
Hydrocephalus revisited: New insights into dynamics of neurofluids on macro- 

and microscales 

 

Hans C Ludwig (orcid.org/0000-0001-8744-9510)1, Hans C Bock (orcid.org/0000-0002-

6656-6053)1, Jutta Gärtner (orcid.org/0000-0003-4108-7109)2, Stina Schiller2, Jens 

Frahm (orcid.org/0000-0002-8279-884X)3, Steffi Dreha-Kulaczewski (orcid.org/0000-

0003-4951-3176)2 

 

1 Department of Neurosurgery, Division of Pediatric Neurosurgery, University Medical 

Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany 

2 Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, 

University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany 

3 Biomedical NMR, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, 

Germany 

 

Corresponding author: 

Hans C Ludwig (https://orcid.org/0000-0001-8744-9510) 

Department of Neurosurgery, Division of Pediatric Neurosurgery, University Medical 

Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany 

Email: hludwig@med.uni-goettingen.de 

 

 

Keywords: Cerebrospinal fluid, real-time MRI, hydrocephalus, space flight disease, 

aquaporin, spontaneous intracranial hypotension, neural tube defect 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0322.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202012.0322.v1
http://creativecommons.org/licenses/by/4.0/


2	
 

	

Abstract 

New experimental and clinical findings question the historic view of hydrocephalus and 

its 100-year-old classification. In particular, real-time MRI evaluation of CSF flow and 

detailed insights into brain water regulation on the molecular scale indicate the existence 

of at least three main mechanisms that determine the dynamics of neurofluids. (i) 

Inspiration is a major driving force (ii) Adequate filling of brain ventricles by balanced 

cerebrospinal fluid upsurge is sensed by cilia (iii) The perivascular glial network connects 

the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these 

aspects have not been considered a common physiologic framework improving 

knowledge and therapy for severe disorders of normal-pressure and post-haemorrhagic 

hydrocephalus, spontaneous intracranial hypotension and spaceflight disease. 

 

Introduction 

Challenging the historic view 

Brain disorders arising from disturbed cerebrospinal fluid (CSF) circulation constitute a 

major proportion of human diseases. Incidences of 49.5/100.000 have been found for 

prevalent forms such as isolated hydrocephalus (HC) and as high as 81.2/100.000 for 

HC related to prematurity [1]. In fact, children represent the majority of patients affected 

by HC, often in conjunction with congenital neural tube defects, brain malformations and 

post-haemorrhagic hydrocephalus (PHHC). As a consequence, HC is the most frequent 

reason for brain surgery during childhood. Epidemiologic studies demonstrate the 

influence of economic status; in high-income countries, children mostly suffer from 

PHHC, while in low- and medium-income countries, HC predominantly emerges as a 

sequela of neural tube defects and congenital anomalies [2]. On the other hand, 

reflecting the demographic shift with the increasing incidence of neurodegenerative 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0322.v1

https://doi.org/10.20944/preprints202012.0322.v1


3	
 

	

disorders, there has been an increase in elderly patients diagnosed with idiopathic 

normal-pressure hydrocephalus (iNPH) with a mortality rate of more than 80% over 5 

years when untreated [3]. 

Our current pathophysiologic concept of HC is largely based on the hypothesis of bulk 

flow and Dandy`s classification of communicating and obstructive HC derived from a 

small number of animal experiments [4]. Decades later the hydrodynamic theory was 

added by Greitz [5],[6] demonstrating pulsatile flow from the ventricles through the 

aquaeduct. Orescovic and Klarica found aqueductal flow in cats to be close to zero over 

a period of 2 hours after open neurosurgical access to the aqueduct [7]. These results 

contradicted earlier assumptions of unidirectional CSF routes from the choroid plexus 

via extracerebral cisterns to Pacchionian granulations, spinal dural nerve roots and 

cranial nerve arachnoid resorption. In later studies [8,9] the same authors concluded 

CSF movements to be “random” without directional preference, driven by cardiac action 

and respiration. Brinker et al. [10] treated CSF dynamics as a diffusion process that leads 

to passive mixing and distribution into the different ventricular and subarachnoid 

compartments, while Buishas et al. postulated CSF exchange by osmosis [11]. 

Recent findings challenge these views about CSF circulation and call for a physiologic 

concept that takes the interplay of macroscopic fluid flow and microscopic drainage 

pathways into account [12]. New insights particularly apply to (i) the discovery of mainly 

respiration-induced CSF dynamics by real-time MRI [13,14], (ii) novel details about the 

regulatory cascades of cerebral aquaporin water channels [15] and (iii) increasing clinical 

expertise regarding disorders of perturbed CSF circulation [16]. This review brings 

together the current thoughts on the multicompartmental dynamics of neurofluids in order 

to foster a better understanding of CSF disorders such as iNPH and spontaneous 

intracranial hypotension (SIH) or alterations during human space flight. 
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Breathing, CSF dynamics and venous flow 

Non-invasive flow MRI techniques play a pivotal role in the research of human HC 

because they offer quantitative evaluations of both CSF movement and blood flow [17]. 

Extending conventional techniques, real-time MRI developments now allow for dynamic 

assessments of the functional anatomy and fluid flow at high spatial and temporal 

resolution [13]. Most importantly, real-time MRI studies may be performed without the 

need for physiologic gating. Physiologic gating to date affects almost all flow MRI studies 

by restricting the results to processes governed by cardiac periodicity. Without such 

prejudice, real-time MRI has facilitated the discovery of respiration-induced CSF 

transport [14] and elucidated the tightly connected interplay between the venous fluid 

systems and the observed CSF upward surge [18]. In fact, CSF movement into the head 

during inspiration is accompanied by downward blood flow within the veins of the 

head/neck region, as demonstrated in spinal epidural veins (Fig. 1). The pooling of 

venous blood in large extracranial collecting veins ensures cardiac preload, which then 

leads to adequate systolic ejection according to the Frank-Starling law. 

In contrast to that of extraspinal cervical venous vessels, which are equipped with valves, 

the high-capacity system of the epidural venous plexus remains valveless [19,20]. 

Epidural veins are kept open by negative pleural and epidural transmural venous 

pressure even under mechanical ventilation [21]. This well-known phenomenon can be 

observed during lumbar puncture when the pendant saline drop at the needle opening 

gets aspirated as soon as the tip reaches and penetrates into the epidural space 

regardless of posture [22]. This observation is valuable for excluding any suspected bias 

from CSF dynamic studies performed in the supine position. The epidural venous plexus 

accompanies the dural sac throughout its entire length. It forms manifold connections 

between intra- and extraspinal spaces and thoracic and abdominal cavities. Dreha-

Kulaczewski et al. [18,23] demonstrated the enhanced filling of spinal epidural veins 
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during inspiration followed by draining during expiration. The respiratory-induced flow 

changes in this important venous drainage pathway can be transmitted into the filling 

and emptying of the directly connected venous compartments of the posterior fossa (Fig. 

1). Following the Monro and Kellie doctrine of constant intracranial volume, the volume 

of fluid leaving the cranial vault must be counterbalanced. Thus, the upward movement 

of CSF and the associated venous outflow compensate for each other during respiration.  

There is long-standing discussion in the literature regarding the dynamic of net CSF flow, 

whether by cardiac pulsatility or fluid displacement by respiration and each individual 

contribution. To separate cardiac- and respiratory-driven CSF motion, Takizawa et al. 

(2017) performed asynchronous 2D-PC MRI experiments under respiratory guidance. 

He found that for velocity, the cardiac component was greater than the respiratory 

component. In contrast, for the amount of volume displacement, the respiratory 

component was greater [24]. This pattern of fast and small cardiac-driven modulations 

but slow and high displacement by respiration was  confirmed by the study of Yatsushiro 

et al. [25]. Yildiz et al. were able to demonstrate a comparable contribution of respiration 

and cardiac pulsations on CSF dynamics through the aqueduct during deep breathing 

but not during natural breathing [26]. This pattern could resemble the situation during 

deep NREM sleep [27]. 

From this perspective, the posterior fossa of the skull might be considered a transfer unit. 

Further upwards, the aqueductal tube connecting the 4th and 3rd ventricles constitutes a 

singular gate into the supratentorial brain CSF spaces. It might even be hypothesized 

that it serves as a control valve for the passage of large flow volumes during inspiration. 

Given that respiration-related CSF flow is continuously subjected to more rapid and low-

amplitude modulating fluctuations caused by cardiac pulsatility, [24] the thin diameter of 

the aqueduct results in laminar flow and enables instantaneous control of CSF flow 

volumes according to the law of Hagen Poiseulle [16]. It accounts for the radial diameter 
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of the aqueduct to the 4th power, which renders the structure predestined as a fine-tuned 

system for CSF dynamic flow into and out of the brain ventricles [28]. This hypothesis is 

supported by the anatomic details of the aqueductal environment, in which the frontal 

prepontine Liliequist membrane and the dense arachnoid membranes of the dorsal 

cisterna [29] quadrigemina prevent any bypassing subarachnoid para-aqueductal 

exchange of CSF, which would jeopardize the tuning capabilities (Fig. 2). Any flow of 

CSF through the cisterns bypassing the aqueduct, as reported by studies based on 

experiments in rats [30], would prevent aqueductal stenosis and obstructive 

hydrocephalus in humans. The cisterna quadrigemina itself, as a protrusion of the third 

ventricle, might be able to promote and transmit intraventricular pressure immediately to 

the aqueduct, thereby influencing the tube diameter (Fig. 2) [31]. 

A very important aspect of the tightly connected and well-balanced CSF and venous 

systems is to ensure upward movements of CSF against hydrostatic pressure. This 

physiologic principle is a prerequisite for a sustained upright body position because it 

maintains brain turgor and thus adequate intracranial CSF volume. Above all, hydrostatic 

uplift or buoyant forces inside the ventricles and arachnoidal spaces must be ensured in 

all body positions as well as over long periods of significant skull growth, as brain volume 

increases from infancy until adolescence. In view of the physiologic consequences of an 

upright position, findings from quadrupeds may therefore be misleading, as their 

aqueducts are oriented differently with respect to gravity and hydrostatic pressure. 

Further differences might be due to the much smaller dimensions of intracranial fluid 

spaces and absorption structures. Sheep, for example, are able to absorb up to 50% of 

their CSF volume by cervical vessel structures [32]. It should also be noted that the 

majority of experimental studies have been conducted in very young animals in which 

CSF structures and dynamics are not yet fully developed – comparable with infants 

without Pacchionian granulations during the first year of life [33]. 
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Ependymal fluid flow 

Ependymal cells cover the outer surface of the choroid plexus and the inner wall of the 

brain ventricular system as well as the central canal of the spinal cord. These unique 

structures can be damaged by infections, tumours and subarachnoid (SAH) or 

intraventricular haemorrhage (IVH) due to germinal matrix disruption in prematurity. The 

latter is described as a bleeding-induced N-cadherin-mediated disruption of the 

ependymal junctions and is usually followed by severe and catastrophic destruction of 

the ependymal lining of the ventricular wall [34]. The ventricular wall encloses, protects 

and organizes one of the most delicate structures of the CNS, the subventricular zone, 

also called "the lake front property" [35]. It harbours valuable stem cells essential for 

repair and plasticity until adulthood. The disturbance of this zone in the case of germinal 

matrix bleeding from PHHC is the major cause of the lifelong disability associated with 

periventricular leucomalacy [36]. 

The cilia of these ependymal cells provide a flow-sensing system that represents a 

regulatory mechanism serving a variety of purposes. In addition to promoting active CSF 

transport near the ventricular walls, these cilia are capable of detecting flow directions 

[37], turbulence patterns and disturbances in circadian rhythms [38]. For example, 

ventricular dilation without an increase in intracranial pressure (ICP) but with perturbation 

of CSF circulation, as accomplished by an inflatable balloon in lambs, supports the notion 

of ependymal fluid flow and pressure-sensing mechanisms as being responsible for the 

observed alterations of ventricular dimensions [16,39]. Disturbances of the sensing cilia 

system have been identified as being responsible for alterations in ventricular 

morphology and dimension [40]. The ability of the ependyma to sense CSF flow 

properties in conjunction with the aqueduct provides a means to fine-tune and adapt CSF 

circulation for acute physiologic demands [41].  

Notably, paediatric hydrocephalus further consists of underlying structural mechanisms 
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related to anomalies such as schizencephaly, aplasia or severe cortical migration 

deficits. 

 

Bergmann glia and astrocytic fluid flow 

A crucial process of the ventricular system during embryonic development is the 

formation of a CSF-filled tube. This tube consists of neuroepithelial cells in which fluid 

and precursor CSF provides steady turgor with a continuous flow of signalling peptides 

to control progenitor cells building up the Bergmann glia [42-44]. Bergmann glial cells 

are characterized by a unique polarity extending between the ventricular wall and the 

glia limitans, and they mature later to astrocytic layers. The glia limitans consists of 

extracellular matrix laminin and fibronectin [45-47] contacting and surrounding the 

capillary wall [46] as well as the basal membrane of the ependyma. The astrocytic layer 

is essential for the brain water balancing system because the polarized astrocytic basal 

membrane is equipped with aquaporin-4 (AQP4), a water channel expressed in the 

astrocyte foot processes and ependymal cells lining the ventricles. AQP4 facilitates the 

transport of excess water out of the brain [48]. 

 

The correct polarization of Bergman glia and later astrocytes between the capillary wall 

and subependymal glia is mandatory for water homeostasis in the brain. Disturbances 

of this system by haemoglobin [49] in preterm IVH lead to deleterious lesions by 

destroying the N-cadherin-dependent cell junctions [34]. This alteration is responsible for 

the regional destruction of the ependymal cell layer and activation of extracellular matrix 

proteins around the astrocyte membrane as well as for the reported loss of polarized 

AQP4 [50]. The condition is not restricted to prematurity but could also be identified in 

congenital and even adult HC [51,52]. 
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AQP4 is responsible for the recycling of brain water and cellular waste by connecting 

intercellular and glymphatic flow with CSF circulation. The system prevents cardiac- and 

respiration-related pulsatility from propagating to the interstitial fluid compartment of the 

brain. Exposure to those dominant forces jeopardizes the blood-brain barrier and 

precludes any autoregulative vasomotor control of capillary flow by the direct 

transduction of systemic blood pressure [47]. However, without an alternative 

hydrodynamic mechanism, the brain interstitial fluid remains stagnant. As noted by 

Nakada et al. [53], the AQP4-supported influx of water into the pericapillary Virchow 

Robin Spaces (VRS) generates continuous interstitial flow, which constitutes an 

essential part of the clearance system for Aβ-amyloid. Both adequate ventricular CSF 

circulation and interstitial flow in VRS are mandatory for proper neurofluid circulation 

(Fig.3). These interacting systems control the brain water balance under diverse 

conditions ranging from growth to standing and prone positions under variable systemic 

blood pressures as well as during physical exercise and sleep. Taken together, the 

combined understanding of functional neurofluids at the macroscopic, microscopic and 

molecular levels may be exploited to re-evaluate the pathophysiology of conditions with 

disturbed CSF distribution and transport. 

 

CSF disorders and beyond 

Chiari malformations 

The neural tube of the foetus usually closes around embryonic day 25. Incomplete 

closure results in open spina bifida or foetal meningomyelocele (MMC), which forms a 

CSF fistula over the remaining months of pregnancy until surgical closure either by foetal 

intrauterine or postnatal surgery. A study of the effectiveness of intrauterine MMC repair 

demonstrated that intrauterine closure at approximately the 24th week of pregnancy 
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significantly reduced the rate of Chiari II malformation with less tonsillar herniation and 

HC [54]. The lack of distention of the embryonic posterior fossa had already been 

postulated as the underlying mechanism decades ago [55]. After surgical closure of the 

MMC fistula, sufficient upward movement of CSF ensures appropriate ventricular filling 

and growth of the posterior fossa. Remarkably, at approximately the 24th gestational 

week, foetal respiration emerges [56]. Assuming the same physiologic principles as 

those postnatally, the inspiratory extension of the thoracic cavity and lowering of the 

intrathoracic pressure probably induces venous outflow from intracranial venous 

compartments towards the heart, as the most important factor for cranial fluid flow [56]. 

Breathing movements of the thorax govern the transport of amniotic fluid instead of air 

in and out of the lungs. The venous fluid shifting out of the cranium has thus to be 

counterbalanced by upwardly directed CSF flow. 

 

The establishment of adequate prenatal CSF dynamics is a prerequisite not only for the 

development of brain structures and skull size but also for neuronal migratory processes. 

Foetuses with spina bifida aperta without prenatal surgical treatment present significantly 

impaired neuronal migration of the subventricular zone with consecutive heterotopia, 

damage of the ependymal layers with regional loss of the ependyma, desynchronized 

ciliary beating and resultant astrocytic scarring [57],[58]. All of these factors are also 

known to promote the formation of HC. 

 

Spontaneous intracranial hypotension and rhinoliquorrhoe 

Spontaneous intracranial hypotension (SIH) is a severe pathophysiologic condition 

affecting adults up to the age of 60 years, but it very rarely affects children. Commonly, 

osseous spurs inside the spinal canal cause dural leakage and epidural collection of CSF 

inside the canal below the cerebellar tentorium. Depending on the loss of CSF, cranial 
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hypotension may ensue, leading to subdural effusion and chronic subdural bleeding. 

Subsequently, characteristic signs of brain sagging, such as a lowered cerebellum and 

tonsillar herniation, point out the reduced brain turgor and impaired buoyant force. The 

condition termed nongeriatric chronic subdural haematoma can cause severe morbidity 

and even mortality. Therapy includes the neurosurgical application of spinal blood 

patches, bed rest and, if possible, closure of the leakage by an intraspinal intradural 

approach [59,60]. 

In contrast to infratentorial leakage, CSF loss due to traumatic rhinoliquorrhoe, for 

example, at the petrous bone or in frontobasal locations, occurs within the supratentorial 

subarachnoid CSF spaces. It is important to note that although severely complicated by 

local infections or meningitis, brain sagging alluding to SIH with loss of buoyancy has not 

been observed. Symptoms such as severe headache and vomiting exaggerated in an 

upright position are similar to those after lumbar puncture and consecutive temporary 

shortage of CSF. Therapeutic measures with aminophylline and caffeine have been 

proven effective [61]. Notably, both substances elevate breathing frequency, which, 

considering it the main driving force, could result in more profound CSF being moved 

upward into the cranial vault. 

The important difference between loss of CSF in rhinoliquorrhoe versus permanent 

spinal leakage is the relative location to the aqueduct. The capacity to counterbalance 

continuous fluid loss below the aqueduct by breathing-induced upward movements of 

CSF is limited by the shortage of available CSF volume; thus, SIH and chronic subdural 

haematoma may evolve over time. On the other hand, CSF loss due to subarachnoid 

leakage above the aqueduct obviously does not induce SIH and has not been reported. 

Extending our hypothesis about the potential valve function of the aqueduct in 

conjunction with dense sealing of the para-aqueductal pathways (Fig. 2), the exclusive 

fluid passage seems to be able to prevent intracerebral hypotension. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0322.v1

https://doi.org/10.20944/preprints202012.0322.v1


12	
 

	

Shunt-mediated CSF overdrainage 

An upright body position and concomitant hydrostatic forces represent a challenge for 

the treatment of CSF overdrainage using ventricular shunt systems. CSF overdrainage 

into the extracranial compartments is known to be a common side effect eventually 

associated with severe and acutely exacerbating complications, particularly during 

periods of fast growth in childhood and adolescence. Slit ventricles detected by MRI and 

complaints of severe headaches that escalate during movement into a standing position 

are typical symptoms. Their increase over the course of the day might be attributed to a 

diminution in systemic hydration and the consequently increasing imbalance of the 

venous-CSF fluid system. Affected children usually develop learning difficulties and 

complain about headaches and dizziness when moving from a horizontal position. 

 

It is compelling to note that fluid overdrainage from the ventricles apparently does not 

provoke the characteristic sequela of SIH, as brain sagging has never been observed. 

Moreover, headaches early in the morning are comparatively rare, which may be 

attributed to the night-long filling effect due to breathing-related upward CSF movement 

from the spinal canal into the ventricles, i.e., during sleep in a horizontal position and 

under hydrostatic equilibrium. Over time, however, ventricular narrowing occurs and may 

lead to the encasement of shunt catheters between the walls. Chronic overdrainage may 

even cause subdural effusion and bleeding. The treatment of this condition requires the 

integration of a gravity control system into the shunt diversion to attenuate hydrostatic 

forces. 

Space flight disease 

Recently, van Ombergen et al. [62,63] reported persistent enlargement of the brain CSF 

spaces in astronauts after long-duration space flights. Post-flight volume changes in the 

lateral ventricle were shown to be positively correlated with visual acuity loss – a well-
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known sequela of space flight-associated neuro-ocular syndrome (SANS). The 

underlying mechanisms of SANS, which refer to various ocular abnormalities such as 

globe flattening and optic disc oedema, are still not fully understood. The current findings 

demonstrate not only long-lasting enlargement of ventricular and subarachnoid CSF 

spaces but also post-flight reductions in white and grey matter volumes. This observation 

seems to link changes in brain CSF spaces to the formation of SANS. In fact, the 

observations of increased ventricular volume and decreased CSF space below the 

vertex highly support disturbances of CSF circulation as the underlying cause, possibly 

due to imbalances of breathing-induced CSF upward flow, as hypothesized by Ludwig 

et al. [64] Interestingly, these alterations are sustained for as long as 7 months after 

space flight, implying that they eventually remain unaffected for a longer time by the 

return to gravity and the reestablishment of hydrostatic pressure conditions. This might 

indicate that after gravity is restored, the human system needs quite a long time for the 

excessive accumulation of cerebrospinal fluid in the brain ventricles as well as the white 

and grey matter volumes to normalize and for the CSF flow system to reach physiological 

conditions. 

Thus, long-term changes in ventricular volumes due to space flight might act as a model 

for the induction of HC. 

 

Notably, the brain aquaporin system is able to adapt to different pressure situations 

[65],[66] by adjusting the localization of aquaporin-1 (AQP1), an isoform of aquaporin 

water channels expressed at the ependyma of the choroid plexus [67], and the 

expression density of AQP4 at astrocytic end feet. In mice experiencing space flights or 

HDT, AQP1 was redistributed from apical to basal ependymal membranes [68]. AQP 

expression was altered by gravity [69]. In mice with kaolin-induced HC, AQP1 was 

redistributed from the apical to cytoplasmic vesicles and basal membranes of the 
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ependyma [70]. Hence, alterations in the aquaporin system might be responsible for 

long-lasting or permanent adaptations of ventricular volumes after zero-gravity space 

flights and might be involved in many CSF disorders in which CSF dynamics are altered. 

A related pathway has been described for nitric oxide (NO) [71], which is delivered by 

neuronal or endothelial isozymes and is able to cross membranes [72,73] and AQP4 

channels. It facilitates the motility and beating frequency of several ciliated epithelial cells 

[74]. A disturbance of the NO system by intraventricular haemoglobin in preterm infants 

or subarachnoid haemorrhage [75] allows us to argue for a link between CSF flow, 

ependymal ciliary sensing function, endothelial relaxation, capillary dilation and 

astrocytic clearance function. NO is also important for the structural maintenance of the 

periventricular subependymal zone [76]. It may therefore be worthwhile to focus on 

elevated NO expression in microgravity as well as in gravity simulation experiments by 

rat tail suspension or during human HDT [77]. 

 

Sleep and head-down tilt 

Based on the observation that inspiration elicits an upward cranial motion of CSF, it can 

be assumed that sleep in a horizontal body position with zero hydrostatic pressure 

enhances fluid flow, while irregular breathing during sleep may lead to CSF-related 

disorders. For example, obstructive sleep apnoea has been reported to be frequently 

associated with the development of iNPH [78]. This may be due to a disturbance in the 

well-orchestrated interplay between the venous and CSF systems. During sleep apnoea, 

repeated attempts to breath induce strong respiratory efforts against a closed glottis, 

which severely lowers the intrathoracic pressure. The subsequently compromised 

venous return to the heart may result in retrograde intracranial venous hypertension. 

Perturbations of venous-CSF equilibrium hamper CSF exchange between the spinal 

canal and head and may thus contribute to an increasing ventricular diameter and 
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reduced glymphatic circulation [79]. The apparent diminution of perivascular AQP4 in 

astrocytic end feet, a main histopathologic finding in iNPH patients, could aggravate the 

disease process [80]. 

Enhanced upward CSF flow by inspiration during sleep was observed in non-REM 

(NREM) sleep in healthy individuals using electrophysiologic methods and blood 

oxygenation-level dependent (BOLD) MRI [27]. During NREM phases of deep sleep [81], 

the human respiration cycle is presumably slow, regular, deep and sustainable enough 

to move a sufficient CSF volume into the ventricles, probably facilitated by a reduction in 

the hydrostatic gradient. Such an ample supply of CSF might be the reason for the 

enhanced glymphatic clearance of tau and Aβ-amyloid during sleep [82]. In contrast, 

dementia seems to be promoted by reduced sleep and a disturbed brain fluid supply, 

which in turn leads to increased Aβ-amyloid deposition [83]. 

A head-down tilt (HDT) position reverses hydrostatic conditions, leads to higher ICP and 

may serve as an experimental simulation of long-duration space flight with zero gravity. 

Recent studies have reported decreased cerebral blood flow in subjects in an HDT 

position compared to a horizontal position. Furthermore, exposure to 3% CO2 during 

HDT enhances aqueductal CSF velocities and lateral ventricle CSF mean diffusivity 

[84,85]. Remarkably, a simultaneous increase in lateral ventricle volume and the 

formation of optic disc oedema in the HDT position resembles observations in astronauts 

after space flight [69,86] [84]. In accordance with animal models of HC [52], altered 

intracranial pressure, fluid flow physiology and dynamics during HDT may be 

hypothesized to interfere with choroidal depolarization and AQP dysfunction [87]. 

Discussion 

The recent observation of breathing-induced CSF upward motion in association with 

intrathoracic venous pooling opens new horizons for a profound understanding of CSF 

flow-related disorders. These insights apply to CSF homeostasis in paediatric diseases 
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such as preterm post-haemorrhagic hydrocephalus and congenital obstructive 

hydrocephalus as well as in adult intracranial spontaneous hypertension and geriatric 

iNPH. Additional information may be gathered by observations of altered CSF physiology 

during space flight. Zero gravity offers a model to more precisely understand conditions 

that are related to the counterbalancing effects of gravity, venous outflow and CSF 

upward flow. On the other hand, CSF exchange with interstitial fluid and VRS relies on 

proper expression of AQP4 water channels in astrocytic end feet. Thus, CSF regulation 

comprises at least three main regulatory mechanisms: (i) inspiration-induced CSF supply 

upward into the skull and control of CSF flow into brain CSF spaces by aqueductal 

function, (ii) ependymal flow and its pressure-sensing properties, and (iii) AQP1 and 

AQP4 functions regulating interstitial water secretion and resorption on a molecular 

scale, respectively. Such knowledge is mandatory to explain iNPH and associated 

dementia, PHHC, SIH and spina bifida-related disorders as well as space flight disease. 

Furthermore, this knowledge may help to further understand conditions associated with 

CSF disturbances and, above all, to develop and improve therapeutic approaches. 
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List of Abbreviations 

Aß  Amyloid Beta 

AQP1  Aquaporin-1 

AQP4  Aquaporin-4 

BOLD  Blood Oxygenation-Level Dependent 

CSF  Cerebrospinal Fluid 

HC  Hydrocephalus 

HDT  Head-Down Tilt 

ICP  Intracranial Pressure 

iNPH  Idiopathic Normal-Pressure Hydrocephalus 

IVH  Intraventricular Haemorrhage 

MMC  Meningomyelocele 

NO  Nitric Oxide 

PHHC  Post-Haemorrhagic Hydrocephalus 

NREM  Non-Rapid Eye Movement 

RTMRI Real-Time Magnetic Resonance Imaging 

SAH  Subarachnoid Haemorrhage 

SANS  Space flight-Associated Neuro-ocular Syndrome 

SIH  Spontaneous Intracranial Hypotension 

VRS  Virchow Robin Space 

 

Search strategy and selection criteria 

We searched PubMed, Crossref Search and Web of Science for reports published in 

English from Jan 1, 1995 to March 31, 2020. The search terms “hydrocephalus”, or 

“hydrocephalic” were combined with many terms for “epidemiology”, “pathophysiology”, 
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“etiology”, “diagnosis”, “management” and such as “aquaporin”, “cerebro spinal fluid”, 

“glymphatic”. In addition to the search results, we also hand searched the references of 

relevant articles retrieved by search strategy. The final reference list was generated on 

the basis of relevance to the topics covered in this Review. 

Author Contributions: HCL, SDK and JF edited the manuscript; HCL, SDK, HCB and 

JG defined the scope, objective and clinical details. HCL, SDK, HCB, JF, JG, SS 

reviewed the manuscript.  

Competing interests: The authors declare no competing financial interests. 

Funding: SDK, HCL, HCB and JG gratefully acknowledge financial support from Mrs. L. 

Grun funds. 

Acknowledgements: The authors gratefully thank the editors of Springer Nature Editing 

Service for editing proper English, style, spelling, grammar and punctuations.  

 
 

 

 

 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0322.v1

https://doi.org/10.20944/preprints202012.0322.v1


19	
 

	

Fig. 1. Veins of the posterior fossa, cranio-cervical junction and cervical 

vertebral column. 

 

 

Fig.1: Coronal view of the posterior fossa with the major dural sinuses (bilateral 

transverse sinus and singular sagittal sinus) and their confluence. The smaller occipital 

sinus connects to the marginal sinus lining the foramen magnum. From here, direct 

connections to the epidural venous plexus of the upper spinal canal exist. Thick strands 
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at both sides of the spinal cord form the lateral parts of the usually rope-ladder-like 

cervical venous plexus, which can be detected by flow MRI. Abundance of connections 

between intracranial and intraspinal venous compartments through the craniocervical 

junction are modified from figures by Henriques et al. [19] showing resin casts of 

vertebral veins. 

 

Fig. 2. Sealing of the periaqueductal CSF pathways. 

 

 

 

Fig.2: Sagittal view of the internal CSF spaces and main cisterns constituting 

External CSF spaces. The Liliequist membranes (dark blue) block the prepontine 

pathways of CSF (modified from [31]). The line (dark blue) outlining the 

quadrigeminal cistern represents the complex webs of dense arachnoid 

membranes hampering CSF flux. Note the unique anatomical position of this 

cistern. Here, variations in size or pressure may foster the modulation of 

aqueductal diameter, thereby regulating CSF flow into or out of brain ventricles. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0322.v1

https://doi.org/10.20944/preprints202012.0322.v1


21	
 

	

Fig. 3 Primary distribution of aquaporin-4 water channels in the CNS. 

 

 

 

Fig.3: Sagittal view of the brain and CSF spaces. Inserts illustrate the main location of 

aquaporin-4 water channel (APQ4) expression (modified from [48]). Astrocytes 

harbouring the AQP4 system in their end-feet processes are essential composites of 

brain tissue - CSF and brain tissue- blood interfaces. a) Astrocytes of the glia limitans 

externa (situated subpial) expressing AQP4 are part of the outer brain barrier between 

the subdural spaces and outer brain surface. b) AQP4 is expressed on the glial/brain 

parenchymal side of the ependymal cell layer, which covers all internal CSF spaces. c) 

Astrocyte end feet enclosing peri-capillary spaces referred to as Virchow-Robin spaces 

(VRS) are equipped with AQP4 water channels and contribute to the blood-brain 

barrier. Here, the astrocytic AQP4 system regulates water influx into the VRS and 

generates interstitial flow. 
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