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Abstract: The production of lithium-ion battery cells is characterized by a high degree of complexity1

due to numerous cause-effect relationships between process characteristics. Knowledge about the2

multi-stage production is spread among several experts, rendering tasks such as failure analysis3

challenging. In this paper, a method is presented, which includes expert knowledge acquisition in4

production ramp-up by combining Failure Mode and Effects Analysis (FMEA) with a Bayesian5

Network. We show the effectiveness of this holistic method by building up a large scale, cross-process6

Bayesian Failure Network in lithium-ion battery production. Using this model, we are able to conduct7

root cause analyses as well as analyses of failure propagation. The former support operators in8

identifying root causes once a cell possesses a specific failure by calculating most-probable explanations9

matched to the individual battery cell data. The latter enable us to analyze propagation of failures and10

deviations in the production chain and thus provide support for placement of quality gates, leading to11

a significant reduction in scrap rate. Moreover, it gives an insight into which process steps are key12

drivers for which final product characteristics.13

Keywords: Bayesian Network; Root Cause Analysis; Failure Mode and Effect Analysis; Lithium-Ion14

Battery Cell; Failure Propagation; Multi-Stage Production; Manufacturing Process; Process15

Optimization; Scrap Rate16

1. Introduction17

Given the necessity of CO2 reduction in the mobility sector, which is strongly driven by the18

European Commission’s regulations for automotive manufacturers, the shift towards electrification can19

be observed as one major trend in the industry [1]. Currently, lithium-ion battery (LIB) cells as energy20

carriers for electric vehicles are one key technology, due to their high energy density and long life cycles21

[2]. However, there are certain challenges yet to overcome. At the current technological state of the art,22

LIB cell manufacturers face quality issues, which are reflected in scrap rates of 6 to 12% [3] [4]. This is23

not only a significant cost factor, but also affects the environmental impact, since LIB production may24

account for a significant amount of CO2 emissions during the production of an electric vehicle [5].25
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Figure 1. Example of CERs in LIB cell production

According to research, the reason for these scrap rates can be traced back to the high complexity in26

cell production as a result of many different process steps and a high amount of cause-effect relationships27

(CERs) between process characteristics [6] [7] [8] [9]. The production of LIB cells involves about 60028

process characteristics such as machine parameters and other properties, whose CERs can be depicted29

as a network consisting of up to 2,100 connections, 75% of which are assumed to be essential for final30

cell quality [6]. Figure 1 depicts a selection of exemplary CERs in the electrolyte filling process.31

Usually a lot of historical production data is available in series production, enabling the application32

of various data-driven methods upon which failure behavior within a failure network can be analyzed33

[6] [10]. During prototyping, pilot series and ramp-up, the amount of available production data may34

still be low, so process corrections due to quality deviations and errors are carried out mostly based35

on expert knowledge [6] [8]. Considering the complexity, the utilization of expert knowledge for root36

cause analyses (RCA) gathered by the conduction of quality methods such as Failure Mode and Effect37

Analysis (FMEA) may easily become strenuous and time-consuming. Furthermore, inconsistencies and38

contradictions between different ratings can occur during the knowledge acquisition. This is because39

experts for individual process steps may not able to consider all interactions of their ratings across40

other process steps. Yet expert knowledge-based quality methods are essential, especially in early-stage41

production phases [4] [8].42

This paper presents an innovative, quality-oriented approach for creating and utilizing a failure43

network from expert knowledge in the complex process chain of early-stage LIB cell production by44

combining the benefits of a process FMEA failure network with those of a Bayesian Network. Using a45

Baysian Network to embody a failure network of the production chain can be beneficial in two ways:46

• backward-oriented: provision of algorithmic recommendations during the conduction of an RCA,47

in order to figure out the root cause of a detected failure,48

• forward-oriented: failure propagation analysis (FPA) within the failure network for the placement49

of quality gates in the process chain in order to prevent future failures.50

It is assumed that incorporation of these two approaches could reduce the time needed to identify51

root causes of detected failures and, besides that, reduce scrap rates through better understanding of52

failure propagations and refinement of quality gate implementation.53

In section 2, the state of the art and research regarding related topics in traditional quality54

management is reviewed. Also, current applications of Bayesian Networks in quality assurance are55

presented. Afterwards, the methods for converting an FMEA into a valid Bayesian Network as well its56

possibilities for RCA and FPA are presented (section 3). In section 4, the method is applied to build a57

Bayesian Network based on an expert knowledge-based LIB production failure net. The network is58
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then used to gain insights into the production process and to propose promising spots for quality gates.59

Finally, we summarize our work and derive further research questions (section 5).60

2. State of the Art and Research61

2.1. Quality Management and Cause-Effect Relationships62

A production ramp-up entails special requirements to applied quality methods that consider CERs63

since data availability is low and parameter specification limits are often not fully defined. Therefore,64

traditional approaches such as Statistical Process Control, used to optimize processes by means of65

statistical methods, are not applicable. This limits the selection of applicable quality assurance methods66

primarily to those that do not rely on quantitative data [8], but rather on expert knowledge. Methods67

that are based on expert knowledge are henceforth referred to as expert-based methods.68

Various expert-based methods designed for the identification and analysis of CERs are available,69

although only few are suitable for complex manufacturing process chains with a high amount of CERs.70

Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA) are considered to be the71

most well-established among these [11].72

FTA generally follows the principle of building top-down fault trees with numerical information73

about the failure occurrences, which can be linked to logical gates [12]. The method was designed to74

analyze malfunctions of subsystems within a larger technical system. Another quality management tool75

that is often applied to CERs is the Ishikawa Diagram. However, this tool is solely a graphical way to76

depict CERs without yielding an actual underlying analysis [13].77

FMEA comprises an expert-based analysis framework for risk and failure prevention in technical78

domains with analogies to FTA [14] [12]. FMEA, unlike FTA, also contains qualitative information79

about the failures, such as correctional measures and failure severity estimations. Different derivatives80

have emerged from research and industrial projects [15] since the initial introduction of FMEA in 1949,81

while VDA 4.2 [16] distinguishes between the following main types: Process FMEA (PFMEA) and82

Design FMEA (DFMEA). DFMEA aims at analyzing the product design itself in terms of quality-critical83

aspects, while PFMEA was developed to investigate manufacturing or assembly processes and the84

potential failure CERs involved in these [17] [18]. Other than FMEA or FTA, which are both based on85

CERs of failures, the method presented in [6] provides a framework for the expert-based assessment86

of CERs of process characteristics without breaking it down into potential failures of these. Since a87

process characteristic may have multiple potential failures subordinated to it, the level of details in this88

method is insufficient for an RCA of failures and deviations in the complex LIB production. RCA is a89

term in quality management that generally refers to the reactive identification process of a failure’s90

root cause, wherein knowledge that has been gained during application of other quality methods, such91

as FMEA, can be utilized [19] [20]. The term FPA itself is not as common in industrial standards,92

however, it may be conducted based on FMEA-derived knowledge in the same way as an RCA.93

FTA and FMEA both can be represented as directed acyclic graphs [21] [22]. Therefore, both94

methods can be utilized as the starting point of a Bayesian Network. However, the qualitative95

information in FMEA also allows for a preventive failure consequence assessment without requiring96

much more effort than the creation of the plain failure network with its occurrence rates. This may97

add further value to the overall achievable process quality.98

2.2. Application of Bayesian Networks in relation to RCA and FPA99

The cognitive effort of manually conducting an RCA solely based on FMEA failure nets would100

increase with the complexity of the network and the amount of CERs involved [23]. Various approaches101

have tried to resolve this shortcoming by making use of different statistical models, each with its own102

advantages. Extending failure nets to Bayesian Networks has so far shown to be a promising concept103

[15]. While Bayesian Networks demonstrate a notable amount of robustness against deviations in their104

parameters [24], they nevertheless lack the direct modeling of uncertainty of expert statements. Other105
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potential systems for RCA, such as Credal Networks [25] or Bayesian Models [26], provide a framework106

to explicitly incorporate uncertainties. This, however, comes at the cost of higher computational107

complexity especially for large-scale models. Even medium-sized Credal Networks are reported to vastly108

exceed real-time inference [27]. As the size of the model built in this work is one order of magnitude109

bigger, Bayesian Networks are preferred due to their scalable inference algorithms.110

While an RCA is a reactive, backward-oriented analysis, FPA aims at reducing failures in the111

future, by analyzing on how individual failure events could propagate and trigger further failure cascades.112

Also, previous research has shown that Bayesian Networks are helpful means for this analysis [28] [29].113

Existing approaches to create Bayesian Networks either rely on quantitative production data114

[30] [31] or they have been designed specifically for simple process chains, and thus do not involve a115

proper knowledge acquisition procedure that could be carried out in a reasonable amount of time for116

complex process chains [32] [33] [34]. Additionally, none of these provide a framework for the continuous117

improvement of the knowledge base. Still, a Bayesian Network bears intrinsic potential since it can118

further improve itself and consequently also the FMEA by learning from failures that have occurred119

after its initial implementation. In the course of the process chain’s ongoing growth and maturation,120

this information can either be collected in the form of error protocols [18] or from user interactions121

when inquiring the network for the root cause of a present failure [32].122

Since LIB cell production consists of interdisciplinary process steps with different process experts123

in charge, another challenge arises: Mathematical inconsistencies between inter-process expert ratings124

are bound to occur. In order to ensure that the knowledge acquisition is carried out in a reasonable time125

while full consistency without contradictions is maintained, experts would need to consider all other126

ratings that have been made before. Since the human ability to consider multiple interdependencies at127

a time is limited [23], a validation algorithm is needed to support this process.128

2.3. Research Demand129

To summarize the current state of research, there is no holistic expert-based method that enables130

a combined way of creating structured knowledge along a complex manufacturing process chain that131

can subsequently be used for RCA or FPA. The idea of extending a failure network based on expert132

ratings to a Bayesian Network, although not new, is highly promising. It would provide an opportunity133

for probabilistic failure analysis even in cases in which only little or no measurement data is available.134

Failure information, which is gathered in the course of production advances, can be used to improve the135

network. Still, existing approaches do not provide sufficient ways for knowledge acquisition in complex136

processes. Considering hundreds of CERs in a process chain, unstructured knowledge acquisition for137

uncertain reasoning would be too demanding and could lead to contradicting information. In the138

following section, a new approach to overcome these shortcomings is presented.139

3. Methods140

Based on the current state of research, a new method was developed in order to fill the research141

gap for expert-based failure analysis in complex manufacturing process chains. A failure network from142

an FMEA in the battery manufacturing process chain is used as a basis to build a Bayesian Network,143

that can be utilized for RCA and FPA. Due to the advantages that FMEA has over FTA (as described144

in section 2), an FMEA was chosen to represent the basis for the Bayesian Network.145

Leaky Noisy-OR Gates are then used to reduce the number of probabilistic estimates that are146

needed to create a Bayesian Network and an evolutionary algorithm maintains consistency during147

knowledge acquisition. After the introduction of the statistical methods, the knowledge acquisition148

process followed in conducting RCA and FPA is explained in the following sections.149

3.1. Bayesian Networks150

From a statistical perspective, each failure surveyed in the FMEA is represented by a random151

variable with binary outcomes – either the failure has occurred or it hasn’t. When we denote the number152
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Figure 2. Translation of an FMEA into a Bayesian Network.

of failures in the FMEA as n, we can write all these variables inside a random vector X = (X1, . . . ,Xn).153

To represent all influences between the failures, the joint distribution P (X) describing the statistical154

relations between all variables has to be found. This is a difficult task when many variables are involved,155

so it requires a way to structure and simplify P (X).156

The key idea behind a Bayesian Network is to assume that the probability distribution of each157

variable depends only on a subset of other variables, its so-called parents Pa(Xi) = (X
(i)
1 , . . . ,X(i)

J ).158

Given these variables, the local distribution P (Xi |Pa(Xi)) is specified in the form of a conditional159

probability table. It shows the probability that Xi occurres for each of the combinations of the parents’160

states. If a variable does not have any parents, it is called a root node and solely the probability of Xi161

occurring is needed, which is referred to as its prior. Once all of these local distributions are specified,162

they can be multiplied to obtain the joint distribution P (X). In terms of graphical representation,163

the variables stand for nodes in a graph. Arcs exist between a node and its parents, showing their164

statistical dependency as shown in Figure 2. An in-depth description of Bayesian Networks is found in165

[35]. The trigger probabilities mentioned in the figure will be explained in section 3.2, but are shown166

here for the sake of completeness.167

Various forms of inference can be made on the completely specified network. Given information168

about the observed state of some failures, the evidence, the a-posteriori probabilities of all other failures169

are calculated. One particular use case of these predictions is RCA. This method is applied when a170

specific failure has occurred and the goal is to identify the cause of this failure, possibly given some171

more information about other failures. An example of this is given in section 3.6.172

The probabilities needed in these inferences can be calculated exactly or, to avoid the runtime-heavy173

computations, approximated or simulated. Due to the size of our failure network, we decided for174

simulations using the likelihood weighting algorithm [36]. Roughly speaking, this algorithm randomly175

generates a certain number of artificial observations from the network. Every failure that has evidence176

is forced to take its known evidence state. In a last step, the observations are weighted according to177

the conditional probability of their evidence to gain a non-biased result. The number of generated178

observations can be increased for more accurate results at the cost of longer computing times. Here,179

105 observations have shown to be a good compromise.180

3.2. Leaky Noisy–OR Gate181

As described above, the conditional probability of each variable given an arbitrary combination182

of its parents’ states has to be specified when building a discrete Bayesian Network. However, this183

number of probabilities rises exponentially in the number of its parents. For example, if a variable has184

10 parents, there are 210 = 1024 different combinations of parent states, and the probability of the185

variable occurring or not occurring has to be specified for each of these. [37] points out that when186

asking experts for that many estimates, the quality of the given estimates may decrease. To counteract187

this, a parametrized distribution can be used to calculate the conditional probability tables from fewer188

inputs given certain assumptions.189
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A common choice for such a distribution is the Noisy-OR Gate (N-OR) [38]. It makes it possible to190

generate the whole conditional probability table by supplying only one probability per variable, thereby191

reducing the exponential number of parameters to a linear one. The additional parameter is called192

the trigger probability p(i)j = P (Xi = 1 |X(i)
1 = 0, . . . ,X(i)

j = 1, . . . ,X(i)
n = 0). It gives the probability193

that Xi is active given that only one of its parents X(i)
j is active; or in the context of FMEA: The194

probability that a failure X(i)
j will trigger the failure Xi, given no other known or unknown failures195

occurred. We use Diez’s parameterization of N-OR as the research suggests it provides the best results196

when surveying trigger probabilities from experts [39].197

One of the assumptions of a N-OR is that there are no other causes for Xi than its parents [40],198

which are the causes surveyed from the process experts. However, it would be naive to assume that199

there are no other possible causes besides these. Therefore, a leak variable L(i) is introduced [41]. It200

represents all unknown causes of a failure and can be thought of as an additional parent with a trigger201

probability of 1. To calculate the prior probability of this variable, the gap between the prior probability202

of Xi surveyed within the FMEA and the marginal probability of Xi given all known causes can be203

utilized. The exact formula and its proof can be found in the appendix.204

3.3. Recommending Consistent Networks205

The fact that FMEA surveys prior probabilities even for intermediate failures makes it possible to206

check for so-called inconsistencies: A failure might happen to be over-explained by its causes, meaning207

that given the prior and trigger probabilities of the causes, the failure should occur more often than the208

experts expect. Formally, this means that the marginal probability of a variable given all its parents209

is higher than its specified prior probability. This occurs due to a mismatch in the variable’s prior210

probability and its parents’ prior and trigger probabilities. Note that this comparison is also dependent211

on the model choice as the marginal probability is calculated using the model. Consequently, the212

following procedure is only applicable to Bayesian Networks with N-OR assumption and needs to be213

altered if other models are used.214

As will be shown in section 4, there can be several interconnected inconsistencies within a network.215

To support the expert in resolving these, an algorithm has been developed that searches for a consistent216

network that is as close to the expert-provided failure network as possible. This suggestion is presented217

to the expert together with their own FMEA network to help remove potential inconsistencies.218

The optimization algorithm will search for consistent prior probabilities and trigger probabilities.219

However, in FMEA the expert does not directly give prior probabilities, but only occurrence rate classes.220

Thus, for the prior probabilities, we have to measure the distance of a suggested network to the expert221

network in the space of these occurrence rate classes. Table 1 shows the probability intervals associated222

with each occurrence rate class based on the suggestions of [16].223

Table 1. Prior probabilities associated with each occurrence rate class

FMEA Occurrence Rate Probability Interval

1 [0, 1 · 10−6]
2 (1 · 10−6, 50 · 10−6]
3 (50 · 10−6, 100 · 10−6]
4 (100 · 10−6, 1 · 10−3]
5 (1 · 10−3, 2 · 10−3]
6 (2 · 10−3, 5 · 10−3]
7 (5 · 10−3, 10 · 10−3]
8 (10 · 10−3, 20 · 10−3]
9 (20 · 10−3, 50 · 10−3]

10 (50 · 10−3, 1]
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The problem of searching the closest consistent network can be formulated as a constrained
optimization problem with quadratic loss:

argminp

∥∥∥∥ c

‖c‖
· (q(p)− qe)

∥∥∥∥2

constraint: the network generated by p has no inconsistencies.

Here, p is a vector containing the prior and trigger probabilities of a suggested network. As explained224

above, the vector q(p) contains the corresponding occurrence rate classes and trigger probabilities.225

qe contains the expert-given parameters. The vector c contains scalars that represent the costs to226

change the individual parameters. By utilizing c, different scales between occurrence rates (1 to 10)227

and trigger probabilities (0 to 1) can be taken into account. Moreover, c could be used to represent the228

uncertainty of expert ratings. Parameters the expert is not sure about can be changed at lower costs229

than high-confidence parameters.230

The constraint in the above optimization formula can be broken down into several smaller
constraints. A network has no inconsistencies if, and only if, the marginal probabilities are smaller
than the priors for all variables. This way, the consistency of each variable becomes an individual
constraint. Unfortunately, these marginals and their derivatives have no handy functional form, making
the optimization infeasible. To handle this issue, the constraints are considered differently: Instead of
forcing all suggestions to adhere to all constraints, the number of violated constraints nincon(p) is added
as penalty factor. A hyperparameter α is introduced to balance resolving the highest possible number
of inconsistencies and staying close to the expert estimate. Finally, we arrive at the following formula:

argminp

∥∥∥∥ c

‖c‖
· (q(p)− qe)

∥∥∥∥2
+ α · nincon(p) .

Due to the rough form of this optimization formula, we apply a genetic algorithm [42] to search231

for the optimal parameter vector p. Several customizations are made to take advantage of the network232

structure. When crossing over two suggestions, the parameters are first bundled by the variable they233

belong to (with trigger probabilities belonging to the variable they trigger) before conducting a uniform234

cross-over. During mutation, we use a uniform distribution to select a mutation shift for each parameter.235

For prior probabilities, the span of this distribution equals the width of the probability interval of the236

corresponding occurrence class in both the negative and the positive directions. Trigger probabilities237

are not allowed to grow above their expert-given value as increasing a trigger probability beyond this238

limit can never resolve an existing inconsistency while it always increases the distance to the original239

expert suggestion, resulting in a worse suggestion. Moreover, the probability of mutation is adapted240

depending on whether the population’s best suggestion has enhanced or become stuck during the241

previous iteration.242

3.4. Building a Bayesian Network out of an FMEA243

The whole processes of creating a Bayesian Network from expert knowledge described in the244

last sections is summarized in this section and visualized in Figure 3. In order to build a Bayesian245

Network, a proper knowledge base needs to be prepared. This is done by conducting the FMEA in the246

examined process chain by common FMEA procedure [14]. The procedures may slightly vary according247

to country or industry, so it is suggested to select one according to the individual requirements of the248

relevant company. When carrying out the FMEA, experts identify failures throughout the process249

chain and then try to graphically depict their CERs, which ultimately results in the failure net. After250

that, experts need to conduct the actual rating of the identified failure CERs in terms of their severity,251

probability of occurrence and detectability. Along with the occurrence rates, experts are surveyed252

about the above-mentioned trigger probabilities.253
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Figure 3. Process for creating a Bayesian Network from expert knowledge

During the FMEA, each process step is analyzed in chronological order. In order to mitigate the254

risk of inconsistencies, the present failure network with its prior and trigger probabilities is checked255

for consistency as outlined in section 3.3. Possible lacks in understanding can be revealed by high256

leak probabilities, and inconsistencies are resolved by the expert with the help of the aforementioned257

algorithm. Once the FMEA is completed and all trigger probabilities are attached accordingly, the258

full Bayesian Network is specified, which can be used for inferential inquiries. It can be continuously259

updated with new failures or other process knowledge.260

3.5. Conducting the Failure Propagation Analysis261

A Bayesian Network allows to simulate scenarios and interventions by altering some parameters262

and measuring the influence on the remaining parameters. In the following sections, three different263

experiments are described that each examine different aspects of the production process, which, as a264

whole, we refer to as FPA.265

3.5.1. Failure Propagation266

To analyze the possible propagation of failures, we use the Bayesian Network to simulate the267

spread of individual failures. For that, we provide the evidence that a specific failure has occurred by268

setting its probability to 1, and calculate the updated probabilities of all other failures. Most notably,269

we introduce a new failure called "Cell Rejected" which happens when the produced cell at the end of270

production fails at least one of 14 final product characteristic tests. The probability of this new failure271

can be interpreted as the individual cell’s scrap probability, or, on production level, as the production’s272

scrap rate. This allows to measure the influence of failures on the scrap rate of the process.273

3.5.2. Placement of Quality Gates274

Throughout the whole production process of a LIB cell, a cell may experience some minor deviations275

in process characteristics, which do not necessarily have a severe impact on the final cell. Others,276

however, may impact the final outcome and thus lead to a defective final cell. Checking for these277

failures by introducing quality gates at specific points of the production process may thus significantly278

reduce the scrap rate.279

To find out where it is most beneficial to set such gates, we add them to the Bayesian Network as280

additional nodes behind failure nodes. Their conditional probability table ensures that only cells without281

the failure will proceed. For each possible location, the influence on the scrap rate was measured, as in282

section 3.5.1. This method can be applied not only for placing single quality gates, but also for placing283
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P(X2|X1,X3)=0.12P(X1|X1,X3)=1

X4
P(X4|X1,X3)=0.11

P(X6|X1,X3)=0.91

X3
P(X3|X1,X3)=0

X5
P(X5|X1,X3)=0.01

Excluded Failure P(X3)=0

Detected Failure P(X1)=1
Prioritization of 

Quality Measures 

1 X6 = 90.84 %

2 X2 = 11.89 %

3 X4 = 10.98 %

4 X5 = 1.22 %

5 X5 = 1.01%

X6

X6

Figure 4. Bayesian Networks with evidence in node X1 (top) and nodes X1 and X3 (bottom).

a whole set of quality gates and measuring their influence. It should be noted that in this analysis, not284

only the location of the failure in the network, but also its prior have an impact on the reduction in285

scrap rate.286

3.5.3. Process-Wise Influence on Final Product Characteristics287

When examining the production on a higher level, it is beneficial to find out which process steps288

are most responsible for the scrap rate and other final product characteristics and hence have the289

highest cost-saving potential. To find this out, we simulate a failure-free process step by setting all290

root causes and leak nodes of that process step to a probability of 0 while all other steps have their291

usual failure rates. Note that failures in the selected process step can still occur if they are caused by292

root causes laying in other production steps. Then, as in the previous experiments, we measure the293

influence of such an ideal process on the scrap rate and several other final product characteristics.294

3.6. Conducting the Root Cause Analysis295

Once the engineer or expert has observed a failure in the process chain whose root cause could not296

be instantly determined, an RCA following the described method can be applied. The user can utilize297

the Bayesian Network to figure out the most likely reasons for the occurrence of the present failure.298

A simple example of this inference process is shown in Figure 4. Here, an exemplary failure network299

with six failures is given. X1 is the failure that initially occurred – thus, its probability is set to 1 –300

and whose reason is to be found (top). By using the probabilities returned by the network, experts301

decide to verify failure X3. They discover that X3 did not occur, and feed this back into the network302

by setting its probability to 0 (bottom). The network now shows that given this additional evidence,303

X6 is the most likely reason for X1 with a probability of occurrence of 90.84%. This interactive process304

is iterated until the root cause is found. A possible result of such an inference may be that X6 has305

occurred and caused X2 to happen, which in return triggered X1.306

4. Application307

The previously described method was applied in the LIB cell prototyping production at BMW308

Group in Munich, Germany. On the software side, APIS IQ-FMEA-L [43] was the software used309

to conduct the FMEA. Once exported, the failure network was transmitted to an R [44] script that310

executed the suggestion algorithm described in section 3.3 using the package GA [45]. During this, 77%311

of the occurence classes remained unchanged or were changed by at most ±1 and 73% of all trigger312

probabilities remained unchanged or were changed by at most ±0.2, which showed that the network313
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was mostly consistent. The final, consistent network was then transformed into a Bayesian Network314

using the package bnlearn [46] to perform the FPA and RCA.315

The Bayesian Network was then used to gather insights into the effects and possible mitigation of316

failures with the goal of reducing the production’s scrap rate. The key findings, which will be further317

explained in the following sections, are:318

• Lithium-ion battery cell production shows a network of highly interlinked CERs across several319

production steps (section 4.1).320

• Failures in early production steps trigger cascades of follow-up failures and thus have a high321

impact on the final product’s scrap rate (section 4.2).322

• Quality gates at the right place can stop those cascades and greatly reduce the scrap rate (section323

4.3).324

• Despite the interconnectedness, specific processes that are key drivers of each final product325

characteristic can be identified (section 4.4).326

Finally, we briefly describe the integration of the Bayesian Network into an interactive dashboard327

to allow engineers to perform an RCA in section 4.5.328

4.1. The Failure Network329

The network surveyed through FMEA consists of 432 failures across 20 process steps and 1,098330

CERs between them. It is shown in Figure 5 with the color-coded failures according to their associated331

process steps. This visualizes that failures are highly connected, even across several process steps, thus332

posing a complex task for failure mitigation. In numbers, 37% of all CERs connect failures across333

different process steps, and 29.5% of all CERs skip at least one process step, with 8 CERs connecting334

failures that are 18 steps apart. 219 failures do not have any incoming CER, meaning that they335

represent root causes. There are, however, failures with up to 32 incoming CERs.336

Besides the pure structure of the network, the surveyed occurrence rate classes and trigger337

probabilities can be analyzed in Figure 6. It can be seen that most failures occur at a rare or medium338

Incoming Goods Inspection
Vacuum Dryer
Winding
Pressing
Jelly Roll Cutting
Ultrasonic Welding
HiPo Test after Ultrasonic Welding
Insertion
HiPo Test after Insertion
Cap/Can Welding
HiPo Test after Laser Welding
Helium Leakage Test
Vacuum Dryer before Filling
Filling
Soaking in Oven
Precharge
Refill
Plug Welding
Formation
Finished Cell

Figure 5. Failure network where each node is a failure color-coded in its corresponding process step
(legend of process steps sorted in chronological production process order starting from the top)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2020                   doi:10.20944/preprints202012.0312.v1

https://doi.org/10.20944/preprints202012.0312.v1


Version December 7, 2020 submitted to Batteries 11 of 19

Trigger Probability

N
um

be
r 

of
 C

E
R

s

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0

0 1 2 3 4 5 6 7 8 9 10

Occurence Rate Class

N
um

be
r 

of
 N

od
es

0
20

40
60

80
10

0
12

0

Figure 6. Distributions of surveyed trigger probabilities and occurence rate classes in the network.

frequency, and only a few failures occur often. As for trigger probabilities, the whole spectrum of339

possible probabilities is used, but nearly every second trigger probability is equal or close to 1. This340

signifies that a single failure can cause a whole cascade of follow-up failures to spread through the341

network.342

4.2. Failure Propagation343

Using the method described in section 3.5.1, we found for 78% of the failures that if they occur,344

the scrap probability is doubled, and 26% lead to a scrap probability of 90% or higher, thus almost345

certainly rendering the cell defective. These critical failures do not only occur at the end of production,346

but also at early process steps. This means that even a failure in the first step (material inspection)347

can spread through the network, triggering follow-up failures, and lead to an almost certainly defunct348

cell at the end of production. We call this a failure cascade and analyze how to prevent it in the next349

sections.350

4.3. Quality Gates351

Obviously, there is a trade-off between detecting failures in early process steps, which saves more352

costs and material, and detecting failures in later process steps, where they can be detected more often353

as they subsume bigger failure cascades. Because of that, we report the top three potential places for354

quality gates per process step in Table A1 in the appendix. To be precise, we use the term "quality355

gate" with regard to the observation of the occurrence of one specific failure event". They are ranked by356

their relative reduction of scrap rate, as explained in section 3.5.2. For example, a bulged cell after refill357

is relatively simple to detect, and detecting and excluding these cells leads to a 5.56% lower scrap rate358

compared to the compromised cells going undetected.. Similar failures can be found for each process359

step, reducing the scrap rate greatly.360

To get a first impression of the scale of possible scrap reduction, we iteratively selected the best361

quality gate per process step and measured how much this set of quality gates reduces the scrap rate362

(except for the last step as it comprises tests and no more actual production processes). Combined,363

the 19 selected quality gates lead to a 26.53% lower scrap rate, compared to the case without quality364

gates. This reduction can be seen on the lower end of what 19 gates can achieve, as the strategy of365

iteratively selecting the gates is not optimal. The emerging optimization problem can be remedied366

with the Bayesian Network, but is outside the scope of this paper. However, the accuracy of those367

predictions is only as accurate as the ratings from the experts they are based on.368
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Figure 7. Possible relative reduction of failure rate for several final product characteristics given
that a certain process runs failure-free. (o.s.l. = outside the specification limits)

4.4. Simulation of Key Drivers for Final Product Characteristics as an FPA369

To analyze the failure network on a higher, process-wise level, we applied the methods described370

in section 3.5.3. As seen in Figure 7, we found that despite the highly interconnected failure network,371

some final product characteristics can be traced back to particular production steps as almost their372

sole drivers. For this, we can look at the columns in Figure 7. For example, a self-discharge in the final373

cell is mainly caused by the process step of ultrasonic welding, where failures such as scorched electric374

conductors or cracked electrode foils can occur. When viewing the rows in Figure 7, we can see that375

improvements in the formation can improve nearly all final product characteristics, making this process376

a highly interesting candidate for process optimization.377

4.5. Implementation and User Interface for RCA378

In addition to the forward-oriented approach of an FPA, the Bayesian Network can also be used to379

support an RCA for produced cells with detected failures, where the exact root cause is not instantly380

identifiable and thus requires a more specific methodological proceeding. For that purpose, we created381

a user interface and deployed it on a server as an R-Shiny [47] application.382

The user interface for support in an RCA is shown in Figure 8. In this exemplary case, the user383

initially noticed that the leak rate in the helium leakage test was too high. They confirmed that the384

cover was not leaky and the RCA suggested to check the welding seam. The user noticed that the385

welding seam was leaky and the RCA in Figure 8 now shows the possible causes for this, with the seam386

being burnt during welding the cover ranking highest at an a-posteriori probability of 82.53%.387

The user can interact with the tool by clicking either the check mark or the cross in the suggestions388

to confirm or dismiss a failure. Moreover, they can scan the ID of a cell at hand to fill in information on389

some possible failures automatically based on its recorded data and passed quality gates. This provides390

an RCA fitted to the individual cell. As additional information, besides the most likely causes, the391
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Figure 8. User Interface for RCA.

most likely effects triggered by the given failures can be reviewed for a deeper process understanding.392

All of the information mentioned is also visualized in an interactive graph similar to that in Figure 4.393

In future updates, information surveyed in the FMEA on how to detect and rectify individual failures394

can be shown to provide further assistance.395

5. Conclusion and Prospect396

This paper presents an FMEA-based method for creating a large-scale knowledge database on397

possible failures during production from experts, which is transformed into a Bayesian Network under398

N-OR assumption for backward-oriented RCA and forward-oriented FPA. We used the gathered399

knowledge to gain insights into where quality improvements and quality gates can lead to a substantial400

reduction of scrap rate. This method was applied in a multi-stage LIB cell prototype production at401

BMW Group in Munich, Germany.402

We found that battery production features a highly interlinked network of failures and that single403

failures may propagate and trigger further failure events in the network, which might be an explanation404

for the high scrap rates in present production. To mitigate these failure chains, we analyzed the most405

promising locations for quality gates. An exemplary set of just one gate per process step is estimated406

to reduce the scrap rate by 26.53% compared to process steps without quality gates. Moreover, we407

used the Bayesian Network to gain a more high-level view on the process, enabling decision makers and408

process managers to understand which process steps allow for enhancements on which final product409

characteristics.410

Besides the above-mentioned insights, we found it highly beneficial to transform the rather static411

FMEA results into an interactive tool for RCA. It makes the combined knowledge of several experienced412

process experts accessible especially to new and less experienced staff and automatically adapts to each413

individual produced battery cell. Bayesian Networks are a scalable and easily interpretable way to414

represent knowledge-based failure networks mathematically and to perform inference. Once production415

data becomes available, the expert-based Bayesian Network can be used as a starting point to be416

advanced by the data. This makes it a support tool that can accompany the development from early417

ramp-up phases to mature series production.418
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As outlined earlier, the currently used Bayesian Network does not take uncertainties of expert419

statements into account. Once fast inference algorithms for more complex models like Credal Networks420

become available, it will be beneficial to include this information. Additionally, as the production421

is currently still in ramp-up phase, the model built in this work could not yet be tested against422

observational data. Hence, the above-mentioned insights should only be treated as starting point for423

further research and process optimization. Once the production yields sufficient data, we intend to424

quantify the model’s performance and use the data to iteratively refine its parameters.425
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Abbreviations438

The following abbreviations are used in this manuscript:439

440

CER Cause-Effect Relationships
DFMEA Design Failure Mode and Effects Analysis
FMEA Failure Mode and Effects Analysis
FPA Failure Propagation Analysis
FTA Fault Tree Analysis
LIB Lithium-Ion Battery
MDPI Multidisciplinary Digital Publishing Institute
N-OR Noisy-OR
o.s.l. Outside the specification limit
PFMEA Process FMEA
RCA Root Cause Analysis

441

Appendix A. Proof of Leak Probability442

Let Xi be an arbitrary node with existing parents Pa(Xi) and let P (L(i) = 1) be the (unknown)443

prior probability of the leak variable L(i) of Xi. We can find the value of P (L(i) = 1) that is required444

to bring the marginal probability of Xi to a predefined value P (Xi = 0) as follows:445
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P (Xi = 0) =
∑
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Xi = 0 |Pa (Xi) ,L(i)
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Pa (Xi) ,L(i)
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=

∑
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=

∑
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∑
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(
J∏
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(
1− p(i)j

)X
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j

)
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Appendix B. Quality Gate Evaluation446

Table A1. Estimated relative reduction in scrap rate when a quality gate is introduced to check
for the given failures. The table shows the top three failures per process step. (o.s.l. = outside the
specification limit)

Process Step Failure Name Rel. Reduction

Incoming goods
inspection

Wrong material composition of cathode 0.507%
Insufficient adhesion 0.447%
Wrong material composition of anode 0.369%

Vacuum dryer
Excessive moisture in the cathode 0.222%
Excessive moisture in the anode 0.219%
Anode coil diameter is too large 0.202%

Coating defects 0.905%
Winding Telescoped jelly roll 0.475%

Detaching solvent 0.450%

Thickness o.s.l. 1.355%
Pressing Force increase o.s.l. 0.254%

Pressing time o.s.l. 0.239%

Jelly roll cutting
Cutting burr is too large 0.613%
Film layers are torn 0.306%
Particles adhere to cut edge 0.229%

Ultrasonic welding
Anode height o.s.l. 2.079%
Cathode height o.s.l. 2.016%
Particles on surface 1.110%
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Process Step Failure Name Rel. Reduction

HiPo test after
ultrasonic wielding

Testing voltage is set incorrectly 0.147%
Dew point o.s.l. 0.077%
Isolation resistance is too low 0.053%

Isolation foil has holes 0.134%
Insertion Insertion cannot be carried out 0.115%

Insertion power o.s.l. 0.102%

HiPo test after
inseration

Isolation resistance is too low 0.099%
Dew point o.s.l. 0.063%
Testing voltage is set incorrectly 0.028%

Point of welding is scorched 0.611%
Cap/Can welding Weld seam is leaking 0.469%

Laser is stopped during welding process 0.145%

HiPo test after laser
welding

Dew point is below specification limit 0.135%
Testing voltage is set incorrectly 0.070%
Isolation resistance is too low 0.053%

Helium density test

Leakage rate is too high 2.624%
Burst membrane is leaking 1.553%
Given criterium of leaking rate for o.k./not o.k. does
not correspond to the applied helium overpressure

0.371%

Vacuum dryer
before filling

Remaining moisture is too high 1.411%
Temperature o.s.l. 0.292%
Retention time o.s.l. 0.208%

Volume of dosage o.s.l.s 0.982%
Filling Weight o.s.l. 0.614%

Bursting membrane is damaged 0.506%

Soaking in oven
Electrolyte was not soaked up sufficiently 1.184%
Retention time o.s.l. 0.199%
Cell is bulged after soaking 0.064%

Loading capacity o.s.l. 2.740%
Precharge Voltage at rest is decreasing continuously 1.648%

Inner resistance o.s.l. 1.234%

Cell is too bulged 5.563%
Refill Weight o.s.l. 0.952%

Dosing volume o.s.l. 0.672%

Point of welding is leaking 1.349%
Plug welding Area of welding seam is polluted 0.744%

Welding seam resistance is too low 0.659%

Cell is too bulged 10.644%
Formation Capacity o.s.l. 5.405%

Execution is interrupted 2.886%

Lithium plating appears 25.182%
Finished cell Lifetime is reduced 21.211%

Cell capacity o.s.l. 17.945%
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