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This document contains additional information that we used in conducting the simulation and experiments.  

Table 1 - Commonly used nanoparticles (left) and base fluids (right) used to synthesize nanofluids [4] 

Nanoparticle Materials 
Base Fluids 

Aluminium Oxide - Al2O3 Ethylene Glycol 

Copper Oxide - CuO Ethylene Oxide 

Iron(III) Oxide - Fe2O3 Ethanol 

Magnesium Oxide - MgO Glycerol 

Silicon dioxide - SiO2 Kerosene 

Titanium dioxide - TiO2 Toluene 

Zinc oxide - ZnO Water 

Silver - Ag  

Aluminium - Al  

Gold - Au  

Copper - Cu  

Iron - Fe  

MWCNTs  

 

 

Table 2 - Specific heat capacity models 

Model Expression Remarks 
𝛗 

(%) 

𝐝𝐩 

(nm) 

T 

(oC) 

Pak 

and 

Cho 

(1) 

cp,nf =  cp,f(1 − φ) + cp,pφ  
Theoretical 

Equation 
- - - 

Xuan 

and 

Roetzel 

(2) 

 

cp,nf =
ρf cp,f (1 − φ) + ρp cp,p φ

ρnf

 

  

Theoretical 

Equation 
- - - 

Sekhar 

and 

Sharma 

(3) 

 

cp,nf =  cp,f 0.8429 (1 +
Tnf

50
)

−0.3037

(1 +
dp

50
)

0.4167

(1 + φ)2.272 

  

Empirical 

Equation 
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Table 3 - Thermal conductivity models 

 

Model Expression Remarks 
𝛗 

(%) 

𝐝𝐩 

(nm

) 

T 

(oC

) 

Pak and 

Cho (1) 
knf = kf (1 + 7.74 φ) Empirical Equation - 13 25 

Brugge

man 

(4)  
 

knf = 0.25 kf [(3φ − 1)
kp

kf

+ [3(1 −  φ) − 1]

+ √∆B] 

√∆B= [(3φ − 1)
kp

kf

+ (3(1 − φ) − 1)]

2

+ 8
kp

kf

 

 

Theoretical Equation 

Valid for high-volume concentrations, 

spherical particles and random 

distributions. 

No limitation on the concentration 

For low concentrations, the Bruggeman 

model shows almost the same result as the 

Maxwell–Garnett’s model. 

- - - 

Mintsa 

et al. 

(5) 
 

knf = kf (1 + 1.72φ) Empirical Equation 0-18 

36, 

46 

 

20-

50 

Hamilt

on–

Crosser 

(6) 
 

knf = kf

kp + (n − 1)kp + (n − 1)φ(kp − kf)

kp + (n − 1)kf + φ(kf − kp)
 

Theoretical Equation 

Valid for spherical and non-spherical 

particles. 

For spherical nanoparticles,   n = 3 (also 

called Wasp or Maxwell Model) 

For cylindrical nanoparticles, n = 6. 

0-4 - - 

Lu and 

Lin (7) 
 

knf = kf (1 + 2.25φ + 2.27φ2) 
Theoretical Equation 

Valid for spherical nanoparticles 
- - - 

Yu and 

Choi  

(8) 
 

knf = kf

kp + 2kp + 2φ(kp − kf)(1 + β)3

kp + 2kf + φ(kf − kp)(1 + β)3
 

β =
h

dp ∗ 0.5
 

Nanolayer thickness,  h =
1

√3
(

4 Mf

ρf NA

)
1/3

 

 Avagadro constant,  NA = 6.023 × 1023 per mol 

 Mf = Molar mass of fluid (
g

mol
) 

kpe = kp

[2(1 − γ) + (1 + β)3(1 + 2γ)] γ

−(1 − γ) + (1 + β)3(1 + 2γ)
 

γ =
klayer

kp

 

Theoretical Equation 

Modified Maxwell Model that considers 

nanolayer effect. 

Valid for spherical nanoparticles. 

Suggests the new approach that adding 

smaller (<10-nm diameter) particles 

could 

be potentially better than adding more 

particles 

< 20 - - 

Chon 

et al.  

(9) 
 

knf

= kf (1

+ 64.7 φ0.746 (
df

dp

)

0.369

(
kp

kf

)

0.746

Pr0.9955Re1.2321) 

Re =
ρf kB T

3 π μf
2lf

  Pr =
cp,f μf

kf
 

lf = fluid mean free path 

 kB = 1.38 × 10−23 m2 kg s−2K−1 

 

Empirical Equation 

Considers effect of Brownian motion of 

the nanoparticles in the nanofluid 
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Table 4 - Viscosity models 

Model Expression Remarks 
𝛗 

(%) 

𝐝𝐩 

(nm) 

T 

(oC) 

Einstein (10) µnf = (2.5φ +  1)µf 

Theoretical 

Equation 

Spherical Particles 
≤ 2 - - 

Ho et al. (11) µnf = µf (1 + 2.93φ + 222.4φ2)  Empirical Equation 0–4 33 15-40 

Maiga et al. 

(12) 
µnf = µf (1 + 7.3φ + 123φ2)  Empirical Equation 0-5 13, 28 25 

Batchelor (13) µnf = µf (1 + 2.5φ + 6.2φ2)  

Theoretical 

Equation 

Spherical Particles 

- - - 

Nguyen et al. 

(14) 
µnf = µf (1 + 0.025φ + 0.015φ2)  

Empirical Equation 

Spherical Particles 
1-9.4 36, 29 20-75 

Brinkman (15) µnf = µf(1 − φ)−2.5 

Theoretical 

Equation 

Spherical Particles 

< 5 - - 

Masoumi et al. 

(16) 

µnf = µf +  
ρp VB dp

2

72 C δ
 

VB =
1

dp

(
18 kB T

π ρp dp

)

1
2

 

 

 kB = 1.38 × 10−23 m2 kg s−2K−1 

 

C = µf
−1[(C1 dp +    C2)φ + (C3 dp +   C4)] 

C1 =  −1.133 × 10−6 

C2 =  −2.771 × 10−6 

C3 =  9 × 10−8 

C4 =  −3.93 × 10−7  

Empirical Equation  0-5 28, 36 22-65 
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