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Abstract: Probabilistic inference problems have very broad practical applications. To solve this 
kind of problems under conditions of certainty, an effective mathematical apparatus has been 
developed. In real situations, obtaining deterministic estimates of relevant probabilities is often 
difficult; therefore, problems with handling uncertain estimates of probabilities appear. This paper 
examines the problem of probabilistic inference with probability trees provided that the initial 
probabilities are given in the form of intervals of their possible values. 
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1. Introduction 

In many practical problems, it is often necessary to determine the probabilities of events under 
consideration based on the probabilities of other events. Such problems are called probabilistic 
inference problems. Elementary tasks of probabilistic inference include [1, 2]. 

1. marginalisation of joint probabilities; 

2. conditioning of probabilities; 

3. calculation of the posterior probabilities based on the joint probabilities; 

4. calculation of the posterior probabilities using Bayes’ formula. 
More complicated are problems of probabilistic inference for probability trees and belief 

networks. More details about methods of solving this kind of tasks can be found in [1, 2]. 
Effective techniques are developed for solving probabilistic inference problems for the cases 

when initial probability estimates are uncertain, namely, when the estimates are given in the 
interval or fuzzy form. 

This paper examines the problem of probabilistic inference under the condition that initial 
values of relevant probabilities are set as intervals of their possible values.  

2. Basic Concepts and Definitions of Interval Probabilities 

Let there exist a set of random events  , 1,...,iA a i n  . Let us assume that probabilities of 

these events are assigned not in the deterministic form but in the form of intervals of possible 
values of these probabilities 

 ,i il u , 1,...i n , 

where il  - lower (the least) possible value of probability  i ip p a ; 
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iu - upper (the largest) possible value of probability  i ip p a . 

It is evident that by selecting randomly or systematically by one value of  ,i i ip l u , 

 1,...,i n , we will obtain a set of deterministic probability estimates , 1,...,ip i n . In literature, 

such sets of deterministic values of probabilities are often treated as probability distributions. 

In [3], a set of all possible such probabilities are formally defined as follows: 

      P / ,i i i ip p A l p u i ,        (1) 

where  p A  denotes a set of all possible probability estimates defined in the set of random events

A . 
To avoid a situation when  P , boundary values of probability intervals have to satisfy these 

limiting conditions: 

1 1
1

n n

i i
i i

l u
 

   .       (2) 

 
Probability intervals satisfying conditions (2), in [3] are called proper intervals. It is evident that 

in tasks of interval probabilistic inference one should always operate with proper intervals only.  
In general case, i ip l and i ip u , ip A  . If 

inf
ii pl  P and sup

ii pu  P , i ,       (3) 

It means that deterministic probability values can be selected over the entire interval  ,i il u , 

including its boundaries. In [3], probability intervals meeting conditions (3) are called reachable 
intervals.In [3], it is proven that for reachable probability intervals these inequalities are valid:  

1


  j i
j i

l u ,i ;             (4, a) 

1j i
j i

u l


  ,i .        (4, b) 

Calculations of relevant interval probabilities are made according to rules of interval 
arithmetic, as well as by some special expressions. The use of such special expressions is stipulated 
by the need to ensure reachable intervals of resulting probabilities. For illustration, the calculation 
of the posterior probabilities by Bayes’ formula can be mentioned given that the initial probabilities 
are set in the interval form. Several methods for extending classical Bayes’ formula to interval 
probabilities are known; one method was proposed in [4 - 7]. The essence of this method is as 

follows. Let    , ,F A l   - F -field and C  - division  , such that  ,F C  is a luminary 

constellation. Then the following information enables reconstruction of the initial field F : 

1.     , , /C CF C A C l C  – marginal F -field regarding the division C : ”prior probabilities”. 

2.      , , / /C CF C A C l C C  C – a set of fields of conditional F - probability according to the canonical 

concept. 
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An F - field of complete probabilities can be calculated based on the assigned conditional 

probabilities    / , /C Cl C u C     and probabilities of division  p C . A complete interval probability 

of event A C  is calculated by expression 

         p A = l A/C l C ,u A/C u C   .                 (5)  

For each B A , intuitive concept of conditional probability creates an F -field 

     pÎM pÎMip A/B = inf p A/B ,sup p A/B 
  .        (6) 

Conditional probabilities  /ip A B  are the desired posterior probabilities.  

Although the application of the proposed method produces correct results, it will not be used 
in this paper due to the complexity and difficulties in interpretation of the results obtained. Instead, 
a method proposed in [8, 9] will be used. 

The method under consideration is based on the concept of generalized intervals. Classical 
interval is identified as a set of real numbers, whereas a generalized interval is identified with the 
help of predicates that are filled with real numbers; its boundaries are not ordered in common 
sense. A generalized interval   ,x x x KR   is called proper if x x , and improper, if x x . A set 

of proper intervals is denoted as   , / IR x x x x , but a set of improper intervals is denoted as

   , ,IR x x x x . Operations on the generalized intervals are defined based on Kaucher 

arithmetic [10]. In the set of generalized intervals, these specific mathematical operations are 
defined.  

   prox = min x,x ,max x,x   .       (7) 

Operation [7] results in a proper generalized interval. 

   impx = max x,x ,min x,x   .       (8) 

The result of operation (8) is an improper generalised interval. 
The operation that follows transforms a proper generalized interval into the improper 

generalized interval.  
 ,dual x xx .          (9) 

In [8], author proposes this interval version of Bayes’ formula:  
 

     

   
i i

i n

j j
j=1

p A/E p E
p E /A =

dualp A/E dualp E
,      (10) 

where iE , 1,...,i n , - are mutually separate event separations in   and  
1

1
n

j
j

p E


 ,  dual  is 

defined in (9). 

Boundary values of intervals of the posterior probabilities  /ip E A  can be calculated using 

this expression [8]: 
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       

   
   

   
i i i i

i i n n

j j j j
j=1 j=1

l A/E l E u A/E u E
l E /A ,u E /A = ,

l A/E l E u A/E u E

 
 
     
 
 
 

.             (11) 

It is necessary to understand that according to common expression (10), interval values of 
probabilities in both denominators in expression (11) are inverted values of initial interval values of 

probabilities; for example, if      j j jp E = l E ,u E 
  , then      j j jdualp E = u E ,l E 

  . 

When we have only two relevant events E  and cE , boundary values of the posterior 
conditional probabilities can be calculated by these expressions [8]: 

     
       c c

l A/E l E
l E/A =

l A/E l E + l A/E l E
;         (12, a) 

     
       c c

u A/E u E
u E/A =

u A/E u E + u A/E u E
.    (12, b) 

It should be taken into consideration that in the denominators of expressions (12, a, b) not the 
initial boundary values of probabilities  p  , but their inverted values  dual   need to be used. To 

simplify calculations, all necessary calculations can be made using the initial interval values of 
probabilities, and the result can then be inverted by expression  

 

        
n n

j j j j
j=1 j=1

dualp A/E dualp E = dual p A/E p E  .       (13) 

3. Case Study 

Let us consider a „classical” task of assessing chances of the presence of oil on the site given 
that the prior evaluations of these chances and evaluations of conditional probabilities of the results 
of seismic exploration of the site are assigned. We have these initial data. 

A set of random events („states of nature”)  1 2,A a a where event 1a  corresponds to the 

actual presence of oil on the site, but event 2a  corresponds to real absence of oil on the site. Let us 
call events 1a  and 2a  "geological events". Let us assume that based on the expert evaluation, the 

following interval values of probabilities of occurrence of these events are assigned:

   1 0.50,0.70p a  ,    2 0.30,0.50p a  . 

Assume that a manager of an oil mining company has made a decision to undertake seismic 

exploration of the site to re-evaluate the prior values of probabilities  1p a  and  2p a . 

Let us denote a set of random events, outcomes of seismic exploration as  1 2,B b b  where 1b  

is an outcome that indicates the presence of oil on the site but 2b  is an outcome indicating the 
absence of oil on the site. Let us call events 1b  and 2b seismic events. 
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The specifics of a seismic exploration is that it can both precisely confirm real presence or 
absence of oil on a site, and produce erroneous results, i.e., to show the presence of oil when it is 
missing in reality or to show the absence of oil when it is really present. Let us introduce this system 
of denotations: 

1 1/b a - seismic exploration has confirmed real presence of oil on the site; 

2 1/b a - seismic exploration has erroneously indicated the lack of oil on the site, though in reality 

oil is present; 

1 2/b a - seismic exploration has erroneously indicated the presence of oil on the site, though in 

reality there is no oil on the site; 

2 2/b a - seismic exploration has confirmed that there is no oil on the site. 

Let there be set these interval values of conditional probabilities: 

   1 1/ 0.70,0.90p b a  ,    1 2/ 0.10,0.30p b a   

   2 1/ 0.10,0.30p b a  ,    2 2/ 0.70,0.90p b a  . 

Initial state of information is shown in Figure 1 as a decision tree.  
 

   1 1a ,p a = 0.50,0.70

   2 2a ,p a = 0.30,0.50

   1 1 1 1b /a ,p b /a = 0.70,0.90

   2 1 2 1b /a ,p b /a = 0.10,0.30

   1 2 1 2b /a ,p b /a = 0.10,0.30

   2 2 2 2b /a ,p b /a = 0.70,0.90

   p 1 = 0.35,0.63

   p 2 = 0.05,0.21

   p 3 = 0.03,0.15

   p 4 = 0.21,0.45
 

Figure 1. Decision tree depicting initial state of information. 

Actually, we are not interested in conditional probabilities  /j ip b a , , 1,2i j  , depicting 

results of seismic exploration depending on the real presence or lack of oil on the site; instead, we 

are interested in conditional probabilities   /i jp a b , , 1,2i j   that show the presence or lack of oil 

on the site depending on the results of seismic exploration. As in any practical use of interval 
probabilities, it is necessary to operate only with reachable probability intervals. It is easy to verify 
that in the present example, initial probability intervals are reachable. Our task in this example is to 

calculate the posterior probabilities  /i jp a b , , 1,2i j  , based on all available information. 
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Let us calculate values of outcome probabilities (scenarios) using the data shown on the 
decision tree in Figure 1. 

            1 1 1p 1 = p a p b /a = 0.50,0.70 * 0.70,0.90 = 0.35,0.63 ; 

            1 2 1p 2 = p a p b /a = 0.50,0.70 * 0.10,0.30 = 0.05,0.21 ; 

            2 1 2p 3 = p a p b /a = 0.30,0.50 * 0.10,0.30 = 0.03,0.15 ; 

            2 2 2p 4 = p a p b /a = 0.30,0.50 * 0.70,0.90 = 0.21,0.45 .  

The values of these probabilities are depicted at the ends of the branches of the decision tree in 
Figure 1. 

The requested posterior probabilities of geological events can be calculated using Bayes’ 
formula directly. In the above example, however, we can make calculations by a simpler technique 
based on Bayes’ formula.  

Event 1b  can occur together with 1a  (outcome (1)) and together with event 2a  (outcome 
(3)). Hence, the total probability of event 1b  can be calculated as 

           1p b = p 1 + p 3 = 0.40,0.56 + 0.06,0.10 = 0.46,0.56 . 

Event 2b  can occur together with event 1a  (outcome (2)) and event 2a  (outcome (4)). Therefore, 

           2p b = p 2 + p 4 = 0.10,0.14 + 0.24,0.40 = 0.34,0.54 . 

Now we have all necessary information for calculating the requested values of the posterior 
probabilities. For that purpose, we will use expressions (12, a, b). In those expressions, to calculate 

the denominators, it is necessary to use the boundary values of the total probabilities   1p b  and

 2p b . Since expressions (12, a, b) are a special case of general expression (10), it is necessary to use 

inverted values of  1p b  and  2p b , namely 

      1 1p b = dualp b = 0.66,0.46  ; 

      2 2p b = dualp b = 0.54,0.34  . 

To calculate the required posterior interval probabilities, it is necessary to divide the outcome 

probability values  p i , 1,2,3,4i  , by the corresponding values  ip b , 1,2i  . We have 

   
 

 
   1 1

1

0.40,0.46p 1 0.40 0.56p a /b = = = , 0.85,0.87
p b 0.66,0.46 0.46 0.66

     
; 

   
 

 
   1 2

2

0.10,0.14p 2 0.10 0.14p a /b = = = , 0.29,0.26
p b 0.54,0.34 0.34 0.54

     
; 

   
 

 
   2 1

1

0.06,0.10p 3 0.06 0.10p a /b = = = , 0.13,0.15
p b 0.66,0.46 0.46 0.66

     
; 
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   
 

 
   2 2

2

0.24,0.40p 4 0.24 0.40p a /b = = = , 0.71,0.74
p b 0.54,0.34 0.34 0.54

     
. 

As a result of calculation, we obtained improper resulting interval    1 2p a /b = 0.29,0.26 . 

This is due to the peculiarities of operating with generalised probability intervals.To get the 
correct result, we simply invert this inactive probability interval. As a result, we have

   1 1p a /b = 0.85,0.87 ,    1 2p a /b = 0.26,0.29 ,    2 1p a /b = 0.13,0.15 ,    2 2p a /b = 0.71,0.74 . 

It is easy to verify that the resulting intervals are valid probability intervals. The target state of 
information in the form of a decision tree is presented in Figure 2.  

 

(1)

(3)

(2)

(4)

Geological eventsSeismic events

   1 1, 0.46,0.66 b p b

   2 2, 0.34,0.54 b p b

   1 1 1, / 0.85,0.87a p a b

   2 2 1a ,p a /b = 0.13,0.15

   1 1 2a ,p a /b = 0.26,0.29

   2 2 2, / 0.71,0.74a p a b

 

Figure 2. A probability tree that displays the target state of information. 

Note that on this probability tree, the numbering of outcomes corresponds to the numbering of 
outcomes on the probability tree in Figure 1. The probabilities of the respective outcomes in both 
figures are the same. 

4. Algorithms for Finding Permissible Values of Probabilities on Sets of Their Interval Values 

Let us introduce the concept of consistent probability intervals. Let us assume that a set of 

permissible intervals  i iL = l ,u /i = 1,...,n  is set, and for each interval, its average point ic  is 

assigned. Let us call these intervals consistent if these conditions hold: (1) the width of all intervals is 

the same,  , , i il u const i , and (2) 
1

1



n

i
i

c .  

The concept of consistent intervals does not seem to be significantly limiting. It can be assumed 
that the expert first sets the point values of the estimated probabilities with the condition that the 
sum of the probabilities is 1; then he models the uncertainties of his estimates, setting the same 
intervals for all initial estimates. 
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In practical problems of various kinds, sometimes it becomes necessary to analyse the set of 
determinate probability values fixed on the set of their interval values. As an illustrative example, 
we can cite the problem of analysing the probabilistic sensitivity of decisions if the probabilities of 
outcomes of alternative decisions are presented in interval form. By fixing these or those values of 
these probabilities of interest to us at given intervals of their possible values, we can evaluate how 
robustly the optimal solution is regarding the possible ranges of changes in relevant probabilities. 

In this regard, the following problem arises: there are n interval consistent values of the 
probabilities, and we need to choose one valid determinate probability value, ip , 1,...,i n , from 

each interval. By permissible, we mean probability values that satisfy the basic requirement of the 

classical theory of probability: for a complete group of random events,
n

i
i=1

p = 1 . 

In order to correctly select the permissible probability values of interest to us on the set of their 
interval values, it is proposed to use the following algorithm [2]. We consider the variants of the 
algorithms for the cases of two, three and four consistent interval probability values. 

Let there be given two consistent interval probability values:  1 1 1p = l ,u  and  2 2 2p = l ,u . For 
clarity, two such conditional intervals are graphically presented in Figure 3.  

1l 1u
1c

2l
2c

2u

 

Figure 3. Graphic representation of two conditional consistent probability intervals. 

In this figure, the centres of the corresponding intervals are denoted by 1c and 2c . For these 
intervals to be consistent, they must satisfy the following requirements:(1) 1 2c + c = 1 ; 
(2) 1 1 2 2u - l = u - l . 

Let there be set two consistent probability intervals  1 1 1p = l ,u  and  2 2 2p = l ,u  and let an 

arbitrary deterministic value  1 1 1p l ,u be selected on the first interval. Then the corresponding to 

it permissible probability value  2 2 2p l ,u is determined as 2 1p = 1- p . 

1. Three consistent probability intervals are given:  1 1 1p = l ,u ,  2 2 2p = l ,u  and  3 3 3p = l ,u . 
For clarity, three such conditional intervals are graphically presented in Figure 4. 

2. For these intervals to be consistent, they must satisfy the following requirements: 

(1) 1 2 3c + c + c = 1 ;(2) 1 1 2 2 3 3u - l = u - l = u - l . 
3. The algorithm for determining permissible probability values in this case works as follows. 

The fixed probability value  1 1 1p l ,u is set. Depending on the actual value of 1p , the 
following options are possible for determining the intervals in which permissible values of 
probabilities 2p and 3p are located: 
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1l 1u
1c

2l
2c

2u

3l 3u3c

 

Figure 4. Graphic representation of three conditional consistent probability intervals. 

(1) If 1 1p = l , then  2 2 2p c ,u ,  3 3 3p u ,c ; 

(2) If 1 1p = l + γ , 1 10 < γ < c - l , then  2 2 2p c - γ,u ,  3 3 3p u ,c - γ ; 

(3) If 1 1p = c , then  2 2 2p l ,u ,  3 3 3p u ,l ; 

(4) If 1 1p = c + δ , 2 10 < δ < u - c , then  2 2 2p l ,u - δ ,  3 3 3p u - δ,l ; 

(5) If 1 1p = u , then  2 2 2p l ,c ,  3 3 3p c ,l . 

Let there be given four consistent interval probability values:  1 1 1p = l ,u ,  2 2 2p = l ,u ,  3 3 3p = l ,u  

and  4 4 4p = l ,u . Consistency in this case means fulfilling the following requirements: 

(1) 1 2 3 4c + c + c + c = 1 ; (2) 1 1 2 2 3 3 4 4u - l = u - l = u - l = u - l . 

For clarity, four such conditional intervals are shown graphically in Figure 5.  

 

1l 1u1c
2l

2c
2u

3l 3u
3c

4l 4u4c

 

Figure 5. Graphic representation of four conditional consistent probability intervals. 

In this case, the algorithm for determining permissible probabilities ip , i = 1,2,3,4  works as 
follows. Two probabilities of interest to us, 1p  and 2p are fixed, and their sum, 1 2p + p is 
calculated. Depending on the value of this sum, the intervals of permissible probability values 3p  

and 4p are determined as follows: 
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 (1) If 1 2 1 2p + p = l + l , then 3 3p = u , 4 4p = u . 

(2) 1 2 1 2 1 2l + l < p + p < c + c . Let us denote the difference    1 2 1 2p + p - l + l  by γ . Then 

 3 3 3p u - γ,u  and  4 4 4p u ,u - γ . 

 (3) If 1 2 1 2p + p = c + c , then  3 3 3p l ,u ,  4 4 4p u ,l . 

(4) 1 2 1 2 1 2c + c < p + p < u + u . Let us denote by δ  the difference    1 2 1 2p + p - c + c . Then

 3 3 3p l ,u - δ  and  4 4 4p u - δ,l . 

 (5) If 1 2 1 2p + p = u + u , then 3 3p = l , 4 4p = l . 

 
The algorithm can be extended to a larger number of initial probability intervals. Let the 

number of initial probability intervals be equal to n > 4 . Then, at first, n - 2 acceptable probabilities 
must be selected and fixed. The values of the remaining permissible probabilities are determined as 
for the case of four probability intervals, taking into account the sum of the probabilities given to 
the first n - 2 intervals. 

5. Findings and Conclusions° 

Interval probability estimates model expert uncertainties regarding estimated probabilities. To 
operate with such uncertain probabilistic estimates, a special mathematical apparatus is required. In 
this paper, we consider an approach to calculating posterior conditional probabilities based on the 
concept of generalized intervals [8, 9]. This approach seems simpler and more intuitive than those 
presented in [4–7]. The paper presents an algorithm for determining the sets of permissible 
probabilistic estimates on the set of their interval values. 

The use of interval probabilistic estimates seems to be a necessary measure in cases when 
sufficient statistical data are missing and expert uncertainties regarding the required probability 
estimates are present. 

Interval probabilities are widespread in various scientific and practical fields. In [9], an 
approach was proposed to assess the reliability of systems with imprecise probability values in the 
form of generalized intervals. This work can be considered as a continuation of [8] and an attempt 
to apply the theoretical approach proposed in both works to the solution of practical engineering 
problems. A good survey on applications of imprecise probabilities in various engineering fields 
can be found in [11].  

The concept of interval probabilities has found wide application in various areas of decision 
theory. In [12], the author paid great attention to the problems of obtaining and processing interval 
information. An original approach to the selection of optimal solutions for imprecise outcome 
probabilities was also proposed there. 

Another approach to the choice of solutions for interval values of relevant probabilities was 
proposed in [13]. The author offers an imprecise hierarchical decision-making model where interval 
probabilities are used at the first and second levels. 
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In [14], the author proposes an extension of the classical theory of utility in decision-making for 
the case of interval probabilities. These and other examples clearly indicate that interval 
probabilities are widely used in various fields. 
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