 
provides us with the least arbitrary distribution [6]. Dowson and Wragg proved [7] that 305 
in the class 𝑃 of absolutely continuous probability distributions on [0,1] with given first 306 
and second moments (i.e. given mean and variance), there exists a distribution in 𝑃 307 
which maximizes the entropy 308 

𝐻(𝑓) = −I 𝑓(𝑝) ln 𝑓(𝑝) 𝑑𝑝
&

*
(14) 309 

and the corresponding density function 𝑓(𝑝) on [0,1] is a truncated normal distri- 310 
bution 𝑓(𝑝;𝑚, 𝑠, 0,1)  which may be either bell-shaped (concave) or U-type (convex). 311 
Dowson and Wragg show that when 𝛷 ≪ 1 and 𝛴 > 𝛷, which is usual for most if not all 312 
chronic diseases (unpublished results), the distribution 𝑓(𝑝;𝑚, 𝑠, 0,1) is U-type (see Ap- 313 
pendix 2). This distribution, which will be simply denoted 𝑓(𝑝;𝑚, 𝑠) in the following, can 314 
then be written 315 

𝑓(𝑝;𝑚, 𝑠) =
1
𝑠𝑍
�2
𝜋 𝑒𝑥𝑝 �

(𝑝 −𝑚)"

2𝑠" �	 316 

with 317 

𝑍 = erfi W
𝑚
𝑠√2

X + erfi W
1 −𝑚
𝑠√2

X 318 

The imaginary error function erfi(𝑥) can be expressed using the Dawson function 319 
𝐷(𝑥) 320 

erfi(𝑥) =
2
√𝜋

𝑒1!𝐷(𝑥) 321 

So that 𝑓(𝑝;𝑚, 𝑠) can finally be written 322 

𝑓(𝑝;𝑚, 𝑠) =
1
√2𝑠

exp W𝑝
" − 2𝑚𝑝
2𝑠" X

𝐷 W 𝑚
𝑠√2

X + 𝑒
&)"2
"3! 𝐷 W1 −𝑚

𝑠√2
X

(15) 323 

It is straightforward to express 𝛷 and 𝛴 in terms of the parameters 𝑚 and 𝑠: 324 
 325 

Φ = 𝑚−
√2
2 𝑠

1 − 𝑒
&)"2
"3!

𝐷 W 𝑚
𝑠√2

X + 𝑒
&)"2
"3! 𝐷 W1 −𝑚

𝑠√2
X

(16) 326 
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Σ" = −𝑠"

⎩
⎪
⎨

⎪
⎧
1 −

1
𝑠
√2
2

𝑚 + (1 −𝑚)𝑒
&)"2
"3!

𝐷 W 𝑚
𝑠√2

X + 𝑒
&)"2
"3! 𝐷 W1 −𝑚

𝑠√2
X
+
1
2

W1 − 𝑒
&)"2
"3! X

"

�𝐷 W 𝑚
𝑠√2

X + 𝑒
&)"2
"3! 𝐷 W1 −𝑚

𝑠√2
X�
"

⎭
⎪
⎬

⎪
⎫

(17)	 328 

 329 
Inverting this system of equations to get the risk distribution function of the disease 330 

𝐷 in terms of 𝛷 and 𝛴 is a bit trickier and requires a numerical solver. In the next section 331 
we show the outcome of this general formalism to one specific chronic disease, namely 332 
Crohn disease. 333 

5. Application to Crohn disease (CD). 334 
Crohn disease (CD) is one of the most well documented chronic disease (ref). Its prev- 335 

alence 𝛷 and twin concordance rate 𝜏 are [8]: 336 

𝛷 ≅ 0.0025	 337 

𝜏 = 0.385 338 

Then the twin relative risk is 339 

𝑅𝑅 ≅ 154 (18)	 340 

hence 341 

𝛴" = 𝛷"(𝑅𝑅 − 1) ≅ 0.00096 (19)	 342 

𝛴 ≅ 0.031	 343 

which means that 344 

𝛴
𝛷 ≅ 12 (20) 345 

The dispersion of the risk to be affected is therefore huge for CD. It is also true for 346 
most chronic diseases (unpublished results). 347 

It is now necessary to calculate the p-value according to equation (8) in order to be 348 
able to reject (or not) our null hypothesis 𝐻*. To do this, we first need to estimate the 349 
number of twin pairs 𝑛 that remains unknown in the Swedish study [8]. Nevertheless, 350 
the number of twin pairs with at least one affected twin is known and equal to 𝑛& + 𝑛" = 351 
31.5 where 𝑛& = 24 and 𝑛" = 7.5 are the number of discordant and concordant twin 352 
pairs respectively [8]. We can reconstruct the sample size 𝑛 that would have been needed 353 
to obtain 𝑛& and 𝑛", with probabilities 𝑃"[𝑆 = 1] and 𝑃"[𝑆 = 2]: 354 

𝑃"[𝑆 = 1] +	𝑃"[𝑆 = 2] =
𝑛& + 𝑛"
𝑛 	 355 

By using equations (5) and (6), we get the following sample size 356 

𝑛 =
𝑛& + 𝑛"

1 − (1 − 𝛷)" − 𝛴" ≅ 7809	 357 

Equation (8) is used by calculating 𝑧 within the limit of large sample sizes 𝑛 ≫ 1. 358 
This results in 𝑧 ≈ 2.4  which allows us to reject the null hypothesis 𝐻*  with the 359 
p-value ≈ 8 ⋅ 10)4. 360 

It is then legitimate to calculate the parameters 𝑚 and 𝑠 of the truncated normal 361 
distribution 𝑓(𝑝;𝑚, 𝑠, 0,1) which maximizes the entropy 𝐻(𝑓) given the mean 𝛷 and 362 
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standard deviation 𝛴. Solving the system of equations (16-17) for 𝛷 = 0.0025 and 𝛴 = 363 
0.031 gives 364 

𝑚 ≈ 0.505 365 

𝑠 ≈ 0.0278 366 

Both probability distribution functions 𝑓(𝑝;𝑚, 𝑠)  and 𝑓0(𝑝;𝑚, 𝑠) = 𝑝𝑓(𝑝;𝑚, 𝑠) 𝛷⁄  367 
for CD are plotted in Figure 4. Quite remarkably, the probability density function 368 
𝑓0(𝑝;𝑚, 𝑠) in the population of affected people has two narrow peaks, one close to 𝑝 = 0 369 
and the other one close to 𝑝 = 1. This means that there are two quite separate categories 370 
of people who become ill: in the left peak (close to 𝑝 = 0) people are at very low risk, but 371 
still have been unlucky to become ill, whereas in the right peak (close to 𝑝 = 1) people are 372 
at extremely high risk, hence are unlucky a priori, and indeed were bound to become ill. 373 
Not having any luck (to become ill because of high risk) or to have been unlucky (to become 374 
ill despite low risk), that is the question! 375 

 376 
Finally, we note that concordant twins are very likely to be in the right peak whereas 377 

discordant twins are in the left one. Indeed, when two MZ twins have their common risk 378 
𝑝 in the left peak, their probability to be concordant is extremely low, of the order of the 379 
mean of 𝑝" restricted to the left peak of 𝑓0(𝑝), which is of the order of 10)5. On the con- 380 
trary, when two MZ twins have their common risk 𝑝 in the right peak, their probability 381 
to be concordant is extremely high, of the order of 0.997. Interestingly enough, the frac- 382 
tion of people in the right peak (area under the curve) is 38.52%, quite similar to the (pro- 383 
bandwise) twin concordance rate of 38.65% [6]. This strongly suggests that concordant 384 
twins for a given disease both have a strong predisposition for this disease, whereas dis- 385 
cordant twins both have no particular predisposition. 386 

 387 
Figure 4. CD risk distribution function 𝑓(𝑝;𝑚, 𝑠) among the population (in blue) is narrow 388 
peaked at 𝑝 = 0. The risk distribution function 𝑓$ = 𝑝𝑓(𝑝;𝑚, 𝑠) 𝛷⁄  among affected people (in or- 389 
ange) has two narrow peaks, one close to 0, the other one close to 1. The look of both peaks is 390 
given in Figure 5. 391 
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 392 
Figure 5. In blue: look of 𝑓(𝑝;𝑚, 𝑠) in the vicinity of 0. In orange: look of both peaks of 𝑓$(𝑝) in 0 393 
and 1 respectively. Concordant twins (almost) all belong to the right peak (at 𝑝 = 1) whereas 394 
discordant twins (almost) all belong to the left peak (at 𝑝 = 0). 395 

6. Conclusion. 396 
Assessing inequality of chances in a given population is a critical problem that has 397 

several issues, notably health and social opportunity. Starting with the simple heads or 398 
tails game, we have shown that, although hidden variables such as ex-ante chances of 399 
gamblers (possibly cheating) cannot be assessed, their distribution can be actually assessed 400 
whenever multiple draws are available. For this purpose, we have proposed a hypothesis 401 
test to evidence inequality of chances in a given population, then infer the functional form 402 
of the probability distribution function of the ex-ante chances by means of the principle of 403 
maximum entropy, which gives the least arbitrary distribution given the mean and vari- 404 
ance of the probability distribution function. 405 

We applied this methodology to chronic diseases and found that the distribution of 406 
the risk to become ill is usually a U-type truncated normal distribution. We have com- 407 
puted the parameters of this U-type distribution in the case of Crohn disease using the 408 
prevalence and the twin concordance rate of this pathology. We have moreover found 409 
that the risk distribution function among affected people is bimodal with two narrow 410 
peaks, one corresponding to people with no liable risk factor and the other one to people 411 
genetically or environmentally destined to become ill. An interesting consequence is that 412 
concordant twins for a given disease both have a strong predisposition for that disease, 413 
while discordant twins both have no particular predisposition. 414 

Twins provide a unique means to play twice at the lottery of diseases. Of course, 415 
twins are all the more relevant to assess ex-ante chances as they share the same environ- 416 
mental factors. In the same vein, “social twins” or more generally “social clones” would 417 
be of great help in assessing inequality of opportunities. However, controlling the envi- 418 
ronment of such social clones would be rather challenging as the issue of choice comes 419 
into play which may change people’s lives with the same opportunities. Assessing the 420 
inequality of opportunities is therefore one of the most delicate, almost completely open, 421 
issues. 422 
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Since its invention in the middle of the 17th century, the probability calculus has ac- 423 
companied most if not all new fields of science, especially since the beginning of the 20th 424 
century with the burst of genetics and quantum physics up to the most recent develop- 425 
ments of quantum cognition [9], not to mention the countless applications to finance and 426 
economy. 427 

Pascal could never complete his treatise “Geometry of Chance”. This never-ending 428 
treatise is still being written, as evidenced in this special issue. 429 
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Appendix 1. Computing the variance of 𝑽𝒏. 442 

To estimate the variance of 𝑆 from a sample of 𝑛 individuals, the unbiased variance 443 
estimator is used: 444 

𝑉. =
1

𝑛 − 1M
(𝑆! −	𝑆̅)"

.

!%&

	 445 

where 𝑆̅ is the mean estimator 446 

𝑆̅ =
1
𝑛M𝑆!

.

!%&

	 447 

We first recall the following properties of 𝑆̅: 448 

𝐸[𝑆̅] = 𝐸[𝑆]	 449 

𝑉𝑎𝑟(𝑆̅) =
𝑉𝑎𝑟(𝑆)
𝑛 	 450 

By posing 𝐸[𝑆̅] = 𝐸[𝑆] = 𝑚, we can write 451 

𝑉. =
1

𝑛 − 1M
(𝑆! −𝑚)"

.

!%&

−
𝑛

𝑛 − 1
(𝑆̅ − 𝑚)"	 452 

hence 453 

𝑉𝑎𝑟[𝑉.] =
𝑛

(𝑛 − 1)" 𝑉𝑎𝑟
[(𝑆 −𝑚)"] +

𝑛"

(𝑛 − 1)" 𝑉𝑎𝑟
[(𝑆̅ − 𝑚)"]	 454 

𝑉𝑎𝑟[(𝑆 −𝑚)"] and 𝑉𝑎𝑟[(𝑆̅ − 𝑚)"] remain to be determined. Let us start with the lat- 455 
ter, which is simpler. 456 

𝑉𝑎𝑟[(𝑆̅ − 𝑚)"] = 𝐸[(𝑆̅ − 𝑚)/] − 𝐸[(𝑆̅ − 𝑚)"]"	 457 

with 458 
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𝐸[(𝑆̅ − 𝑚)"] = 𝑉𝑎𝑟[𝑆̅] =
𝑉𝑎𝑟[𝑆]
𝑛 	 459 

and 460 

𝐸[(𝑆̅ − 𝑚)/] = 𝐸[𝑆̅/] − 4𝐸[𝑆̅4]𝑚 + 6𝐸[𝑆̅"]𝑚" − 3𝑚/	 461 

Now if we consider samples of size 𝑛 ≥ 30, according to the central limit theorem, 462 
the distribution of 𝑆̅ tends towards the normal distribution 𝒩(𝐸[𝑆̅], 𝑉𝑎𝑟[𝑆̅]) of mean 463 
𝐸[𝑆̅] = 𝑚 and variance 𝑉𝑎𝑟[𝑆̅] = 𝑉𝑎𝑟[𝑆]/𝑛. The moments of 𝑆̅ are written then 464 

𝐸[𝑆̅"] = 𝑚" + 𝑉𝑎𝑟(𝑆̅)	 465 

𝐸[𝑆̅4] = 𝑚O𝑚" + 3	𝑉𝑎𝑟(𝑆̅)P	 466 

𝐸[𝑆̅/] = 𝑚/ + 6𝑚"	𝑉𝑎𝑟(𝑆̅) + 3	𝑉𝑎𝑟(𝑆̅)"	 467 

All the terms in 𝑚 cancel each other out, hence 468 

𝑉𝑎𝑟[(𝑆̅ − 𝑚)"] = 2	𝑉𝑎𝑟(𝑆̅)" = 2�
𝑉𝑎𝑟(𝑆)
𝑛 �

"

	 469 

Now all that remains is to determine 𝑉𝑎𝑟[(𝑆 −𝑚)"]. This term requires expressing 470 
the moments of 𝑆 as a function of the moments (up to order 4) of the distribution 𝑓. First 471 
let us start by explicating the variance. 472 

𝑉𝑎𝑟[(𝑆 −𝑚)"] = 𝐸[(𝑆 −𝑚)/] − 𝐸[(𝑆 −𝑚)"]"	 473 

with 474 

𝐸[(𝑆 −𝑚)"] = 𝐸[𝑆"] − 𝑚"	 475 

and 476 

𝐸[(𝑆 −𝑚)/] = 𝐸[𝑆/] − 4𝐸[𝑆4]𝑚 + 6𝐸[𝑆"]𝑚" − 3𝑚/	 477 

Then, we calculate the ℓ-th moments of 𝑆 (for ℓ = 2, 3, 4) 478 

𝐸[𝑆ℓ] = 𝐸' �𝐸+[𝑆ℓ�𝑝]� = 𝐸' LM𝑘ℓ𝐶$(𝑝((1 − 𝑝)$)(
$

(%*

N	 479 

𝐸[𝑆"] = 𝑁𝐸[𝑝] + 𝑁(𝑁 − 1)𝐸[𝑝"]	 480 

𝐸[𝑆4] = 𝑁𝐸[𝑝] + 3𝑁(𝑁 − 1)𝐸[𝑝"] + 𝑁(𝑁 − 1)(𝑁 − 2)𝐸[𝑝4]	 481 

𝐸[𝑆/] = 𝑁𝐸[𝑝] + 7𝑁(𝑁 − 1)𝐸[𝑝"] + 6𝑁(𝑁 − 1)(𝑁 − 2)𝐸[𝑝4] + 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)𝐸[𝑝/]	 482 

We also have the variance of 𝑆 expressed with the moments of 𝑝: 483 

𝑉𝑎𝑟(𝑆) = 𝑁𝐸[𝑝](1 − 𝑁𝐸[𝑝]) + 𝑁(𝑁 − 1)𝐸[𝑝"]	 484 

In general, we need to know the higher order moments of the distribution 𝑓 if we 485 
want to go further. However, we are only interested here in the case 𝑁 = 2 where some 486 
welcome simplifications arise. It turns out the higher order moments of the distribution 𝑓 487 
do not contribute to the moments of 𝑆. 488 

𝐸[𝑆"] = 2𝐸[𝑝] + 2𝐸[𝑝"]	 489 

𝐸[𝑆4] = 2𝐸[𝑝] + 6𝐸[𝑝"]	 490 

𝐸[𝑆/] = 2𝐸[𝑝] + 14𝐸[𝑝"]	 491 

Hence, 492 

𝑉𝑎𝑟[(𝑆̅ − 𝑚)"] =
8
𝑛"
(𝐸[𝑝](1 − 2𝐸[𝑝]) + 𝐸[𝑝"])"	 493 
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and 494 

𝑉𝑎𝑟[(𝑆 −𝑚)"] = 2𝐸[𝑝](2𝐸[𝑝] − 1)(4𝐸[𝑝] − 1)" + 4𝐸[𝑝"]" + 2(7 − 28𝐸[𝑝] + 32𝐸[𝑝]")𝐸[𝑝"]	 495 

It is further simplified by using 𝐸[𝑝] = 𝛷 and 𝐸[𝑝"] = 𝛷" + 𝛴". 496 

𝑉𝑎𝑟[(𝑆̅ − 𝑚)"] =
8
𝑛"
(𝛷(1 − 𝛷) + 𝛴")"	 497 

𝑉𝑎𝑟[(𝑆 −𝑚)"] = 2𝛷(1 − 𝛷)(1 − 2𝛷 + 2𝛷") + 14(2𝛷 − 1)"𝛴" − 4𝛴/	 498 

Then, we obtain the following expression 499 

𝑉𝑎𝑟[𝑉.] =
2𝑛

(𝑛 − 1)"
(𝛷(1 − 𝛷)(1 − 2𝛷 + 2𝛷") + 7(2𝛷 − 1)"𝛴" − 2𝛴/) +

8
(𝑛 − 1)"

(𝛷(1 − 𝛷) + 𝛴")"	 500 

Finally, we can simplify further by posing 𝛹 = 𝛷(1 − 𝛷): 501 

𝑉𝑎𝑟[𝑉.] =
2𝑛

(𝑛 − 1)"
(𝛹(1 − 2𝛹) + 7(1 − 4𝛹)𝛴" − 2𝛴/) +

8
(𝑛 − 1)"

(𝛹 + 𝛴")"  502 

 503 
Appendix 2. The truncated normal distribution 𝒇(𝒑;𝒎, 𝒔, 𝟎, 𝟏) is U-type when 𝜱 ≪ 𝟏 504 

and 𝜮 > 𝜱. 505 
The prevalence 𝛷 of chronic diseases is most generally of the order of 10)4 and the rela- 506 

tive risk 𝑅𝑅 of MZ twins is then of the order of 100. So, according to equation (11), 𝛴 𝛷⁄  is of 507 
the order of 10. As an example, 𝑅𝑅 ≅ 12 for Crohn disease (see equation 20). Therefore 𝛷 ≪ 1 508 
and 𝛴 > 𝛷 is the rule for chronic diseases. 509 

Dowson and Wragg [7] show that the truncated normal distribution 𝑓(𝑝) that maximizes 510 
the entropy 𝐻(𝑓) (see equation (14)) with given mean 𝜇& = 𝛷 and second moment 𝜇" = 𝛷" + 511 
𝛴" is U-type when 𝜇& and 𝜇" are above the arc 𝑂𝑀𝐴 (See Figure 1 and text below in [7]). This 512 
dividing curve separates U-type from bell-shaped distributions. On this curve, the distribution 513 
𝑓(𝑝)  that maximizes the entropy 𝐻(𝑓)  is no longer a truncated normal distribution but 514 
becomes a truncated exponential distribution (the arc 𝑂𝑀𝐴 is the set of points (𝜇&, 𝜇") whose 515 
coordinates are the first two moments of truncated exponential distributions on [0,1]). A 516 
truncated exponential distribution on [0,1] can be written 517 

𝑓81'(𝑝) =
𝜆

1 − 𝑒)9 𝑒
)9'	 518 

with 𝜆 ∈ ]−∞,+∞[. On the dividing curve 𝑂𝑀𝐴, the first and second moments of 𝑓81'(𝑝) 519 
are given by 520 

𝑚& =
1
𝜆 −

1
𝑒9 − 1

(𝐴1) 521 

𝑚" =
2
𝜆" − W1 +

2
𝜆X

1
𝑒9 − 1

(𝐴2) 522 

It is easily seen that 0 < 𝑚& < 1 2⁄  when 𝜆 ∈ ]0,+∞[ and 1 2⁄ < 𝑚& < 1 when 𝜆 ∈ 523 
]−∞, 0[. The limiting case 𝜆 → 0 corresponds to 𝑚& = 1 2⁄ . 524 

The truncated normal distribution 𝑓(𝑝)  that maximizes the entropy 𝐻(𝑓)  with 525 
given mean 𝜇& = 𝛷 and second moment 𝜇" = 𝛷" + 𝛴" is U-type when 𝜇& and 𝜇" are 526 
above the arc 𝑂𝑀𝐴, i.e. 𝜇" > 𝑚" for 𝜇& = 𝑚&. Now, when 𝑚& = 𝛷 ≪ 1, equation (𝐴1) 527 
gives 𝜆 ≫ 1 so that 𝜆	~1 𝑚&⁄ . Then equation (A2) gives 𝑚"	~ 2 𝜆"⁄  hence 𝑚"	~	2𝑚&

", i.e. 528 
𝑚"	~	2𝛷". Therefore 𝑓(𝑝) is U-type if 𝛷" + 𝛴" > 2𝛷", i.e. 𝛴 > 𝛷. 529 
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