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Abstract: Is it possible to measure the dispersion of ex-ante chances (i.e. chances “before the event”)
among people, be it gambling, health, or social opportunities? We explore this question and provide
some tools, including a statistical test, to evidence the actual dispersion of ex-ante chances in various
areas with a focus on chronic diseases. Using the principle of maximum entropy, we derive the
distribution of the risk to become ill in the global population as well as in the population of affected
people. We find that affected people are either at very low risk like the overwhelming majority of
the population but still were unlucky to become ill, or are at extremely high risk and were bound to
become ill.
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1. Introduction

“That evening he was lucky”: what do we mean by this? And even weirder when we
say: “the luck turned”. Does this mean that we could be visited by fortune? Or that some
people are luckier than others on certain days? Of course, we cannot rule out the fact that
some people may bias the chances of success simply by cheating. But is there any way to
assess the dispersion of chances among gamblers (or just the fraction of cheaters)?

This kind of question is part of the field of probability calculus, which aims at deter-
mining the relative likelihoods of events. The probability calculus started during summer
1654 with the correspondence between Pascal and Fermat precisely on elementary prob-
lems of gambling. Symmetry arguments are at the heart of this calculus: for example, for
an unbiased coin, the two results, heads or tails, are a priori equivalent and therefore have
the same probability of occurrence 1/2. This is why it is not anecdotal that Pascal wanted
to give his treatise the “astonishing” title “Geometry of Chance”. Another illustration of
the power of symmetry arguments is the tour de force of Maxwell who managed to cal-
culate the velocity distribution of particles in idealized gases. At the time when he derived
what is called since the Maxwell-Boltzmann distribution, there was no possibility to
measure this distribution. It was almost 60 years before Otto Stern could achieve the first
experimental verification of this distribution [1], around the same time when he con-
firmed with Walther Gerlach the existence of the electron spin, for which he won the No-
bel Prize in 1944. The agreement between theoretical and experimental distributions was
surprisingly good.

In probability theory, events are usually associated with random variables that are
measurable. For example, in the heads or tails game, heads may be associated with 1 and
tails with 0. Then for a given number N of draws, one can count the number of times the
heads are flipped. This number k is between 0 and N and the ratio k/N is the fre-
quency of the heads. If the coin is unbiased, this frequency fluctuates around 1/2 when
the game (N draws for each game) is played many times. Importantly, the frequency is




observed ex-post, i.e. after the game is played, then the mean frequency is used as a meas-
ure of the probability of getting a head. This is the usual way of assessing probabilities in
the frequentist perspective of statistics. Remember that assessing probabilities for antici-
pating the outcome of future events is the very purpose of statistics. However, it is not
always possible to deduce probabilities from frequency measurements. For example, sup-
pose that each coin is tossed only once. Can we still assess the dispersion of chances among
gamblers?

Dispersion of chances is far from being limited to gamblers. Disease risk is another
area where people may be and actually are unequal for genetic or environmental reasons.
In this case, the result of a “draw” is whether or not you have a disease D. The “game” is
then limited to one “draw” per person. Of course, the mean probability to become ill can
still be observed. But can we assess the dispersion of disease risks? And if so, how can we?
As a last emblematic example, we mention social opportunities. Measuring inequality of
opportunity is a crucial issue with considerable political stakes, though it is extremely
difficult to assess. On this last point, we postpone the in-depth study of the measure of
unequal opportunities to a further work.

In all these examples, be it gambling, disease, or social opportunity, the ex-ante
chances are themselves random variables that cannot be deduced from frequency meas-
urements nor be induced by symmetry arguments. They are hidden variables. Neverthe-
less, we argue here that the probability distribution function (pdf) of the ex-ante chances
can be assessed and we propose some tools to (i) first fest the existence of some dispersion
of chances in the population; (ii) then infer the pdf of the ex-ante chances; and (iii) explore
more specifically the relevance of those tools to and their consequences in the field of
chronic diseases. Importantly we do not assume any hypothetical functional form for the
pdf of chances and then infer its parameters by Bayesian inference as is usually done. Here
we first test the inequality of chances in the population, then infer the functional form of
the pdf by means of the principle of maximum entropy.

2. A simple draw is not enough.

Let us first assume that there is a sample of n people tossing a coin and that each of
them has a probability p; to win (hence 1 — p; to lose). In an unbiased game, all the p;
are identical and equal to 1/2. Imagine that some gamblers are luckier, others less fortu-
nate, hence some p; are greater than 1/2, others less than 1/2. This means that the p;
are random variables that are drawn from a probability distribution f(p) thatis different
from 6(p — 1/2), where § is the Dirac delta function. Let @ and X? be the mean and
variance of f(p). Let us assume now that each individual plays N times. The result of
each draw j of the individual i is a random variable X L] , either 1 in case of success or 0
in case of failure. This is a Bernoulli process: for each i the random variables X LJ areii.d.
(independent, identically distributed, i.e. the probability of success p; is the same for the
N draws of i). Let us define S; = 9’=1Xij the score over N draws. It is the number of
times the individual i has won. S; is a random variable that follows a binomial distribu-
tion B(N,p;). The mean and the variance of S; for a given p; are

E[S;|p;] = Np;
Var([S;|p;] = Np;(1 —p;)

Once every individual has played N times, we obtain an estimation of the distribu-
tion of the n random variables S; as a histogram overthe N + 1 values k =0,1,2,...,N.
These random variables S; are independent but non identically distributed as the p; are
different from one individual to another.

Just as the p; are drawn from the distribution f(p), the S; are the realizations of a
random variable S (which takes the N + 1 discrete values k = 0,1, 2, ..., N). The under-
lying distribution is no longer only on the random variable S, but on the joint probability
of § and p. Thus, the marginal probability distribution function of S is given as follows:
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where Ep[-] is expected value of - with the probability distribution of p, f(p). The
mean of S is

ES[S] = Ep[ES[Slp]] = Ep

ESM%pW1—mN*l=EANm
k=0

where Eg[‘] is the expected value of - with the probability distribution of S, Py(S)
and Eg[S|p] is the conditional expected value of S for a given underlying probability p,
i.e. the Bernoulli distribution. Since @ is the mean of the distribution f(p),

Es[S] = NE,[p] = N& @)
and the variance of S is
Var(S) = Es[S?] — Es[S]?

where

Eg[S?] = E,|Es[S?Ip]] = E, Z k2Ckp(1 - p)”"‘l = E,[Np(1 —p) + (Np)?]

k=0

hence
Es[S?] = N(E, [p] — Ey[p®]) + N2E,[p°]
and
Var(s) = N(E,[p] — E,[p*]) + N*E,[p*] — N*E,[p]?
Now, we recall the first two moments of f(p), given its mean @ and its variance X?
E,lp] =@
E,[p?] = 2% + @

so that

Var(S) = No(1 — &) + N(N — 1)22 = N(&(1 — &) — £2) + N252 (3)

Note that within the limit N — oo, the probability distribution function of the re-
duced variable x = k/N (where k =0, 1, 2,...,N) converges to the distribution f(p).

Equation (3) shows that, if N = 1, the variance Var(S) = ®(1 — @) does not depend
on the variance 2 of f(p). As a matter of fact, when N = 1, the gains are either 0 or 1
so that the histogram of gains has only two bins, one at 0, the other at 1. The mean of
gains is @ and the variance is @(1 — @). Neither the mean nor the variance depends on
the variance X2 of f(p). Moreover, according to equation (1), the histogram of gains it-
self depends only on the mean of the distribution f(p):

PIS=0]=E,[1-p]l=1-0
PIS=1]=E,[p] =

The histogram of gains cannot therefore provide information on the dispersion of
chances. For example, the two following distributions:

filp) =46 (p - %)

and
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have the same mean @ = 1/2, hence result in the same histograms (Figure 1 for N =
1). However, the variance of f; is null whereas the variance of f, is 1/4. (Note that 1/4
is the maximal variance that a probability distribution f(p) can take). This means that a
simple draw is not enough to extract the variance of f(p) from the histogram of gains; mul-
tiple draws are necessary, though are they sufficient?
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Figure 1. Histograms of gains S for two distributions f; and f,: on the left-hand side f;(p) =
6(p — 1/2) and on the right-hand side f,(p) = % [6(P) + 6(1 — p)]. In each case, the histogram of

success is plotted for increasing values of the number N of draws (N = 1,2,3,4) and for two num-
bers n of gamblers: n = 10 (in blue) and 100 (in orange). For N = 1 note that the histogram for
f1 is similar to the histogram for f, and both histograms converge to the same limit as n goes to
infinity. On the contrary, for each N > 2 the histograms for f; and f, diverge as n increases.

3. A statistical test of the dispersion of chances.

We then note on Figure 1 that the histogram of gains for two draws (N = 2) has three
bins, one at 0, the second at 1 and the third at 2, with the following values:

P,[S = 0] = E,[(1 - p)?] = (1 — ®)2 + 3?2
P,[S = 1] = E,[2p(1 — p)] = 20(1 — &) — 237 )
P[S=2]= E, [p?] = ®2+22 (6)

Hence the histogram of gains now depends on (and only on) both the mean and the
variance of f(p). Note that equation (5) shows that £% < @(1 — @) since P,[S =1]>0;
moreover @(1 — @) is maximal when @ = 1/2. For three or more draws, we could also
have access to higher order moments of f(p). Nevertheless, the minimum condition for
the presence of a probability dispersion is that the variance of f(p) isnon-zero. We there-
fore propose to design a statistical test that will be able to discriminate between both fol-
lowing hypotheses:

i Null hypothesis Hy: everybody has the same probability @ of gain. This
means that f(p) = §(p — ®) whose mean is E,[p] = ® and variance 2? =
0;



ii. Alternative hypothesis H;: f has the same mean @ but there is some dis-
persion of chances among the population, so that some people are luckier
than others, hence f has a non-zero variance X2.

According to H, the mean of N draws is @ and the variance is N®(1 — @),
whereas according to H; the mean of N draws is also ¢ but the variance is
N(@®(1 — @) —2%) + N?X% Hence if the variance Var(S) grows linearly with N, then all
individuals have the same probability p of success. If on the contrary Var(S) grows
quadratically with N then not all individuals have the same chance of success. We can
therefore rephrase our hypothesis test in the following alternative based on the depend-
ence of the variance Var(S) on the number N of draws:

i. Null hypothesis Hy: the variance Var(S) grows linearly with N;
ii. Alternative hypothesis H;: the variance Var(S) grows quadratically with N.

Figure 2 plots the variance of the two distributions f; and f, as a function of the
number N of draws for n = 100 gamblers.
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Figure 2. Linear regression fits Var(S) for f;, with a = 0.251 £+ 0.005 in agreement with equation
(3) when X? = 0. Moreover, a agrees with the expected value (1 — @) = 1/4. At odds with f;,
the linear regression does not fit Var(S) for f, whereas the quadratic fit is excellent, with: a =
0.244 + 0.006 and b = 0.01 + 0.01. Here a agrees with the expected value 2? = 1/4 and b with
the expected value ®(1 — @) — X% = 0.

A relevant statistical test is needed to discriminate between the two hypotheses H,
and H;, or at least to reject the null hypothesis Hy. Moreover, in the remainder of this
paper, we are more particularly interested in the case N = 2. It is then necessary to refor-
mulate our hypotheses, because it becomes difficult to discriminate the quadratic behav-
ior from the linear behavior with only three points. Therefore, we rephrase our hypothesis
test, based on the fact that the number of draws is limited to N = 2:



i. Null hypothesis Hy: the variance of S reads Vary[S] = 2&(1 — @), i.e. X2

0;
Alternative hypothesis H,: the variance of S reads Var;z[S] = 2¢(1 —
@) + 2% with %2 > 0.

ii.

To estimate the variance of S from a sample of n individuals, the unbiased variance es-

timator is used:

1 v .,
=g ) S 9
=1
where § is the mean estimator

§= Si

3|

n
i=1

The estimation of the variance of S, V;, from a sample of finite size n is subject to
statistical fluctuations. Thus, our hypotheses become:

Null hypothesis Hy: V, —2®(1 — @) is compatible with 0 considering the
error bars, i.e. the standard deviation of V;
ii. Alternative hypothesis H: V, — 2®(1 — @) = 222 > 0.

i.

The variance of V}, is (see Appendix 1)

2n

2 4 8 2\2
Var[Vn] = m(q/(l - Z‘P) + 7(1 - 45”)2 -2 ) +m(w + 2 ) (7)

where ¥ = @ (1 — ).
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Figure 3. Evolution of the variance V,, of S for N = 2 as a function of the number n of players.
The blue dots are simulated with @ = 0.5 and £? = 0.15. The black dashed line corresponds to
the expected variance according to the equation (7). The grey dashed line corresponds to the lead-
ing-order term in 1/n of the expected variance in equation (7).



It can be noted that the distribution of V, tends towards a normal distribution
N(E[V,],Var[V,]) of mean E[V,] = Var[S] and variance Var[V,]. Now we wish to esti-
mate the probability of having obtained a value as high as 1, under the null hypothesis
H,, i.e. the p-value. Since V,, follows a normal distribution, the p-value can be expressed
as follows

p-value = %(1 —erf (\%)) = %erfc (\%) (8)

where erf and erfc are respectively the error function and the complementary error
function. By posing Ey[V,] and Vary[V,] as the mean and the variance of V,, under the
null hypothesis H,, i.e. 2? =0, we have

Vo —Eo[Va] _ Vi —20(1 - @)

VVar[V] VVar[V,]

Within the limit of large sample sizes n > 1, one can write using again ¥ =
d(1-d):

V2n 52
JP( -29)

4. Dispersion of disease risks for twins.

7 ~

Inequality in disease risk is a major public health issue. Of course, part of this ine-
quality is known to depend on genetic and environmental factors. The mean frequency
that an individual will become ill in a given population, specified by genetic and environ-
mental factors, can be measured. And, as usual, this frequency can be used as a measure
of the probability to become ill. But can we assess the dispersion of disease risk, if only it
exists, in this specific population? And more generally, is there any way to assess the dis-
persion of risk in a more objective manner, without any a priori assumption on presumed
risk factors? Here comes into play a providential help from the existence of twins. Identi-
cal twins, also called monozygotic twins, have the same genome, shared the same fetal
environment and generally share the same living conditions. So that they are most likely
to share also the same probability to become ill, whatever the disease. Identical twins are
therefore like a player betting twice. This is much related to the gambling question ad-
dressed above for N = 2 (two draws). Indeed, as both twins have the same probability p
to have disease D, the status — healthy or ill — of each of the two twins is equivalent re-
spectively to the outcome — loss or gain — of each of the two draws by one and the same
gambler. In this situation probability p is called a risk. Let f(p) be the probability distri-
bution function of the risk to have disease D in the population. We define the random
variable S as above, i.e. S = 0 if both twins are healthy, S =1 if only one of the two
twins isill and S = 2 if both twins are ill. The mean & and variance X? of S are given
by equations (2) and (3) respectively, hence for N = 2

E[S] = 2@ ©)
Var(S) = 2&(1 — @) + 222

Then if V, is significantly greater than S$(1 —S/2), which amounts to carry out the
hypothesis test presented in the above section, we can conclude that there is some disper-
sion of the disease risk. As we will see below the dispersion is in fact unusually large. But
before that, let us calculate the twin concordance rate of the disease D. In genetics, the
twin concordance rate is the probability 7 that a twin is affected given that his/her co-
twin is affected:

PX;=1,X,=1) P(S =2)
PX,=1) = PX,=1X,=1)+PX, =1X,=0)

T=PX,=1X;,=1) =



hence
P(S=2)
P(S=2)+3P(S=1)

T =

Note that 7 is equal to the probandwise concordance rate, which is known to best
assess the twin concordance rate [2].

Using equations (2) and (6), we can also reformulate the concordance rate of twins in
terms of the moments of the distribution f(p):

_2P[s=2] _E,[p?)
Es[S] Eylp]
Note we can generalize the concordance rate for a N-tuple:
_ _NPIS=N]_E "]
N Es[S] Eylp]

Using equations (6) and (9) we get

P2+5?
= 10
r=— (10)
so that the relative risk RR = t/® is equal to
P2+22 X2
RR=—>—=1+23 (an

The twin concordance rate can also be computed using the probability density func-
tion f,(p) restricted to the population of affected people. Let f(X,p) be the joint proba-
bility of an individual to have a risk p € [0,1] and to be in the state X € {0,1}. Accord-
ing to Bayes theorem we write

fX,p) = fIX)P(X) = f(XIp)f (p)

hence

f&XIp)f(p)
flplX) = P

Then f(plX =1) is the distribution of the risk p in the population of affected peo-
ple
folX =1) = f,(p)
Now by definition we have
fX=1p)=p
and by noting that P[X = 1] = P;[S = 1], we also have
PIX =1] = E,[f(X = 1|p)] = E, [p]

This leads to the following expression of the risk distribution function among af-
fected people

pf(p)
E,[p]

Note that f,(p) is the so-called “size-biased law” of the risk p to become ill. Size-
biased laws are found in many contexts, notably rare events [3], Poisson point processes
[4] or familial risk of disease [5].

The mean risk in the affected population is then

fap) =



o _ L P @dp _E,[p?]
Ealp) = | ph@)dp =T =

where E,[-] is the expected value of - among affected people, with the probability
distribution f,(p). Using again equations (6) we get

P2 +5?
Ealp) =~ (12)

which proves that the twin concordance rate (10) is equal to the mean risk in the
affected population (11)

T = Eq[p] (13)

We proceed now to evaluate the functional form of the distribution f(p). Using the
prevalence and the twin concordance rate of the disease D, we have access to, and only to
the mean @ and standard deviation 2 of f(p). The principle of maximum entropy then
provides us with the least arbitrary distribution [6]. Dowson and Wragg proved [7] that
in the class P of absolutely continuous probability distributions on [0,1] with given first
and second moments (i.e. given mean and variance), there exists a distribution in P
which maximizes the entropy

mn=—jﬂmmﬂm@ (14)
0

and the corresponding density function f(p) on [0,1] is a truncated normal distri-
bution f(p;m,s,0,1) which may be either bell-shaped (concave) or U-type (convex).
Dowson and Wragg show that when @ « 1 and X > @, which is usual for most if not all
chronic diseases (unpublished results), the distribution f(p;m,s,0,1) is U-type (see Ap-
pendix 2). This distribution, which will be simply denoted f(p;m,s) in the following, can

then be written
1 |2 (p —m)?
f(p;m,s) = S—Z\/;exp <T

Z = erfi (%) + erfi (13?/;1)

The imaginary error function erfi(x) can be expressed using the Dawson function
D(x)

with

2
erfi(x) = —=e* D(x)
s

N

So that f(p;m,s) can finally be written

2 _
oxp (£5270)

. _ 1 252
f(p;m,s) Vs, (%>+6%D (tT;n ) (15)

It is straightforward to express @ and X2 in terms of the parameters m and s:

(16)

2 m =2m 1 _m
TERE e
V2
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Inverting this system of equations to get the risk distribution function of the disease
D intermsof ¢ and X is abit trickier and requires a numerical solver. In the next section
we show the outcome of this general formalism to one specific chronic disease, namely
Crohn disease.

5. Application to Crohn disease (CD).

Crohn disease (CD) is one of the most well documented chronic disease (ref). Its prev-
alence @ and twin concordance rate 7 are [8]:

@ = 0.0025
T =10.385

Then the twin relative risk is

RR = 154 (18)
hence
2? = @2(RR — 1) = 0.00096 (19)
2 =0.031
which means that
i (20)
@

The dispersion of the risk to be affected is therefore huge for CD. It is also true for
most chronic diseases (unpublished results).

It is now necessary to calculate the p-value according to equation (8) in order to be
able to reject (or not) our null hypothesis H,. To do this, we first need to estimate the
number of twin pairs n that remains unknown in the Swedish study [8]. Nevertheless,
the number of twin pairs with at least one affected twin is known and equal to n; +n, =
31.5 where n, =24 and n, = 7.5 are the number of discordant and concordant twin
pairs respectively [8]. We can reconstruct the sample size n that would have been needed
to obtain n; and n,, with probabilities P,[S = 1] and P,[S = 2]:

n,+n
P[S=1]+ P[S=2] =——2

By using equations (5) and (6), we get the following sample size

[ s T

> = 7809

Equation (8) is used by calculating z within the limit of large sample sizes n > 1.
This results in z = 2.4 which allows us to reject the null hypothesis H, with the
p-value ~ 8- 1073,

It is then legitimate to calculate the parameters m and s of the truncated normal
distribution f(p;m,s,0,1) which maximizes the entropy H(f) given the mean @ and



standard deviation Z. Solving the system of equations (16-17) for @ = 0.0025 and 2 =
0.031 gives

m =~ 0.505
s~ 0.0278

Both probability distribution functions f(p;m,s) and f,(p;m,s) =pf(p;m,s)/®
for CD are plotted in Figure 4. Quite remarkably, the probability density function
fo(p; m, s) in the population of affected people has two narrow peaks, one close to p = 0
and the other one close to p = 1. This means that there are two quite separate categories
of people who become ill: in the left peak (close to p = 0) people are at very low risk, but
still have been unlucky to become ill, whereas in the right peak (close to p = 1) people are
at extremely high risk, hence are unlucky a priori, and indeed were bound to become ill.
Not having any luck (to become ill because of high risk) or to have been unlucky (to become
ill despite low risk), that is the question!

Finally, we note that concordant twins are very likely to be in the right peak whereas
discordant twins are in the left one. Indeed, when two MZ twins have their common risk
p in the left peak, their probability to be concordant is extremely low, of the order of the
mean of p? restricted to the left peak of f,(p), which is of the order of 1075. On the con-
trary, when two MZ twins have their common risk p in the right peak, their probability
to be concordant is extremely high, of the order of 0.997. Interestingly enough, the frac-
tion of people in the right peak (area under the curve) is 38.52%, quite similar to the (pro-
bandwise) twin concordance rate of 38.65% [6]. This strongly suggests that concordant
twins for a given disease both have a strong predisposition for this disease, whereas dis-
cordant twins both have no particular predisposition.
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Figure 4. CD risk distribution function f(p;m,s) among the population (in blue) is narrow
peaked at p = 0. The risk distribution function f, = pf(p; m,s)/® among affected people (in or-
ange) has two narrow peaks, one close to 0, the other one close to 1. The look of both peaks is
given in Figure 5.
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Figure 5. In blue: look of f(p;m,s) in the vicinity of 0.In orange: look of both peaks of f,(p) in 0
and 1 respectively. Concordant twins (almost) all belong to the right peak (at p = 1) whereas
discordant twins (almost) all belong to the left peak (at p = 0).

6. Conclusion.

Assessing inequality of chances in a given population is a critical problem that has
several issues, notably health and social opportunity. Starting with the simple heads or
tails game, we have shown that, although hidden variables such as ex-ante chances of
gamblers (possibly cheating) cannot be assessed, their distribution can be actually assessed
whenever multiple draws are available. For this purpose, we have proposed a hypothesis
test to evidence inequality of chances in a given population, then infer the functional form
of the probability distribution function of the ex-ante chances by means of the principle of
maximum entropy, which gives the least arbitrary distribution given the mean and vari-
ance of the probability distribution function.

We applied this methodology to chronic diseases and found that the distribution of
the risk to become ill is usually a U-type truncated normal distribution. We have com-
puted the parameters of this U-type distribution in the case of Crohn disease using the
prevalence and the twin concordance rate of this pathology. We have moreover found
that the risk distribution function among affected people is bimodal with two narrow
peaks, one corresponding to people with no liable risk factor and the other one to people
genetically or environmentally destined to become ill. An interesting consequence is that
concordant twins for a given disease both have a strong predisposition for that disease,
while discordant twins both have no particular predisposition.

Twins provide a unique means to play twice at the lottery of diseases. Of course,
twins are all the more relevant to assess ex-ante chances as they share the same environ-
mental factors. In the same vein, “social twins” or more generally “social clones” would
be of great help in assessing inequality of opportunities. However, controlling the envi-
ronment of such social clones would be rather challenging as the issue of choice comes
into play which may change people’s lives with the same opportunities. Assessing the
inequality of opportunities is therefore one of the most delicate, almost completely open,
issues.



Since its invention in the middle of the 17t century, the probability calculus has ac-
companied most if not all new fields of science, especially since the beginning of the 20t
century with the burst of genetics and quantum physics up to the most recent develop-
ments of quantum cognition [9], not to mention the countless applications to finance and
economy.

Pascal could never complete his treatise “Geometry of Chance”. This never-ending
treatise is still being written, as evidenced in this special issue.
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Appendix 1. Computing the variance of V.

To estimate the variance of S from a sample of n individuals, the unbiased variance
estimator is used:

1 < .,
wl=n_1Z(si—s>
i=

where § is the mean estimator

S=

SR

n
Si
i=1
We first recall the following properties of S:
E[S] = E[S]
Var(S)

Var(S) =

By posing E[S] = E[S] = m, we can write

1 < _
o= — IZ(&- -y = (5 = m)?
hence
— n 2 nz C 2
Var[V,] = mVar[(S —m)‘] + mVar[(S —m)?]

Var[(S —m)?] and Var[(S — m)?] remain to be determined. Let us start with the lat-
ter, which is simpler.

Var[(§ —m)?] = E[(S —m)*] — E[(S — m)*]?
with



_ _ Var[S]
E[(S —m)?] = Var[S] =

and
E[(S —m)*] = E[S*] — 4E[S®]m + 6E[S?|m? — 3m*

Now if we consider samples of size n = 30, according to the central limit theorem,
the distribution of S tends towards the normal distribution N (E[S],Var[S]) of mean
E[S] = m and variance Var[S] = Var[S]/n. The moments of S are written then

E[S?] = m? + Var(S)
E[$3] = m(m? + 3 Var(S))
E[S*] = m* + 6m? Var(S) + 3 Var(5)?
All the terms in m cancel each other out, hence

Var(S) 2
)

Var[(§ —m)?] =2 Var(5)? = 2(

Now all that remains is to determine Var[(S —m)?]. This term requires expressing
the moments of S as a function of the moments (up to order 4) of the distribution f. First
let us start by explicating the variance.

Var[(s —m)?] = E[(S —m)*] — E[(S —m)*]?
with
E[(S —m)?] = E[S?] — m?
and
E[(S —m)*] = E[S*] — 4E[S3]m + 6E[S?]m? — 3m*
Then, we calculate the #-th moments of S (for £ = 2, 3,4)

Z kCyp (1 - p)”"‘l
k=0
E[S?] = NE[p] + N(N — DE[p?]
E[S3] = NE[p] + 3N(N — DE[p?] + N(N — 1)(N — 2)E[p®]
E[S*] = NE[p] + 7N(N — DE[p?] + 6N(N — 1)(N — 2)E[p®] + N(N — 1)(N — 2)(N — 3)E[p*]

E[s'] = E, [ES[S" |p]] = E,

We also have the variance of S expressed with the moments of p:
Var(S) = NE[p](1 = NE[p]) + N(N — DE[p?]

In general, we need to know the higher order moments of the distribution f if we
want to go further. However, we are only interested here in the case N = 2 where some
welcome simplifications arise. It turns out the higher order moments of the distribution f
do not contribute to the moments of S.

E[S?] = 2E[p] + 2E[p?]
E[S®] = 2E[p] + 6E[p?]
E[S*] = 2E[p] + 14E[p?]

Hence,

Var[(S —m)?] = % (Elp](1 - 2E[p]) + E[p*])?



and
Var[(S —m)?] = 2E[p](2E[p] — D(AE[p] — 1)* + 4E[p*]* + 2(7 — 28E[p] + 32E[p]*)E[p?]
It is further simplified by using E[p] = & and E[p?] = ®? + 22
Var[(§ —m)?] = %((b(l —®) +237%)?
Var[(S — m)?] = 20(1 — ®)(1 — 20 + 202) + 14(20 — 1)25% — 45*

Then, we obtain the following expression

2n
[ _ _ 2 _ 2y2 __ 4 - _ 2\2
Var[V,] = TN (@(1— ®)(1 — 2 + 202) + 7(2® — 1)232 — 2354) + I (@(1—®) + 32)
Finally, we can simplify further by posing ¥ = ¢(1 — ®):
y phty Y posing
2n 8
- — — 2 __ 4 - 232
Var[V,] = =D WA -2¥)+7(1 -4¥)2? =229 + TR ¥ +29)

Appendix 2. The truncated normal distribution f(p;m,s,0,1) is U-type when @ < 1
and X > o.

The prevalence @ of chronic diseases is most generally of the order of 1073 and the rela-
tive risk RR of MZ twins is then of the order of 100. So, according to equation (11), X/® is of
the order of 10. As an example, RR = 12 for Crohn disease (see equation 20). Therefore @ «1
and X > @ is the rule for chronic diseases.

Dowson and Wragg [7] show that the truncated normal distribution f(p) that maximizes
the entropy H(f) (see equation (14)) with given mean u; = @ and second moment u, = ®? +
2?2 is U-type when p, and u, are above the arc OMA (See Figure 1 and text below in [7]). This
dividing curve separates U-type from bell-shaped distributions. On this curve, the distribution
f(p) that maximizes the entropy H(f) is no longer a truncated normal distribution but
becomes a truncated exponential distribution (the arc OMA is the set of points (u, u,) whose
coordinates are the first two moments of truncated exponential distributions on [0,1]). A

truncated exponential distribution on [0,1] can be written

—-p

f;zxp (p) =

1—e2°¢
with 1 € ]—00, +0o[. On the dividing curve OMA, the first and second moments of f,,,(p)

are given by

1 1
ml:z_el—l (Al)
2 2 1
m=z=(1+5)a (a2

It is easily seen that 0 <m; < 1/2 when 1€ ]0,4o[ and 1/2 <m; <1 when 1€
]—00, 0[. The limiting case 4 —» 0 corresponds to m; = 1/2.

The truncated normal distribution f(p) that maximizes the entropy H(f) with
given mean u, = ® and second moment u, = ®* + X% is U-type when p, and p, are
above the arc OMA, i.e. u, > m, for y; = m;. Now, when m; = @ < 1, equation (41)
gives 2 » 1 so that 2 ~1/m,. Then equation (A2) gives m, ~2/4? hence m, ~ 2mZ, i.e.
m, ~ 2®2. Therefore f(p) is U-type if @* + 22 > 2¢2 ie. L > P.
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