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By introducing a variable transformation ξ = 1
2
(sin θ + 1), a complex-form ordinary differential equation

(ODE) for the small symmetrical deformation of an elastic torus is successfully transformed into the well-known
Heun’s ODE, whose exact solution is obtained in terms of Heun’s functions. To overcome the computational
difficulties of the complex-form ODE in dealing with boundary conditions, a real-form ODE system is proposed.
A general code of numerical solution of the real-form ODE is written by using Maple. Some numerical studies
are carried out and verified by finite element analysis. Our investigations show that the mechanics of an elastic
torus are sensitive to the radius ratio, and suggest that the analysis of a torus should be done by using the bending
theory of a shell. A general Maple code is provided as essential part of this paper.

I. INTRODUCTION

The torus or toroidal shell, in full or partial geometric form, is widely used in structural engineering. Among regular shells,
such as circular cylindrical shells, conical shells, spherical shells, and tori, the deformation of the torus is one of the most diffi-
culty topics due to its complicated topology.
The source of the difficulty comes from a geometric feature of the torus, whose Gauss curvature, K = sin θ

a(R+a sin θ) , changes its
sign as principal radius of curvature Rθ when the angle θ goes from 0 to 2π. This means that the Gauss curvature has a turning
point, K = 0 at θ = ±π. The geometry of the torus surface is elliptic in θ ∈ [0, π], parabolic at θ = 0, and hyperbolic in
θ ∈ [0,−π]. Recall that the partial differential equations governing the elasticity of elliptic shells K > 0 are themselves elliptic,
while those for hyperbolic shells K < 0 are hyperbolic. This means that the equations for a toroidal shell are of a mixed type,
i.e., elliptic in the outer half and hyperbolic in the inner half. The existence of a turning point in a complete torus is one source of
difficulty in finding a solution. Owing to the difficulty of solving differential equations with both hyperbolic and elliptic regions
[17–21], various proposed asymptotic solutions have sigularity problem at the turning point of the Gauss curvature, where the
Gauss curvature is zero [17, 18, 20, 21].
The torus has been studied for more than 100 years [16, 22], and various aspects have been extensively investigated. In this paper,
we will restrict ourselves to the small symmetrical deformation of a torus with a circular cross-section, and with an emphasis on
its theoretical formulation and the associated analytical and numerical solutions. We will not discuss topics such as non-circular
cross-section, buckling, vibration, membrane solutions, and finite element analysis, which can be seen in the literature [27–30].
When the torus was first studied, high-order and complicated governing equations of a torus under symmetric loads were reduced
to a single lower-order, complex-form ordinary differential equation (ODE) by Hans Reissner (1912)[2] when he was a professor
at ETH in Switzerland. His colleague at ETH, Meissner [3], derived a complex-form equations for the shell of revolution. Hence,
the first complex-form equation of the shells of revolution including torus is called the Reissner-Meissner equation. Reissner
supervised a doctoral candidate, Gustav Weihs [1], who was the first person to receive a Dr.-Ing. in the field of torus research, in
1911. Unfortunatelly, I have not been able to find Weihs’ thesis, and became familiar with his work from a citation by Wissler
in his dissertation [4]. Wissler was supervised by Meissner, and was the second person to receive a Dr.-Ing in the field of torus
research. The first exact series solution of the complex-form equation was obtained by Wissler (1916) [4], but his work had no
followers, perhaps because his series solution was not linked to any special functions.
In 1912, Hans Reissner took a professor position at TU Berlin and brought torus research there. Under Reissner’s influence,
his younger colleague, F. Tölke, made some simplifications and derived a simpler complex-form equation of torus [5]. W.
Chang (W. Zhang), the current writer’s post-doctoral supervisor at Tsinghua University during 1989-1991, was Tölke’s doctoral
Mitarbeiter, who proposed an asymptotic solution to Tölke’s equation for a large radius ratio α = a/R of the torus. Zhang’s
solution was the first successful asymptotic solution valid for the large ratio in terms of Bessel functions [6], and he received
his Dr.-Ing. in 1944 from TU Berlin. In 1949, Hans Reissner’s son Eric Resinner researched the pure bending of curved tubes
[7], and Clark and Reissner published two papers [8, 9] on the asymptotic solution and calculations. In 1953, Dahl studied
toroidal-shell expansion joints [10]. In 1959, Novozhilov published his monograph on the complex-form theory of shells, and
gave an asymptotic solution [11] to the symmetrical deformation of a torus. In 1959, Tao introduced a variable transformation
and successfully transformed the complex-form equation of a torus to a Heun-type ODE, and was the first person to find an
exact solution that can be expressed in terms of Heun functions [12]. However, Tao did not perform any numerical calculations
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using his exact solution. Nevertheless, both Wissler and Tao reached the peak in the research of a torus with small deformation.
In 1965, Steele investigated toroidal pressure vessels, and was able to make a concise comparison of the volume and weight
properties of enough shapes to provide a convenient basis for their design. Qian and Liang [14], Xia and Qian [15], and Zhang
and Zhang [17, 18] conducted further study, sought an enhanced asymptotic solution valid for the full domain of θ ∈ [0, 2π].
Sun [20, 21, 23] was the first person to derive displacement-type equations of a torus and proposed a closed-form solution when
the radius ratio tends to be null. The first monograph on torus was edited by Sun and published in 2012 [21].
In 1959 Novozhilov systematiclly developed a comprehensive complex-form theory of thin shells and reformulated the symmet-
rical deformation of a torus [11], then he proposed an asymptotic solution for the thin torus [11]. However, no exact solution in
terms of special functions has been obtained for Novozhilov’s complex-form ODE of symmetrical deformation of a torus. We
will shoulder this burden and propose such a solution. Once we have the exact solution, the convergence over the full domain of
θ ∈ [0, 2π] can then be guaranteed.
The remainder of this paper is organized as follows. Section 2 presents a formulation of the Novzhilov complex-form ordinary
differential equation of a torus. Section 3 introduces a variable transformation and finds an exact solution of the complex ODE.
Section 4 splits the complex-ODE into a real-form ODE. In Section 5, we carry out numerical simulations for three cases by
using our own Maple code. Section 6 discusses the difference between the membrane and bending theory of a torus. Section 7
verifies our solution by finite element analysis. Section 8 provides conclusions and recommendations.

II. NOVOZHILOV’S FORMULATION OF SYMMETRICAL DEFORMATION OF A TORUS

For the torus shown in Fig. 1, the positions of points on the middle surface will be determined by the angles θ and ϕ. Further,
let R1 be the radius of curvature of the meridian and R2 the radius of curvature of the normal section, tangential to the parallel
circle. This second radius is equal to the segment of the perpendicular to the middle surface between this surface and the axis of
the torus.
The principal radii of curvature are given by

R1 = a, R2 = R
1 + α sin θ

sin θ
, (1)

where α = a/R.
The Lamé parameters in this case are determined by the expressions

A1 = R1 = a, A2 = R2 sin θ = R+ a sin θ. (2)

Figure 1: Torus and cross-sectional view. Torus and geometry. Principal radii of curvature areR1 = a andR2 = a+ R
sin θ

; principal curvature
K1 = 1

a
, K2 = sin θ

R+a sin θ
; Gauss curvature K = K1K2 = sin θ

a(R+a sin θ)
.

The complex-form governing equation of a torus for symmetrical deformation was obtained by Novozhilov (1959) [11] as
follows:

(1 + α sin θ)
d2V

dθ2
− α cos θ

dV

dθ
+ 2id2 sin θV = P (θ). (3)
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Eq. 3 is called the Novozhilov equation of a torus. In which, V (θ) is a auxiliary complex function of real variable θ and the right
hand term is

P (θ) = −2d2(2d2C +
1

2
iαqa) cos θ, (4)

2d2 =
a2

Rh

√
12(1− µ2), (5)

where µ is the Poisson ratio, h is the thickness, q is the distributed load, and C is an integration constant that can be determined
from static considerations. The analysis of the torus has thus been reduced to the problem of finding a solution for the ODE in
(3).
Having the auxiliary function V (θ), all other quantities can be expressed in terms of V (θ). The middle surface resultant forces
are

T1 = − α cos θ

2d2(1 + α sin θ)
Im(V ) +

qa

2

2 + α sin θ

1 + α sin θ
− αC α+ sin θ

(1 + α sin θ)2
, (6)

T2 = − 1

2d2
Im

[
d

dθ
(

V

1 + α sin θ
)

]
+
qa

2
+ αC

α+ sin θ

(1 + α sin θ)2
, (7)

where the Re and Im stand for the real and imaginary portion of the complex function V (θ). And resultant moments are

M1 = − h

2d2
√

12(1− µ2)

{
µα cos θ

(1 + α sin θ)2
Re(V ) +Re

[
d

dθ
(

V

1 + α sin θ
)

]}
, (8)

M2 = − h

2d2
√

12(1− µ2)

{
α cos θ

(1 + α sin θ)2
Re(V ) + µRe

[
d

dθ
(

µV

1 + α sin θ
)

]}
, (9)

resultant shear force is

N1 = − h

a
√

12(1− µ2)

sin θIm(V ) + 2d2C cos θ

(1 + α sin θ)2
, (10)

and angle of rotation of the tangent to the meridian is

Figure 2: Components of forces and moments on middle surface

ϑ = − 1

Eh

1

α(1 + α sin θ)
Re(V ). (11)

The component of the displacement of an arbitrary point on the meridian in the direction of the axis of the torus is

4z = −a
∫ θ

0

ϑ cos θdθ +4z(0), (12)

and the component of the displacement in the direction perpendicular to this axis is

4x =
R

Eh
(1 + α sin θ)(T2 − µT1). (13)

The deformation displacement components of the middle surface in Fig. 3 can be obtained as

u = 4x cos θ −4z sin θ (14)
w = 4x sin θ +4z cos θ. (15)
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Figure 3: u and w are the components of displacement on the middle surface

The components of the middle surface forces are

Qx = T1 cos θ +N1 sin θ (16)
Qz = T1 sin θ −N1 cos θ, (17)

where Qz and Qx, respectively, are the components of the forces in the direction of the axis of the torus and perpendicular to
this axis, which act through the contemplated point of the meridian, as shown in Fig. 4.

Figure 4: Qz and Qx are the components of the forces on the middle surface

III. EXACT SOLUTION OF SMALL SYMMETRICAL DEFORMATION OF TORUS

To solve Eq. 3, Wissler [4] introduced a variable transformation,

x = sin θ, (18)

which leads to dx = cos θdθ, dVdθ = dV
dx

dx
dθ = cos θ dVdx , and d2V

dθ2 = cos2 θ d2Vdx2 − sin θ dVdx = (1− x2)d
2V
dx2 − x

dV
dx . Hence Eq. 3

is transformed as follows:

(1− x2)(1 + αx)
d2V

dx2
− (x+ α)

dV

dx
+ 2id2xV = P (x), (19)

where P (x) = −2d2(2d2C + 1
2 iαqa)

√
1− x2.

Eq. 19 is a Fuchian-type differential equation whose series solution was given by Wissler [4], which is an exact solution but
is not linked to any known functions.

To establish a relationship between Eq. 19 and well-known equations, let us introduce another variable transformation,

ξ =
1

2
x+

1

2
=

1

2
(sin θ + 1). (20)

Thus dV
dx = 1

2
dV
dξ , d

2V
dx2 = 1

4
d2V
dξ2 , and 1− x2 = −4ξ(ξ − 1), and Eq. 19 can be written as

ξ(ξ − 1)[ξ − (
1

2
− 1

2α
)]
d2V

dξ2
+

1

2α
(ξ − 1

2
+
α

2
)
dV

dξ
+ (−4id2

α
ξ +

id2

α
)V = P (ξ), (21)

where P (ξ) = 2d2

α (2d2C + 1
2 iαqa)

√
ξ(1− ξ); another common form is

d2V

dξ2
+ (

1
2

ξ
+

1
2

ξ − 1
+

−1

ξ − α−1
2α

)
dV

dξ
+

− 2id2

α ξ + id2

α

ξ(ξ − 1)(ξ − α−1
2ε )

V = f, (22)
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where

f =
2d2

α

1

ξ(ξ − 1)(ξ − α−1
2α )

(2d2C +
1

2
iαaq). (23)

It is easy to see that Eq. 21 or 22 is a Fuchian-type differential equation with four regular singular points: 0, 1, α−12ε , and∞.
Eq. 22 was studied by Heun (1889) [24, 25], whose solutions can be represented by Heun’s functions. Named after Karl Heun
(1859–1929), these are unique local Frobenius solutions of a second-order linear ordinary differential equation of the Fuchsian
type, which in the general case has four regular singular points.
The standard Heun ordinary differential equation is

d2y(z)

dz2
+

(σ + β + 1)z2 + [(−δ − ρ)c− σ + δ − β − 1]z + ρc

z(z − 1)(z − c)
dy(z)

dz

+
(zβ σ − p)y(z)

z(z − 1)(z − c)
= 0. (24)

Its solution is given by

y(z) = C1HeunG(c, p, β, σ, ρ, δ, z)

+ C2z
1−ρHeunG(c, p− (−1 + ρ)(δ (−1 + c) + σ + β − ρ+ 1),

β + 1− ρ, σ − ρ+ 1,−ρ+ 2, δ, z), (25)

where HeunG(c, p, β, σ, ρ, δ, z) is the Heun function, which can be expressed in series as

HeunG(c, p, β, σ, ρ, δ, z) = 1 + σβ

∞∑
n=1

Gn(p)

n!(ρ)n
(
z

c
)n, (26)

where

n! = n(n− 1)...1, (27)
(ρ)n = ρ(ρ+ 1)(ρ+ 2)...(ρ+ n− 1), (28)

G1(p) = p, (29)

G2(p) = σβp2 + [(β + σ − δ + 1) + (ρ+ δ)c]p− βρ, (30)
Gn+1(p) = {n[(σ + β − δ + n) + (ρ+ δ + n− 1)c] + σβp}Gn(p)

− (c+ n− 1)(β + n− 1)(ρ+ n− 1)ncGn−1(p). (31)

Heun functions generalize the hypergeometric function. Because of their wide range of applications, they can be considered the
21st-century successors to hypergeometric functions [31]. The exact solution of Eq. 21 is the sum of a homogenous solution
V h(x) and particular solution V p(x), i.e., V = V h + V p, both of which can be expressed by Heun functions. The homogenous
solution can be given as

V h(x) = C1y1(x) + C2(x+ 1)
1
2 y2(x), (32)

where

y1(x) = HeunG(
α− 1

2α
,− id

2

α
, a1, a2,

1

2
,

1

2
,

1

2
(x+ 1)), (33)

y2(x) = HeunG(
α− 1

2α
,−1

8

8id2 + 3α+ 1

α
, b1, b2,

1

2
,

1

2
(x+ 1)), (34)

where

a1 = −1

2

√
α
√

8id2 + α+ α

α
, (35)

a2 =
1

2

8id2 +
√
α
√

8id2 + α− α
√
α
√

8id2 + α+ 2α
, (36)

b1 = −1

2

√
8id2 + α√

α
, (37)

b2 =
1

2

8id2 + 2
√
α
√

8id2 + α+ α
√
α
√

8id2 + α+ 2α
,

3

2
. (38)
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Substituting Wissler’s transformation x = sin θ into the above solutions, we have

V h(θ) = C1y1(θ) + C2(sin θ + 1)
1
2 y2(θ), (39)

where

y1(θ) = HeunG(
α− 1

2α
,− id

2

α
, a1, a2,

1

2
,

1

2
,

1

2
(sin θ + 1)), (40)

y2(θ) = HeunG(
α− 1

2α
,−1

8

8id2 + 3α+ 1

α
, b1, b2,

1

2
,

1

2
(sin θ + 1)). (41)

A particular solution V p can generally be expressed analytically by Heun functions, which we do not discuss here due to its
complicated form. If the loading condition is not constant, then some integrations involving the Heun function in V p may not
be obtainable analytically.

IV. THE SPLIT OF THE NOVOZHILOV EQUATION

For further computation, the solution V (θ) must be split into real and imaginary parts, i.e., Re(V ) and Im(V ), respectively.
However, this is not possible analytically due to the complicated expression of the Heun function. Without Re(V ) and Im(V ),
no analytical components of force, moment, and displacement for the torus can be obtained, which limits the use of the complex-
form analytical solution obtained in the previous section. Therefore, it is natural to seek a numerical solution based on the
Novozhilov equation, i.e., Eq. 3.
Let us write V (θ) as

V (θ) = A(θ) + iB(θ), (42)

with the imaginary i =
√
−1, where A(θ) = Re(V ) and B(θ) = Im(V ) are the real and imaginary parts of V (θ). Substituting

Eq. 42 in Eq. 3, we obtain

(1 + α sin θ)
d2A

dθ2
− α cos θ

dA

dθ
− 2d2 sin θB = −2d2(2d2C) cos θ,

(1 + α sin θ)
d2B

dθ2
− α cos θ

dB

dθ
+ 2id2 sin θA = −2d2(

1

2
αqa) cos θ. (43)

Because we cannot analytically represent the integration of the displacement component of an arbitrary point on the meridian in
the direction of the axis of a torus in Eq. 12, we use the corresponding differential equation,

d4z
dθ
− a

Eh

A cos θ

α(1 + α sin θ)
= 0. (44)

Now, the symmetrical deformation problem becomes one of finding the functions A(θ), B(θ), and4z(θ).
With these functions, we can compute all other quantities, such as T1, T2, M1, M2 and N1, as well as u, w and ϑ. These can
be expressed in terms of A(θ) and B(θ) as follows

T1 = − α cos θ

2d2(1 + α sin θ)
B(θ) +

qa

2

2 + α sin θ

1 + α sin θ
− αC α+ sin θ

(1 + α sin θ)2
, (45)

T2 = − 1

2d2

[
d

dθ
(

B(θ)

1 + α sin θ
)

]
+
qa

2
+ αC

α+ sin θ

(1 + α sin θ)2
. (46)

The resultant moments are

M1 = − h

2d2
√

12(1− µ2)

{
µα cos θ

(1 + α sin θ)2
A(θ) +

[
d

dθ
(

A(θ)

1 + α sin θ
)

]}
, (47)

M2 = − h

2d2
√

12(1− µ2)

{
α cos θ

(1 + α sin θ)2
A(θ) + µ

[
d

dθ
(

µA(θ)

1 + α sin θ
)

]}
, (48)

the resultant shear force is

N1 = − h

a
√

12(1− µ2)

sin θB(θ) + 2d2C cos θ

(1 + α sin θ)2
, (49)
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and the angle of rotation of the tangent to the meridian is

ϑ = − 1

Eh

A(θ)

α(1 + α sin θ)
. (50)

The bending-related shell stresses are obtained by combining the direct stresses due to the stress resultants with the flexural
stresses due to the bending moments,

σ1 =
T1
h
± 6M1

h2
, σ2 =

T2
h
± 6M2

h2
. (51)

The coupled differential equations (43) can be decoupled into differential equations about A(θ) and B(θ), both fourth-order
ODEs, but no analytical solutions about A(θ) and B(θ) can be obtained.

V. NUMERICAL STUDIES OF SYMMETRICAL DEFORMATION OF TORUS

We numerically solve equations 43 and 44 for some typical cases. Unless otherwise stated, numerical calculations in this
paper are based on the data in Table I.
We vary the radius a = 0.18k, k = 1, 2, 3, 4, 5, while other quantities are unchanged. Table I lists the geometric and material
properties of the torus.

Table I: Data of torus
Quantities R a h E µ M0 Q0

Units m m m N/m2 1 N N/m
Data 1 0.18k 0.04 2.07× 1011 0.3 1 1

Note: Loads are set to unit values in all simulations. Since a small deformation is a linear problem, the superposition principle can be used with different
loads, and solutions obtained by multiplying our results by an appropriate factor.

The geometry of these tori is shown in Fig. 5.

A. Complete torus with a penetrate cut along the parallel θ = π
2

and loaded with distributed bending moment Q0

For a complete torus with a penetrate cut along the parallel θ = π
2 and loaded with distributed bending moment Q0, the

loading condition is shown in Fig. 6. The boundary condition is:

θ =
π

2
: T1 = −Q0, N1 = 0, M1 = 0, (52)

θ = −3π

2
: T1 = −Q0, N1 = 0, M1 = 0, (53)

θ = −3π

2
: 4z = 0. (54)

For this problem, the constant C can be determined by the boundary condition of T1 at θ = π
2 , namely

θ =
π

2
: T1 = −Q0. (55)

Taking into account the uniform distribution load q = 0, the above equation gives C = 1+α
α Q0, and the boundary loading

condition T1 = −Q0 for both θ = π
2 and θ = − 3π

2 is satisfied. The rest of the boundary condition can be expressed in terms of
A(θ) and B(θ) as

θ =
π

2
: B = 0,

dA

dθ
= 0, (56)

θ = −3π

2
: B = 0,

dA

dθ
= 0, (57)

θ = −3π

2
: 4z = 0. (58)
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(a) (b)

(c) (d)

(e)

Figure 5: Torus geometry with different radii a = 0.18k (k = 1, 2, 3, 4, 5)

Figure 6: Torus with a cut along its parallel at θ = π
2

or θ = −π
2

under load Q0

Now, the problem becomes to solve A(θ) and B(θ) under conditions (56).
A general code for this case is written by Maple and it will be valid for other caes if changing boundary conditions. For further
investigation, it is our honor to provide the code below.

restart:
for k from 1 to 5 do:
a:=0.18*k:
R:=1:
alpha:=a/(R):
h:=0.04:
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mu:=0.3:
E:=2.07e+11:
q:=0:
Q:=1:
C:=(1+alpha)/(alpha)*Q:
d:=sqrt(1/(2)*(sqrt(12*(1-mu*mu))*a*a)/(R*h)):
kappa:=sqrt(12*(1-mu*mu)):
eta:=1+alpha*sin(theta):
equations:=eta*diff(A(theta),theta,theta)-(alpha*cos(theta))*diff(A(theta),theta)-2*d*d*sin(theta) B(theta)=-4*d*d*d*d*C*cos(theta),
eta*diff(B(theta),theta,theta)-(alpha*cos(theta))*diff(B(theta),theta)+2*d*d*sin(theta) A(theta)=-2*d*d*((alpha*q*a)/(2)),
diff(Delta[z](theta),theta)=(a)/(E*h)*(A(theta))/(alpha*eta)*cos(theta);
boundary:=B(-(3* Pi)/(2))=0,B(Pi/(2))=0,D(A)(-(3*Pi)/(2))=0,D(A)(Pi/(2))=0,Delta[z](-(3*Pi)/(2))=0;
solution:=dsolve([equations,boundary],[A(theta),B(theta), Delta[z](theta)],numeric,
abserr=0.001,output=listprocedure):
T1[k] := -alpha*cos(theta)*R*h*rhs(sol[4])/(eta*(a*a*kappa))+(1/2)*q*a*(2+alpha*sin(theta))/eta-alpha*C*(alpha+sin(theta))/(eta*eta);
T2[k] := -R*h*(rhs(sol[5])/(eta*kappa)+(diff(1/eta, theta))*rhs(sol[4]))/(a*a)
+(1/2)*q*a+alpha*C*(alpha+sin(theta))/(eta*eta);
M1[k] := -(R*h*h/(kappa*kappa))*(mu*alpha*cos(theta)*rhs(sol[2])/(eta*eta)+rhs(sol[3])/eta
+rhs(sol[2])*(diff(1/eta, theta)))/((a*a)*(kappa*kappa));
M2[k] := -(R*h*h/(kappa*kappa))*(alpha*cos(theta)*rhs(sol[2])/(eta*eta)+mu*rhs(sol[3])/eta
+mu*rhs(sol[2])*(diff(1/eta, theta)))/(a*a*kappa*kappa);
N1[k] := -h*sin(theta)*rhs(sol[4])/(a*kappa*(eta*eta))-a/R*C*cos(theta)/(eta*eta);
vartheta[k] :=-rhs(sol[2])/(E*h*alpha*eta):
od;

The numerical results are shown in Fig. 7, 8, and 9, and the stress is shown in Fig. 10.

Figure 7: Left: Bending moment M1; Right: Bending moment M2. The torus radius is a = 1.8k[m]

Figure 8: Left: Surface force T1; Right: Surface force T2. The torus radius is a = 1.8k[m].

The figures indicate that all quantities such as bending moments, surface forces, shear force, and displacement are strongly
effected by the radius ratio α = a/R, and vary dramatically with θ both near to and far from the edge.
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Figure 9: Left: Shear force N1; Right: relative displacement in z direction4z . The torus radius is a = 1.8k[m]

Figure 10: Stress σ1

B. Complete torus with penetrate cut along the parallel θ = π
2

and loaded with distributed bending moment M0

Fig. 11 shows a complete torus with a penetrate cut along the parallel θ = π
2 and loaded with distributed bending moment

M0. The boundary condition is:

Figure 11: Torus with a cut along its parallel at θ = π
2

or θ = −π
2

under a pure moment M0

θ =
π

2
: T1 = 0, N1 = 0, M1 = −M0, (59)

θ = −3π

2
: T1 = 0, N1 = 0, M1 = −M0, (60)

θ = −3π

2
: 4z = 0. (61)

For this problem, the constant C can be determined by the boundary condition of T1 at θ = π
2 , namely

θ = −π
2

: T1 = 0. (62)

Taking into account the uniform distribution load q = 0, the above equation gives C = 0, and the boundary loading condition
T1 = 0 for both θ = π

2 and θ = − 3π
2 is satisfied. The rest of the boundary condition can be expressed in terms of functions
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A(θ) and B(θ), as follows:

θ =
π

2
: B = 0, −0.0001465201465

(1 + a)a2
dA

dθ
= −M0, (63)

θ = −3π

2
: B = 0, −0.0001465201465

(1 + a)a2
dA

dθ
= −M0, (64)

θ = −3π

2
: 4z = 0. (65)

The problem now becomes to solve A(θ) and B(θ) under conditions (63). The numerical results are shown in Fig. 12, 13, and
14, which indicate that all quantities such as the bending moments, surface forces, shear force, and displacement are strongly
affected by the radius ratio α = a/R, and vary dramatically with the angle θ both near to and far from the edge.

Figure 12: Left: Bending moment M1; Right: Bending moment M2. The torus radius is a = 1.8k[m]

Figure 13: Left: Surface force T1; Right: Surface force T2. The torus radius is a = 1.8k[m]

C. Half torus under edge vertical load along its parallel at θ = π
2

If we remove the inner region of a torus, we will have a half torus consisting of the outer region. This is under a vertical load
along its parallel at θ = π

2 and θ = π, as shown in Fig. 15. The boundary condition is:

θ = 0 : T1 = 0, N1 = −Q0, M1 = 0, (66)
θ = π : T1 = 0, N1 = −Q0, M1 = 0, (67)
θ = π : 4z = 0. (68)

For this problem,, the constant C can be determined by the boundary condition of N1 at θ = 0 , namely

θ = 0 : N1 = 0. (69)
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Figure 14: Left: Shear force N1; Right: relative displace in z direction4z . The torus radius is a = 1.8k[m]

Figure 15: Torus with a cut along its parallel at θ = π
2

or θ = −π
2

under a force Q0

Considering the uniform distribution load q = 0, we obtain C = Q0

7.565344159a2 , in which case the boundary loading condition
N1 = 0 for both θ = 0 and θ = Π is satisfied. The rest of the boundary condition can be expressed in terms of A(θ) and B(θ),
as follows:

θ = 0 : B + a = 0, 0.1025641026aA− 0.1465201465
dA

dθ
= 0, (70)

θ = π : B − a = 0, 0.1025641026aA+ 0.1465201465
dA

dθ
= 0, (71)

θ = π : 4z = 0. (72)

The problem now becomes to solve A(θ) and B(θ) under conditions (70). The numerical results are shown in Fig. 16, 17, and
18, and the stress is shown in Fig. 19. These figures indicate that all quantities, such as bending moments, surface forces, shear

Figure 16: Left: Bending moment M1; Right: Bending moment M2. The torus radius is a = 1.8k[m]

force, and displacement, are strongly affected by the radius ratio α = a/R, and vary dramatically with θ both near to and far
from the edge.

VI. THE DIFFERNCE BETWEEN THE MEMBRANE THEORY AND BENDING THEORY OF TORUS

In the history of theory of shells, a membrane theory is developed to simplify the analysis of shell structures. In the study
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Figure 17: Left: Surface force T1; Right: Surface force T2. The torus radius is a = 1.8k[m]

Figure 18: Left: Shear force N1; Right: Relative displacement in z direction4z . The torus radius is a = 1.8k[m]

Figure 19: Stress σ1

of the equilibrium of the shell element, this theory neglects all bending moments, which means that only surface forces T1, T2
are left. The membrane theory can make valuable predictions for shells with very small bending stiffness or when the changes
of curvature and twist of the middle surface are very small. The above case studies show that membrane theory cannot provide
reasonable results for a torus.
To obtain a clear picture of the difference between a membrane and the theory of a torus, let us perform comparisons for the
above three case studies. For the case study in Section 5.1, the surface force is shown in Fig. 20. For the case study in Section
5.2, the comparison is shown in Fig. 21. For the case study in Section 5.3, the comparison is shown in Fig. 22. Fig. 20, 21, and
22 show that the results obtained from bending theory and membrane theory are totally different except at boundaries.
These comparison studies reveal that the results from the membrane theory of the torus are questionable. Therefore, the bending
theory of shells should be used for the analysis of a torus.
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Figure 20: Bending theory (solid line) and membrane theory (point). Surface force T1 for torus radius a = 0.9[m]

Figure 21: Bending theory (point) and membrane theory (solid line). Surface force T1 for torus radius is a = 0.9[m]

Figure 22: Bending theory (point line) and membrane theory (solid line). Surface force T1 for torus radius is a = 0.9[m]

VII. VERIFICATION OF OUR RESULTS BY FINITE ELEMENT ANALYSIS

To verify our result, we carried out a finite element analysis for the case study in Section 5.1. The comparisons are shown
in Fig. 23. The finite element results were simulated by ABAQUS with shell element S4R. We applied the boundary con-
dition 4z(−3π/2) = 0 to cancel the rigid body motion, which might be the reason for minor differences in the range
θ ∈ [−3π/2,−5π/4]. From physics point of view, our result is symmetric respect to the axes of θ = −π/2 while the FEA
has slightly symmetry breaking. Therefore, our results are more trustable since the finite element analysis supports our numeri-
cal prediction nicely.
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Figure 23: Results for case study in Section 5.1, as shown in Fig. 6. Left: Bending moment M1; Right: Vertical displacement4z . The torus
radius is a = 0.36[m]

VIII. CONCLUSIONS AND FUTURE PERSPECTIVES

We have obtained an exact solution of the complex-form ODE for the symmetrical deformation of a torus. This solution
is expressed by the Heun functions. However, as we stated, the Huen function cannot be split into real and imaginary parts
explicitly. To solve this issue, we proposed a new strategy of transforming the complex-form ODE of torus into an rela-form
ODE in terms of A(θ), B(θ), and4z(θ), which allowed us to easily deal with different kinds of boundary conditions.
To verify our formulation, we wrote a computational code in Maple and carried out some numerical simulations. The validation
of our numerical results was confirmedand supported by the finite element analysis. The numerical investigation shows that the
bending theory of shells should be used for torus deformation analysis.
Regarding the future perspectives, it must be pointed out that the complex-form governing ODE of a torus has some disadvan-
tages, for instance, the the complex-form governing ODE cannot be used to deal with dynamical and buckling problems. This
definitely limits the use of complex-form modeling. To overcome this shortcoming, displacement-type ODE of shells must be
used [20], which remains an open problem [20].
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