Article

Linking soil CO₂ efflux to individual trees: size-dependent variation and the importance of the Birch effect

Jonathan S. Schurman 1,2 and Sean C. Thomas 1*

1 Institute of Forestry and Conservation, University of Toronto, 33 Willcocks, Toronto Ontario, Canada M5S 3B3, sc.thomas@utoronto.ca
2 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic, schurman@fld.czu.cz
* Correspondence: sc.thomas@utoronto.ca; Tel.: 01-416-978-1044

Abstract: Soil CO₂ efflux (F_CO₂) plays a dominant role in the terrestrial carbon (C) cycle but interpreting constraints on local observations is impeded by challenges in disentangling belowground CO₂ sources. Trees contribute most C to forest soils, so linking aboveground properties to F_CO₂ could open new avenues to study plant-soil feedbacks and facilitate scaling; furthermore, F_CO₂ responds dynamically to meteorological conditions, complicating predictions of total F_CO₂ and forest C balance. We tested for proximity effects of individual Acer saccharum Marsh. trees on F_CO₂, comparing F_CO₂ within 1 m of mature stems to background fluxes before and after an intense rainfall event. Wetting significantly increased background F_CO₂ (6.4±0.3 vs. 8.6±0.6 s.e. μmol CO₂ m⁻² s⁻¹), with a much larger enhancement near tree stems (6.3±0.3 vs. 10.8±0.4 μmol CO₂ m⁻² s⁻¹). F_CO₂ varied significantly among individual trees and post-rain values increased with tree diameter (with a slope of 0.058 μmol CO₂ m⁻² s⁻¹ cm⁻¹). Post-wetting amplification of F_CO₂ (the ‘Birch effect’) in root zones often results from the improved mobility of labile carbohydrates and further metabolism of recalcitrant organic matter, which may both occur at higher densities near larger trees. Our results indicate that plant-soil feedbacks change through tree ontogeny and provide evidence for a novel link between whole-system carbon fluxes and forest structure.

Keywords: Birch effect, carbon flux, ecosystem function, intraspecific variation, plant-soil interaction, soil respiration, tree ontogeny

1. Introduction

Soil carbon dioxide efflux (F_CO₂) is the predominant contributor of CO₂ to the atmosphere from terrestrial ecosystems, with the balance between net photosynthesis and F_CO₂ largely determining whether a given ecosystem constitutes a net carbon (C) source or sink [1]. Recent decades have seen a shift in how F_CO₂ is conceptualized—from a flux largely reflecting ecosystem-specific decomposition and its response to soil temperature and moisture, to a process highly influenced by active and mutual exchanges between plants and soil biota [2]. Such feedbacks between plants and soil biota play a stabilizing role in numerous ecosystem functions and allow for plant regulation of biogeochemical cycles [4], but the specific role of biota is often neglected in studies of F_CO₂ conducted at higher levels of aggregation, often because belowground sources are difficult to disentangle, and because abiotic signals, especially temperature, may be more clearly expressed on spatially integrated data. As a result, the representation of plants and associated biota in ecosystem process models remains rather simplistic and temperature generally stands as the most common driving variable considered in ecosystem models of soil C processes [5–7]. However, without deeper insight into the biotic drivers of soil F_CO₂, it will remain extremely challenging to link localized observations to...
broader scale, ecosystem-level fluxes and to develop process-driven predictions of future \(F_{CO2} \) dynamics \[2,4\].

Studies quantifying \(F_{CO2} \) in forest ecosystems commonly find high spatial variability that is not readily explained by edaphic or other environmental variables \[e.g., 8–10\]. Spatial patchiness in \(F_{CO2} \) partially derives from the poor mobility of belowground C inputs through the soil matrix, with further temporal variability contributed by the responses of autotrophs and heterotrophs to short timescale (hourly to daily) meteorological variability \[11,12\]. A prominent phenomenon exemplifying the spatiotemporal complexity of localized \(F_{CO2} \) involves the dramatic spikes in \(F_{CO2} \) that follow rainfall events, also known as the ‘Birch effect’ \[13,14\]. The Birch effect is commonly attributed to the sudden mobilization of labile carbon inputs \(e.g., \) energy-rich carbohydrates from litter and root exudates \(\) by rainwater, which primes microbial assemblages, allowing further decomposition of lower-quality organic matter, from macroscopic necrotic tissues to humified organic matter \[14\]. Increased osmoregulatory activity and rapid turnover of lysed microbes may also contribute to enhanced C fluxes \[14\]. Linking biotic sources of \(F_{CO2} \) to the broad-scale outputs of ecosystem models may therefore require attention to high temporal variability in meteorology and could further benefit from spatially explicit consideration of C inputs \[15,16\].

\(F_{CO2} \) depends directly on primary productivity in a variety of vegetated systems, and, surprisingly, productivity effects can be even larger than temperature \[17,18\]. Tree girdling experiments and isotopic tracing measurements suggest that as much as 50% of \(CO2 \) emitted from forest soils is sustained by recently produced photosynthates \[19,20\], implying that physiological changes occurring in tree canopies likely impact \(F_{CO2} \). The ability to isolate the contribution of individual trees to \(F_{CO2} \) has further been demonstrated in a sparsely-tree savanna, where the diurnal pattern of \(F_{CO2} \) in individual tree root-zones was larger in amplitude than could be explained by temperature, and lagged the diurnal up-regulation of photosynthesis, corresponding to the transport time of sugars from foliage to roots \[21\]. Recognizing the potential to isolate tree-level \(F_{CO2} \) motivates further efforts to link such observations to traits governing the quantities of C exported from trees to external C sinks \[4\].

A number of recent studies have documented detectable local effects of trees and even tree species effects on \(F_{CO2} \) \[3,22–24\], although the hypothetical mechanisms behind species effects are numerous and remain poorly resolved. Studies have also described effects of tree size on \(F_{CO2} \) in forest ecosystems, generally finding higher \(F_{CO2} \) in the immediate neighborhood of larger trees \[25–30\]. However, counterexamples exist \[e.g., 10,31\], and several chronosequence studies have found reduced \(F_{CO2} \) with stand age in even-aged plantations \[e.g., 32,33\], or no consistent relationship \[e.g., 34\]. Rodríguez-Calcerrada et al., \[35\] tested for associations between visible crown health indicators on \(F_{CO2} \) in an open woodland in Spain but found that increased recruitment near such trees offset potential reductions in \(F_{CO2} \) related to tree decline. The character of C supply from old trees could theoretically shift from active extrusion of labile root exudates by more productive trees to less bioavailable necrotic tissues, but the connection between local tree effects and tree senescence or health status has received little attention.

Age-related trends in tree physiological patterns are particularly large and well-documented in Acer saccharum Marsh. (hereafter sugar maple), a dominant tree in northern hardwood forests in Eastern North America. Leaf-level photosynthetic capacity peaks at intermediate sizes and declines later in ontogeny \[36\], and there is evidence for declines in whole-tree leaf area through ontogeny \[37\]. These trends are expected to constrain the amount of C available for belowground allocation,
consistent with age-related declines in concentrations of non-structural carbohydrates in wood [38]. As the capacity to replace fine roots declines with overall function, roots are more likely to be constructed to last longer, have increased C:N ratios, and be more resistant to decomposition [39]. If accumulation of high-C:N organic matter in tree root zones is an important chemical change that occurs through ontogeny, then the moisture-induced priming of microbial communities (Birch effect) may likewise vary through tree ontogeny. Additional processes associated with large old trees that may affect soil respiration include the potential for warmer soils beneath sparser canopies and increased maintenance respiration of older root tissue, paralleling age-related trends in leaf respiration [40]. The magnitude of Birch-effect \(\text{F}_{\text{CO}_2} \) pulses could be more pronounced near large trees, but studies to date have not examined potential local tree size influences on Birch effect peaks in \(\text{F}_{\text{CO}_2} \).

In the present study we use spatially explicit data on \(\text{F}_{\text{CO}_2} \) in a large mapped forest plot to address the following questions: (1) Does \(\text{F}_{\text{CO}_2} \) in the immediate vicinity of adult sugar maple stems differ from background soil flux? (2) Is there detectable tree-to-tree variation in root zone \(\text{F}_{\text{CO}_2} \), and if so, is such variation dependent on tree diameter, growth rate, or health status? (3) How does \(\text{F}_{\text{CO}_2} \) in both of these environments respond to soil conditions, in particular wetting following an intense rainfall event?

2. Materials and Methods

2.1. Study site

The Haliburton Forest Dynamics Plot (HFDP), is located within Haliburton Forest and Wildlife Reserve Ltd. (44°55′N, 78°45′W), and belongs to the CTFS-ForestGEO global network of large-scale forest research plots [41]. HFDP encompasses several forest community types characteristic of the Great-Lakes St. Lawrence region. Total plot area is approximately 13.5 ha, of which approximately two thirds is occupied by a stand of shade-tolerant hardwoods. These interior, upland communities are dominated by sugar maple (\textit{Acer saccharum} Marsh.), followed by American beech (\textit{Fagus grandifolia} Ehrh.), and yellow birch (\textit{Betula alleghaniensis} Britt.); the sub-canopy species striped maple (\textit{Acer pensylvanicum} L.) is also abundant. Soils in the Haliburton region are shallow, predominantly sandy loams derived from till of the underlying granitic bedrock. Annual precipitation is approximately 1050 mm, with a mean annual temperature of 5°C.

2.2. Data Collection

Flux collars consisted of 5-cm-long cross-sections of 10-cm diameter PVC plumbing, beveled with a power sander. The beveled edge of the collar was twisted into soil just enough to hold firmly (approximately 1 cm). Collars were always allowed to settle for at least 48 hours before sampling. Sets of three collars were distributed among twenty-one fixed points on a 57-m grid, with nine more locations selected randomly (Figure 1). Although these locations were selected before entering the field site, collar locations were modified slightly upon installation to ensure at least two meters of displacement between collars for background sampling locations and any mature trees, ≥10 cm diameter at breast height (dbh) 1.3 m above ground. Patches of understory vegetation were avoided when possible. Candidate trees were selected from well-spaced, mature individuals, on locally level terrain. The majority of trees were therefore located on the relatively flat interior ridge towards the center of the \textit{Acer saccharum}-dominated community. Measuring trees in the same approximate neighborhood was considered desirable, to minimize variation in soil fluxes attributable to
unmeasured underlying variables presumed to vary in space, such as drainage, soil texture, depth to bedrock, and chemistry.

Figure 1. Map of adult sugar maple trees and soil flux observations: all sugar maple stems with a diameter larger than 15 cm are indicated by empty circles. Bolded points indicate locations of soil flux measurements. Squares are background fluxes; circles are tree-associated fluxes. Red symbols indicate pre-rain and blue symbols post-rain observations; blue symbols with a red outline indicate the locations with both pre- and post-rain observations. Topographic contours indicate 5-m elevation increments, ranging from 425 m to 450 m.

Tree dbh was recorded at the time of sampling and compared to a former census measurement to estimate annual growth increments (radial increment in cm/y). Six collars were distributed uniformly around the base of each tree, except where live vegetation or visible obstructions (rocks, decayed logs) interfered. Collars were inserted within approximately one meter of the extent of each tree’s circumference. The first round of sampling, occurring from August 17th to 19th, with a subset of ten background and two root zone locations resampled on August 24th. A 42.2-mm rain event occurred on August 25th (Figure 2, Historical Climate Data, Environment Canada, Government of Canada) followed by a second round of sampling between August 27th and 29th. We were additionally able to validate the correspondence between temperature data with regional weather station and local temperatures at the soil surface with a network of 46 temperature loggers (Logtag, Auckland, New Zealand), which recorded soil temperatures just below the organic horizon, spaced on a 28-m square grid throughout the study site. Mean daily soil surface temperatures and mean daily air temperatures from the regional station day were highly correlated (r = 0.94, data not shown).

In total, 30 background and 18 root zone fluxes were sampled before wetting and 14 background and 22 root zones after wetting. Sample sizes are unbalanced due to the unexpected interruption by the rain event on August 24th. Soil CO2 efflux (Fco2) observations were made with a portable infra-red gas analyzer (IRGA) with soil chamber attachment (Li6400 with Li-6400-09 attachment, LiCor,
Lincoln Nebraska). Mean temperature of the top 10 cm of soil was also recorded with a temperature probe which interfaced directly with the IRGA unit. Crown transparency measurements from a maple health survey conducted in July 2009 using moosehorn densiometers [43] were also used as a health status indicator for sampled trees.

![Figure 2](image.jpg)

Figure 2. Haliburton regional weather data for August 2013. Lines indicate daily range (dashed) and mean (solid) temperatures. Bars indicate magnitude of rainfall. Points marked with asterisks along the x-axis indicate dates of flux observations.

2.3. **Data Analysis**

A two-way analysis of variance (ANOVA) was conducted to compare F_{CO2} of background to root zone locations, before and after rainfall. Where duplicate observations were available, the average of the two dates was used. For root zone F_{CO2} values associated with tree stems, each tree’s F_{CO2} was calculated by averaging over its associated collars prior to analysis.

Temperature dependence of F_{CO2} was modeled using an exponential equation ($F_{CO2} = a \times \exp(b \times T_{soil})$, where T_{soil} = mean soil temperature to 10-cm depth, a and b are fitted parameters) to the full dataset of soil collars. Q_{10} was calculated for the total pooled dataset ($Q_{10} = \exp(b \times 10)$). A t-test was conducted to compare soil temperatures during initial pre-rain sampling and post-rain sampling.

We used the statistical residuals from the previously fit exponential model as temperature-corrected F_{CO2} indices, which were then compared to tree-level characteristics. To assess whether among-tree variation was statistically detectable, an additional one-way ANOVA with tree as a factor was performed, on pre- and post-prefluation root zone fluxes, using the temperature-corrected F_{CO2} values. Simple linear regressions were conducted to determine whether tree size, recent growth, or...
crown transparency were statistical predictors of root zone respiration. All analyses were performed in the ‘stats’ package of the R statistical programming language [44].

3. Results

3.1. Pre- vs. post-precipitation F_{CO_2}

Soil CO$_2$ efflux preceding the rainfall event averaged 6.43 (+- 0.31 s.e.) μmol CO$_2$ m$^{-2}$ s$^{-1}$ and 6.25 (+- 0.29 s.e.) μmol CO$_2$ m$^{-2}$ s$^{-1}$ for background and root zones respectively and were not statistically distinguishable. Following the Aug. 25 rainfall event, F_{CO_2} significantly increased to 8.61 (+- 0.64 s.e.) μmol CO$_2$ m$^{-2}$ s$^{-1}$ and 10.79 (+- 0.41 s.e.) μmol CO$_2$ m$^{-2}$ s$^{-1}$ for background and root zone fluxes ($p_{\text{wet}} < 0.001$), respectively. A significant interaction was also detected between wet fluxes and root zone fluxes ($p_{\text{RZ*Wet}} = 0.005$), implying that root zones fluxes experienced a larger enhancement following the rainfall event relative to background conditions (Figure 3).

![Figure 3](image)

Figure 3. Response of background and root zone soil CO$_2$ flux to wetting. Error bars indicate 95% confidence intervals.

3.2. Temperature effects on F_{CO_2}

In addition to increased soil moisture, soil temperatures were also higher during the second round of sampling (14.8 (+- 0.09 s.e.) °C vs. 16.8 (+- s.e. 0.09) °C; Figure 4a). We detected a statistically significant influence of temperature on F_{CO_2} and this relationship was accurately captured with an exponential model ($F_{\text{CO}_2} = 0.06189 \times e^{0.1651 \times \text{soil temp}}; p < 0.001$) (Figure 4b). From this relationship, we further estimated a Q_{10} value of 5.81 (+- 0.45 s.e.).
3.3. Tree effects on F_{CO_2}

Temperature-corrected values for F_{CO_2} were calculated as statistical residual values of the exponential temperature model. A simple linear regression conducted on post-rain root zone F_{CO_2} indicated a positive effect of diameter on root zone F_{CO_2}. Following rain, root-zone F_{CO_2} increased at a rate of $0.058 \, \mu\text{mol m}^{-2} \text{s}^{-1}$ for every centimeter increase in tree diameter ($p = 0.040, r^2 = 0.154$). We did not detect a significant effect of tree size on pre-rain F_{CO_2} (Figure 5). The other metrics examined, radial increment and crown transparency, were not able to explain any variation in temperature corrected effluxes among trees either pre- or post-rain. Although tree size appeared to be the only metric to influence F_{CO_2}, ANOVA results show statistically significant variation among individuals in temperature-corrected efflux, both before and after the rainfall event ($p < 0.001$ for both ANOVAs) (Figure 5), indicating additional among-tree variation.

4. Discussion

Our objective was to determine whether the contribution of individual trees to soil F_{CO_2} could be detected by comparing root zone F_{CO_2} to background variation, and further link aboveground properties of A. saccharum trees to belowground C processes in a closed-canopy forest. Under typical conditions, root-zone F_{CO_2} did not differ from background F_{CO_2} but was significantly higher following an intense precipitation event. We also detected significant variation among individual root-zone F_{CO_2} estimates, both before and after rainfall. Temperature-corrected F_{CO_2} increased significantly with tree size, consistent with prior studies [25–30]; however, this pattern was only detected for post-precipitation F_{CO_2}. We did not find any trend with tree health indicators (either recent tree growth increment or crown transparency), suggesting that the size-dependent pattern in F_{CO_2} is not related to tree senescence.
Figure 5. Relationships between individual tree characteristics and temperature-corrected soil CO₂ efflux. Error bars represent standard error (n = 6) in each individual tree’s root zone flux. Significant variation was detected among individual tree root zones both before (panels a, c, e) and after (panels b, d, f) wetting (p<0.001). Post-rain variation in soil root zone fluxes was significantly related to tree dbh ($r^2 = 0.154$, $p = 0.04$).

Transient ‘Birch effect’ increases in F_{CO₂} in response to wetting are a well-documented phenomenon [13,14]. Elevated F_{CO₂} typically persists for several days after moisture increases and is mainly attributed to the improved mobilization of labile carbon compounds, which primes microbial
communities for further degradation of less bioavailable substrates [14]. Root exclusion studies have also found that the Birch effect depends on root presence [45]. Our results indicate that the Birch effect is both more pronounced in the vicinity of tree stems and is greater in magnitude near larger trees. Prior studies examining tree-size effects on F_{CO_2} have not explicitly tested for Birch-effect patterns, but Søe & Buchmann [26] found that a best-fitting model describing variation in F_{CO_2} included both tree size (mean DBH of trees within 4 m radius), and volumetric soil moisture content; Schwendenmann & Macinnis-Ng [30] noted relatively dry soil conditions near the base of large trees that could enhance the gas diffusion, and so increase F_{CO_2}.

Several mechanisms might contribute to the tree-size-dependent Birch effect detected in the present study. Mobility of labile C substrates, such as root exudates, is limited by diffusion, and these labile C compounds could thus accumulate in the immediate vicinity of their source [46]. Larger trees with larger canopies are generally more productive and may export larger quantities of carbohydrates to associated soil biota, which accumulate until rain-induced mobilization. It is furthermore likely that necrotic tissues such as dead fine roots, which are an important carbon source for heterotrophic respiration [47], occur at higher densities in the root zones of larger trees. These higher-density pools of low-quality organic matter are more accessible to microbial communities following wetting events. An additional possibility consists of a more biophysical mechanism, where larger canopy areas may intercept large quantities of moisture, leading to higher stemflow and more moisture near the bases of large trees [48].

Among-tree variation in root zone F_{CO_2} was not significantly correlated with tree size prior to rainfall, but we did detect significant variation among individuals. This additional variation among locations could be explained by topography and unobserved edaphic variables, but also invites deeper explorations of how tree health status could also regulate soil F_{CO_2}. For example, Hancock et al. [50] found that the early stages of infection of Fagus grandifolia by the invasive pathogen Neonectria (beech-bark disease) corresponded with sharply increased local F_{CO_2}. Geddes et al. [51] reported anomalous ecosystem-level C losses from a stand co-dominated by Fagus grandifolia at HFWR and considered the onset of beech-bark disease a likely explanation. We speculate that pathogen infection may more generally contribute to high tree-to-tree variation in F_{CO_2} and component processes.

Although biotic factors have been found to dominate soil F_{CO_2} in studies conducted at comparable scales to the present analysis [17,18], we still found that correcting for temperature effects was essential for detecting tree size effects of soil F_{CO_2}. Soil temperatures were clearly sensitive to changes in ambient air temperature over the duration of the study, with impacts on F_{CO_2} (Fig. 3). However, the estimated sensitivity of F_{CO_2} to temperature in the present study was substantially higher than estimates from comparable forest soils (compare our estimated Q_{10} of 5.8, to a prior estimate of 3.0 at HFWR [8], and 3.5 at a comparable site in New England [49]). This high sensitivity is almost certainly due to coupled increases in soil moisture and temperature, which likely had a compound effect on soil F_{CO_2}. This observation further highlights the need to sample over wider ranges of variation in meteorological conditions, whereas many studies of plant-soil systems often aim to narrow the range of environmental variation in an effort to improve their ability to detect specific biotic interactions.

The ability to anticipate ecosystem-level responses of soil respiration to changing climate is still limited by our understanding of relationships between soil moisture and microbial respiration [16]. The Birch effect is frequently left out of ecosystem-level models of C exchange entirely [16], even though this has been shown to result in a ~25% underestimation of soil C emissions, at least in northern deciduous forests [52]. Changes in the isotopic composition of C emissions over very short
periods following moisture pulses indicate that inorganic C can also contribute to the Birch effect in some systems [53]. Uncertainty in these sources of C emissions limits the applicability of otherwise analytically tractable process-based models that incorporate the kinetics of C supply and microbe consumption [54]. Our results suggest that Birch effect fluxes may be specifically enhanced in forests with large, old trees, potentially indicating an underestimation of carbon losses from old-growth forests without explicit consideration.

5. Conclusions

The present study compliments prior work suggesting strong autotrophic control over F_{CO_2}. Our work replicates prior studies indicating a size-dependent increase in F_{CO_2}, while also demonstrating a strong ontogenetic trend in carbon flux associated with the Birch effect. Detecting tree size effects on soil CO_2 efflux invites the investigation of additional biophysical and biogeochemical relations that may be impacted by the ontogeny and/or allometry of tree root functioning and organic matter production. Unifying physiological mechanisms with ecosystem modelling efforts requires replication of comparable measurements across tree species and over a wider range of environmental variation, including rainfall intensity, rainfall frequency, and seasonal variation in belowground photosynthate allocation.

Author Contributions: Conceptualization, J.S.S. and S.C.T.; methodology, J.S.S. and S.C.T.; formal analysis, J.S.S.; investigation, J.S.S.; data curation, J.S.S.; writing—original draft preparation, J.S.S. and S.C.T.; writing—review and editing, J.S.S. and S.C.T.; supervision, S.C.T.; funding acquisition, S.C.T. Both authors have read and agreed to the published version of the manuscript.

Funding: This research was supported through grants from the Natural Sciences and Engineering Research Council of Canada.

Acknowledgments: We thank Haliburton Forest and Wild Life Reserve and their staff for research support, including property use.

Conflicts of Interest: The authors declare no conflict of interest.

References

35. Rodríguez-Calcerrada, J.; Salomón, R.; Barba, J.; Gordaliza, G. G.; Curiel Yuste, J.; Magro, C.; Gil, L. Regeneration in the understory of declining overstory trees contributes to soil respiration homeostasis along succession in a sub-Mediterranean beech forest. *Forests* 2019, 109, 727-745.

