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Abstract

The main bottleneck when performing computational fluid dynamics (CFD) simulations of
combustion systems is the computation and integration of the highly non-linear and stiff
chemical source terms. In recent times, machine learning has emerged as a promising tool to
accelerate combustion chemistry, involving the use of regression models to predict the
chemical source terms as functions of the thermochemical state of the system. However,
combustion is a highly nonlinear phenomenon, and this often leads to divergence from the
true solution when the neural network representation of chemical kinetics is integrated in
time. This is because these approaches minimize the error during training without
guaranteeing successful integration with ordinary differential equation (ODE) solvers. In this
work, a novel neural ODE approach to combustion modeling is developed to address this
issue. The source terms predicted by the neural network are integrated during training, and
by backpropagating errors through the ODE solver, the neural network weights are adjusted
accordingly to minimize the difference between the predicted and actual ODE solutions. It is
shown that even when the dimensionality of the thermochemical manifold is trimmed to
remove redundant species, the proposed approach accurately captures the correct physical

behavior and reproduces the results obtained using the full chemical kinetic mechanism.

Keywords: neural ordinary differential equations, machine learning, chemical kinetics.

Introduction

Chemical kinetic mechanisms for practical hydrocarbons fuels can contain hundreds of
species and thousands of chemical reactions that describe the evolution of the species in time.
Solving for these species in space and time is computationally challenging due to the wide

range of spatio-temporal scales over which turbulent combustion occurs. Therefore, solving
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chemistry remains the main bottleneck in computational fluid dynamics (CFD) simulations
of combustion systems. For practical engine-size geometries of interest to the automotive and
aero-propulsion applications, very simplified reduced or skeletal kinetic mechanisms are
typically used to maintain computational tractability. However, these models sacrifice

accuracy and predictive capability.

Several studies have applied machine learning to solve these issues. Christo et al. [1] used
artificial neural networks (ANNs) to represent a 4-step H,/CO, chemical mechanism to
perform simulations of a turbulent jet diffusion flame. Sen at al. [2] employed ANNs for
modeling chemical kinetics by using them to predict the subgrid species source terms in the
large eddy simulation linear eddy model (LES-LEM). In addition to these studies, neural
networks have also been used to predict the chemical source terms of data-derived scalars
within low-dimensional manifolds [3-5]. More recently, Ranade et al. [6] used neural
networks to capture the process of pyrolysis of complex hydrocarbons, and Wan et al. [7]
applied convolutional neural networks to the direct numerical simulation of a turbulent non-
premixed flame interacting with a cooled wall. The overall methodology of source term
predictions using machine learning methods in these previous studies is as follows. First, data
is generated by running a simple problem using a complex chemical mechanism. By learning
from the examples presented in the dataset from lower-dimensional simulations, the machine
learning model learns to predict the source terms as functions of the thermo-chemical state. If
the mean squared error between the predicted and actual source terms are below an acceptable
threshold with limited scatter on the parity plots, it is assumed that the neural network can be
coupled with a numerical solver and integrated to recover the true solution. However, this is
seldom the case in practice. Oftentimes, the predicted solution diverges from the true solution
and becomes unstable when coupled with a numerical solver. Since combustion is a highly
nonlinear phenomenon, even small errors in the predictions of the source terms, especially if

occurring during an early time instance, can lead to very erroneous solutions.

In this study, a different approach toward machine learning-based calculation of chemical
kinetics is followed. As opposed to separating the learning and numerical validation phases,
the approach used in the study combines them. This novel approach based on a recent class

of deep learning models known as neural ordinary differential equations (NODE) [§8],
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calculates the loss function based on the actual and predicted solutions. Thus, the neural
network directly learns to predict the source terms that lead to an accurate ODE solution. A
description of the NODE approach and demonstration studies for a canonical homogeneous
auto-ignition problem are presented in this paper. The paper ends with some directions for

future studies.

NODE approach for chemical kinetics

This study uses NODZEs to learn to predict the evolution of chemical species. During training,
an ANN is used to learn the chemical source terms of species as functions of the temperature
and species mass fractions. A neural network is a machine learning model that is loosely
inspired by biological neural networks. It consists of successive layers that are obtained by
performing linear operations and non-linear transformations of the preceding layers. The

value of the jth hidden layer is given by:

W = f(h ='W/ + b)) (1)
In Eq. (1), W and b represent the weights and biases of the neural network, and fis the
activation function. These weights and biases are initialized using a desired probability
distribution, and are progressively tuned during training. In other words, the process of
training a neural network is an optimization problem, where the goal is to find the weights
and biases that minimize a loss function of interest. For regression-type problems, this loss
function is typically a measure of the error between the predicted and actual values of the

target variable.

The conventional practice when developing machine learning models for reacting flow
simulations starts by generating data that covers a space of interest. While many earlier proof-
of-concept studies performed training and validation studies using the same CFD
configuration, more recent studies have generated data using approaches such as stochastic
micro-mixers [7] and a variant of the pairwise mixing stirred reactor [5, 9]. Using these simpler
and less expensive simulations, snapshots of data are collected at different points during the
simulations. This data is used to build a database that consists of various thermochemical
species and their corresponding source terms. After performing some process of manifold

dimensionality reduction, either by combining or eliminating variables, a neural network is
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trained to learn the source terms as closed-form functions of the thermochemical state by
using the database generated from inexpensive simulations as an example. After training, the
neural network library is coupled with a numerical solver to compute the source terms during
unsteady CFD simulations. The problem is one of finding the weights and biases, and

minimize the following loss function:

. ~ 2
L= |lwy - @yl 2)
In the above equation, wy refers to the chemical source terms obtained from the full chemical
mechanism, while @ corresponds to the chemical source terms predicted by the machine

learning model. On the other hand, the approach used in this study differs in that it involves

finding the weights and biases that minimize the following loss function:

L=|¥-9| 3)
In Eq. (3), ¥ and P are vectors containing the solutions to the thermo-chemical system of
equations, as obtained from the full chemical mechanism and NODE, respectively. As such,
the loss function in Eq. (3) measures the difference between the actual and predicted
solutions.. This is in contrast to Eq. (2) where the loss indicates how well the neural network
predicts the chemical source terms. The NODE approach used in this study was implemented
in Julia Language [10] using native packages as well as modules and functions developed in-

house.

To train the neural network by minimizing the loss function described in Eq. (3), the

. . } . . dL
sensitivity of the ODE solution with respect to the neural network weights and biases, W and

dL . o . : .
e need to be computed. Calculating these quantities invariably involves calculating the

.. . . . . av ay
derivatives of the ODE solution with respect to the weights and biases, W and o There are

a number of ways in which this has been done in the literature. One approach involves a
method known as adjoint sensitivity analysis [11], which involves framing an auxiliary
ordinary differential equation whose solution gives the derivatives of ¥ with respect to the
neural network parameters. The solution can be obtained by solving this auxiliary ODE
backward in time [8], but this approach suffers from extreme errors under certain conditions.

The ODE can also be solved by performing multiple forward passes [12, 13], a process that
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can be made more efficient by using a checkpointing scheme [14]. In this study, due to the
small size of the neural networks, the sensitivity is calculated using a forward mode automatic
differentiation [15] using the implementation in Julia’s ForwardDiff,jl package [16].
Numerical integration was performed using an A-L stable stiffly-accurate 4th order ESDIRK
method from Julia’s DifferentialEquations.jl library [17]. The neural networks were
optimized using an in-house Julia code, which implements a variant of the Levenberg-

Marquardt algorithm [18]. The NODE approach used in this study is illustrated in Fig. 1.

Initial condition: Initial condition:
set T and 9, set T and &,
——

\ Arrhenius Neural network
source terms

" numerical | |\ dL dL 1: ' ndmerigal |
__solver aw'ap | ._powver
N N N 4
\
- 12
Ground truth L=|¥-9l, Predicted
solution: C—— solution:
Y at various ¢ P at various ¢

Figure 1. Illustration of machine learning approach used in this study.

Results

As an initial validation study to test the capabilities of NODE to accurately capture chemical
kinetics, the problem of a simple homogenous zero-dimensional reactor at constant pressure
is considered in this study. This system has no convective and diffusion terms, and is described
by:

7 = @ (¥) 4)
In this work, @y, which is obtained from chemical mechanisms, is replaced @y =
N(¥, W,b) where N represents a neural network. Separate neural networks, each consisting

of a single layer and 10 neurons, were trained for each species. In this study, the results are
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based on hydrogen-air combustion at 1 atm. The composition space used for training of the
neural network involved running the reactor to steady-state. The initial temperature, 7;, was
varied between 950 K and 1200 K, while the equivalence ratio was varied from 0.5 to 1.5. The
chemical kinetic mechanism used for training comprised of 9 species and 19 chemical
reactions [19]. Before training, the species H, HO,, and H,0, were excluded due to these
species having the lowest maximum mass fractions. This led to a thermochemical vector of

Y= (T,Hz, 02, OH, 0,H20,N2).

Figures 2—4 show comparisons of the solutions obtained from NODE and those obtained
using the full chemistry mechanism. In the figures, the plots on top are for the temperature
and reactants, which exhibit monotonic behavior in time. At the bottom, the radicals O and
OH, and the product of combustion, H,O, are shown. The scalars in the top plots are
normalized because temperature exists on a different scale from the species, while the plots at
the bottom are raw values. In all the plots, the log values of the scalars are displayed. The

lines represent the actual solution, while the symbols represent the predicted solution.
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Figure 2. Comparison of NODE and chemical mechanism solutions at @; = 0.5. The lines

represent the actual solution, while the symbols represent the predicted solution.

Figure 2 shows the evolution of the chemical species at a lean condition of @;,= 0.5, at various
initial temperatures, 7;. From the figures, it can be seen that NODE captures the correct

behavior under different conditions. The trends for monotonically increasing or decreasing
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scalars (T, H,, and O,) are captured, and so are for the intermediate species. In general, there
is a lag between the zone of rapid O, and H, consumption, with the oxidizer lagging behind
the fuel. NODE captures this behavior very well. The most visually discernable error is
underprediction in the final temperature, but the maximum error that occurs for temperature
is only about 3.0%. Overall, the average mean absolute error normalized by the mean values
of the species (AMAE) over the temperatures considered in the figure are 7.14x10*, 4.72x10
32.18x107,9.14x107, 8.51x107, and 1.17 x10? for T, H,, O,, O, OH, and H,O, respectively.
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Figure 3. Comparison of NODE and chemical mechanism solution at @; = 0.9. The lines

represent the actual solution, while the symbols represent the predicted solution.

Figure 3 shows the evolution of the chemical species at a slightly lean condition of @; = 0.9,
at various initial temperatures. Once more, it can be seen that NODE captures the correct
behavior. While the final temperature is once more underpredicted by 1.3% on average, the
MAE in the prediction of the species is 2.51x10%, 3.40x107, 9.72x10%, 1.00x10?, and
1.44x10? for H,, O,, O, OH, and H,O, respectively. Figure 4 shows the same information as
Figs. 2 and 3, but at a rich condition of @; = 1.5. Here, the consumption of the fuel, H,, lags
behind the consumption of the oxidizer. This phenomenon is well-captured by NODE.
Overall, the AMAE of the species over the temperatures considered in the figure are 8.70x10
4 2.76x107, 7.34x107%, 9.20x107, 9.96x107?, and 1.55 x10? for T, H,, O,, O, OH, and H,0,

respectively.
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Figure 4. Comparison of NODE and chemical mechanism solution at @; = 1.5. The lines

represent the actual solution, while the symbols represent the predicted solution.

Figure 5 shows the ignition delay as a function of the initial equivalence ratio, @;, at different

levels of initial temperature, 7;. The red symbols are the actual values while the blue circles

are the predicted values. The ignition delay is defined as the time when the maximum rate of

temperature increase occurs during combustion. At lower values of T}, the ignition delay

profile has a u-shaped profile with respect to the equivalence ratio. At higher values of T,

however, the ignition delay increases monotonically with equivalence ratio. These behaviors

of ignition delay under different conditions are accurately captured by NODE.
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Figure 5. Ignition delay as a function of 7; and ;.
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Finally, Fig. 6 shows a comparison of the time taken to advance the solution to steady-state
using NODE and the full chemical mechanism with initial conditions selected across various
values of T;and @;. The heights of the bars in the plot represent how long the different methods
for calculating source terms take to reach the final time step. Even for a small mechanism
involving hydrogen-air combustion used in this study, NODE leads to a speed-up of about
2.3, compared to using the full mechanism that uses the Arrhenius reaction rates. It can,
therefore, be expected that for higher hydrocarbon fuels with several species and chemical
reactions, much more significant savings can be achieved with the NODE-embedded
chemical kinetic solver. Future work will involve validation of this approach for complex
hydrocarbon fuels, and demonstration in three-dimensional CFD simulations of internal

combustion engines and gas turbine combustors.

0.0 -
NODE full chemical mechanism

Figure 6. Time taken to reach steady-state by NODE and chemical mechanism.

Conclusion

In this study, a novel neural ordinary differential equation approach to predicting the
evolution of chemical species in combustion systems was presented. The approach employs
a neural network to learn the appropriate source terms that lead to the correct ODE solution.
By calculating the sensitivities of the ODE solution to the neural network parameters, the
weights and biases of the neural network were progressively adjusted to obtain an accurate
solution. The NODE approach was used to learn the source terms for a zero-dimensional

homogeneous constant pressure reactor with hydrogen-air combustion. The results showed
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that NODE was able to capture the correct time evolution for all species under the conditions
considered. It was also shown that the ignition delay, and its variation as a function of initial
equivalence ratio and temperature, was well predicted. Lastly, the results demonstrated that
NODE was about 2.3 times faster than full hydrogen-air chemical mechanism, indicating its
promise for providing even more significant savings if applied to higher hydrocarbon fuels
with more complex chemistry and larger kinetic mechanisms. Future work will involve
validation of the approach for complex hydrocarbon fuels, and demonstration in three-

dimensional CFD simulations of internal combustion engines and gas turbine combustors.
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