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Abstract 

Chronic diseases  are characterised by cell’s autophagy and proteins disarrangement resulting 

in sarcopenia, hypoalbuminemia and hypo-haemoglobinaemia. Hypo-haemoglobinaemia couses 

worse prognosis independentely of the  principal disease. 

Currently, the cornerstone of therapy of anaemia is  iron supplementation, with or without 

erythropoietin for the stimulation of hematopoiesis. However, treatment strategies should 

incorporate the addition of heme, the principal biochemical constituent of haemoglobin.  

Heme synthesis follows a complex biochemical pathway. The limiting step of heme synthesis 

is D-ALA availability which, for its synthesis, requires Glycine and Succinil-CoA. Consequently, 

treatment of anaemia should not be based only on iron availability, but also on the availability of 

the molecules fundamental for heme synthesis. Therefore, an adequate clinical therapeutic strategy  

should integrate the standard iron infusion and  the supply of essential amino acids and vitamins 

involved in the heme synthesis.  

We report preliminary data in selected elderly anaemic patients with congestive heart failure 

(CHF) and catabolic disarrangement, who, in addition to standard iron therapy, received 

personalized therapy with essential-AAs and vitamins involved in the maintenance of heme.  

Notably, such individualized therapy resulted in a significant increase in the serum 

concentration of haemoglobin after 30 days of treatment compared to standard iron therapy. 
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1. Introduction 

Non-communicable diseases account for 38 million deaths per year, according to the World 

Health Organization [1]. Of these deaths, chronic diseases (CD) constitute a major cause of mortality. 

The most common CD nclude congestive heart failure (CHF), senescence, cancer, chronic obstructive 

pulmonary disease (COPD), diabetes, arthritis, asthma, and some viral diseases such as hepatitis-C 

and acquired immunodeficiency syndrome [2].  

All CD are characterised by a hypercatabolic syndrome due to low-grade inflammation (caused 

by specific molecules as cytokine, hormones, etc), which induces metabolic alterations as muscular 

and globular protein disarray.  An increase in autophagy activity ensues, clinically resulting in 

sarcopenia, hypoalbuminemia and hypo-haemoglobinemia (otherwise known as anaemia) [3, 4]. 

Among the globular proteins, haemoglobin (Hb) is one of the most readily measureable in the blood.  

Mounting experimental and clinical evidence demonstrate that anaemia and iron deficiency 

(ID) are present in patients with CD, resulting in significant limitation of therapeutic strategies 

rehabitative such as rehabilitation programs, thereby worsening the prognosis of these patients [5–

7]. Studies suggest there is the concomitant presence of inflammation with autophagy and 

subsequent protein disarrangement [8].  

Gut dysbiosis, nutritional imbalance (malnutrition) with dysgeusia and, most importantly, ID 

with or without renal dysfunction capable of reduced erythropoietin-mediated erythropoiesis, are 

responsible for anaemia in CHF patients [5, 9]. Consequently, iron supplementation, with or without 

the addition of erythropoietin, is the most commonly recommended therapeutical approach to  

CHF-mediated anaemia [10]. 

Based on the current biochemical knowledge, the phenomenon of anaemia in CD (including 

CHF) should be considered in its entirety [11]. First of all, heme is the principal biochemical 

constituent of haemoglobin, with ID contributing partially to the anaemia in CD. Additional 

contributory factors in anaemia include  the tetrapyrrolic proteic rings to which iron binds, thereby 

facilitating the metabolic function of heme, a hemoprotein. Further considerations include the 

production of D-Amino-levulinic acid (dALA) as the limiting step in the synthesis of the heme ring. 

D-Amino-levulinic acid (dALA) is derived from amino acid Glycine and Kreb’s intermediate Succinyl-

CoA [12].  

Therefore, adequate treatment of anaemia in CD necessitates incorporation of standard iron 

infusion, along with supplementation of essential amino acids (EAAs) and vitamins involved in heme 

synthesis.  
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1.1 Iron and Heme 

Iron (Fe), a requisite metal in almost all biological systems,  is necessary for numerous critical 

processes such as DNA synthesis, heme and iron-sulfur cluster synthesis etc. Therefore, cellular 

regulation of iron concentration is essential for maintenance of normal physiology [13].  

About 70% of body's iron is found in the red blood cells as haemoglobin, and in muscle cells 

as myoglobin. Iron, an essential element for blood production, is a crucial component of a very large 

class of metalloproteins containing heme, hence the name, hemoproteins.  

Heme is an organic, ring-shaped molecules consisting of an iron ion coordinated to four 

pyrroles which are small pentagon-shaped molecules with 4 carbons and 1 nitrogen, which together 

form an iron-binding tetrapyrrole called porphyrin (Figure 1). Thus, heme is an iron-binding 

porphyrin [11]. Interestingly, the iron plays a balanced attractive force interacting with the nitrogen 

molecules of heme, thus, electrons stay balanced and the global molecule remains stable.  

There are 4 different forms of heme in nature: heme-A, -B, -C and -O;  they influence the 

function of the molecules in which heme is present. Although heme-B is the most common form, 

heme-A and -C are present in many molecules. Biochemical behaviors of the most common heme 

groups are regulated by differences of the functional groups in the side chains bound to carbon 3, 8 

and 18 [11].  

 

1.2. The synthesis of heme 

Porphyrin synthesis, the biochemical pathway from which heme is derived, begins with the 

synthesis of D-Amino-levulinic acid (D-ALA) which is also the limiting step in heme synthesis [12]. 

D-ALA originates from amino acid (AA) glycine and from Krebs cycle intermediate Succinyl-CoA 

which comes from the α-Ketoglutarate or from the EAAs isoleucine, methionine, threonine or 

valine. Interestingly, the D-ALA synthesis occurs inside the mitochondria, facilitated by the enzyme 

named ALA-synthase which is negatively regulated by glucose and heme concentration. 

Importantly, enzyme  inhibition is also dependent on the stability and availability of its mRNA in the 

mitochondria. Notably, AAs are the sole source of carbon and nitrogen atoms provided to D-ALA, 

demonstrating the narrow link between metabolism of AAs and energetic metabolism. 

Released from the mitochondria, two D-ALA molecules are condensed to form 

porphobilinogen in the cytoplasm. The synthetic reaction continues until the formation of 

coproporphyrinogen-III which is transported inside the mitochondrial matrix and converted to 
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protoporphyrin-IX. The enzyme ferrochelatase then inserts the iron atom, forming heme which is 

shuttled in the cytoplasm where it is uitilized in the synthesis of heme-based molecules [14]. The 

process of heme synthesis is illustrated in the Figure 2.  

 

1.3. Functions of heme 

Heme and hemoproteins have many biological functions. The presence of an iron atom serves 

as a source of electrons during electron transfer or redox chemistry, thereby giving heme the ability 

to transport diatomic gases and to exert chemical catalysis with electron transfer. 

The hemoproteins participate in many diverse biological actions (such as oxygen transport) 

fundamental for life. Indeed, although haemoglobin and myoglobin are the two best known 

hemoproteins, other important, but often overlooked, enzymes which belong to hemoproteins 

include: cytochrome p450s, cytochrome-c oxidase, cyclooxygenase 2, catalase, peroxidases and 

endothelial nitric oxide synthase. In addition, as part of the electron transport chain, hemoproteins 

also enable electron transfer. A change in iron content affects important cell survival systems, 

illustrating that heme is not only important for oxygen transport, but also plays a fundamental role 

in other important metabolic pathways such as: energy production; transformation of many 

molecules and detoxification of aggressive molecules such as as oxygen free radicals; regulation of 

inflammation and/or vascular tone; and blood coagulation [11].  

 

1.4. Other molecules involved in heme synthesis  

CD, especially if associated with qualitative malnutrition, induce a hyper-catabolic state and 

consequent protein disarrangement, which can precipitate the development of anaemia secondary 

to a reduction in hemoglobin. A schematic representation of this link is proposed in Figure 3. 

Independently from iron,  other molecules which are strictly related to heme synthesis include:  

VITAMIN B1. Its’ pyrophosphate ester, thiamine diphosphate (TPP) is a co-factor for enzymes 

that catalyse alpha-keto acids of molecules involved in the Kreb’s cycle and its intermediary 

metabolism [15]. 

VITAMIN B6. It co-catalyses reactions related to the anabolism and catabolism of AAs, 

facilitating the reactions of transamination. Interestingly, it is involved in protein folding, interacting 

with the folate cycle. In addition, vitamin B6 is a scavenger of free oxygen radicals [16]. 

VITAMIN B9 (Folate). It is a co-factor of many enzymes involved in the redox reactions and 

transfer of AAs’ one-carbon unit (DNA methylation) [17]. 
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VITAMIN D. It has anti-inflammatory properties, reducing circulating cytokines (IL-6, IL-1B) that 

counteract catabolism and autophagy. It stimulates the synthesis of anabolic molecules (as 

fibroblast growth factor-23 alias FGF-23) and increases red blood cell lifespan. In addition, it 

modulates hepcidin, a molecule responsible for the regulation of iron metabolism [18]. 

AMINO ACIDS. Hemoproteins (as haemoglobin), consisting of heme (as the metabolically active 

part) and surrounding proteins (as globin molecules), contain a large number of different AAs. 

Previous work has shown that administration of free EAAs mixtures tailored to the human metabolic 

process was able to improve anabolism, aerobic metabolism, and mitochondrial neogenesis [19, 

20]. Rapidly absorbed, this mixture contains appropriate stoichiometric amount of all EAAs which 

can be converted into non-essential-AAs (NEAAs) as Glycine [21]. Moreover, the EAAs mixture 

contains: a) L-Lucine, which modulates the enzyme mTORC1 involved in haemoglobin production, 

and b) Histidine, which stabilises bound O2 and acts as a gate allowing ligand entry of both 

haemoglobin subunits [22, 23]. Histidine, essential in globin synthesis and erythropoiesis, has also 

been implicated in the enhancement of iron absorption from human diets. Furthermore, histidine 

has already proven to be effective both in improving anti-anaemic efficiency and limiting the 

damages resulting from iron overload and oxidative stress caused in CKD [24]. Conversely, beta-

alanine supplementation would impair protein synthesis by reducing histidine concentration and 

availability [25].  

In light of these considerations, provision of the molecules involved in the synthesis of heme 

and hemoglobin is essential, even more so if patients are nutritionally deficient.  

 

2. Methods  

Based on the aforementioned fundamental biochemical knowledge and in observation of 

“good medical practice” (www.gmc-uk.org), we conducted a controlled clinical trial which 

integrated personalised standard therapy with iron infusion, along with the administration of 

specialized mixtures rich in free EAAs [21] and vitamins (B1, B6, B9, D)  to treat heme synthesis 

deficiency in a cohort of select elderly female patients (n=15; age 78.3 ±8.5 y.o.) with CHF. Written 

informed consent was obtained; ethical approval was not required under local legislation. The 

inclusion criteria were: 1) anemia (Hb >8.5/<11.5 mg/dl); 2) symptoms and signs of stable CHF for 

at least 3 months on a standard medical therapy with beta-blocker, diuretics, ACE-inhibitor or ARB; 

3) protein disarrangement (albuminemia <3.5 g/dl), but normal BMI (>24); 4) iron deficiency (plasma 

iron <50 mg/dl, ferritin <100 mg/dl, or serum ferritin within range 100-299 mg/dl when transferrin 
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saturation is <20%); 5) inflammation (by CRP >5 mg/l); and 6) vitamin D and/or folate lower than 

the normal ranges (15.2-90.1 pg/ml and >3.00 ng/ml respectively).  

Since these patients, as well as the haemoglobin concentration, had levels of albumin and 

vitamins below the minimum, according to good medical practice, we treated them for 30 days with 

daily intravenous administration of 100 mg of ferric carboxymaltose, integrated with oral 

administration of 4g of specific free AAs mixture rich in essential ones (84%), 15mg of Vit.B9, 0.15mg 

of Vit.B1 and Vit.B6 and 1000UI/die of Cholecalciferol (Vit.D).  

Intravenous ferric carboxymaltose has been previously demonstrated to improve symptoms, 

functional capacity, and quality of life in HF patients, even in the absence of anemia,  in the FAIR-HF 

clinical trial [10]. Subsequent clinical trials have re-confirmed the benefits of intravenous ferric 

carboxymaltose, with improvement in exercise capacity in the EFFECT-HF trial [26], and reduced risk 

of hospitalizations for HF exacerbation in the CONFIRM-HF trial [27],  and in the recently published 

AFFIRM-AHF clinical trial [28]. 

The control group consisted of a cohort of elderly female patients (n=15; age 76.1 ±11 y.o.) 

with the same inclusion criteria, except that the levels of albumin and vitamins were near the lower 

limits of normal range. This group received only standard iron therapy without supplementation. 

The baseline mean clinical biochemical data from two cohorts are summarized in Table 1. 
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3. Results 

Baseline and post-intervention clinical biochemical data are summarized in Table 2. Increased 

levels of sideremia, ferritin, saturated transferrin were observed in both groups; there was no 

diffence in total transferrin values. However, only the experimental group receiving intravenous iron 

therapy PLUS integrated therapy demonstrated increased levels of haemoglobin (Figure 4A-B) 

compared to the standard iron therapy only group [see Table 3 and Figure 4C-D]. 

The Student t-Test was used to compare the data before and after treatment, with p-value 

<0.05 considered significant.   

 

4. Discussion and Conclusion 

The incidence of anemia (32%) is common in HF patients, with concurrent iron and folate 

deficiencies noted in 43% of anemic patients, compared to 15% of non-anemic patients [29]. 

Currently, the standard therapy of anemia is primarily based on the supplementation of iron, with 

or without erythropoietin for hematopoiesis stimulation. Previous randomized, controlled studies 

with intravenous iron in HF patients reported that haemoglobin increased after 4 or 6 months [7, 

10, 30, 31]. Indeed, if a deficiency of fundamental molecules (such as amino acids and vitamins) 

results in the lack of heme synthesis, iron supplementation alone will not lead to a proportional 

hemoprotein increase, or Hb in primis. In addition, an isolated increase in iron, without any 

accompanying augmentation in heme, could favor the persistence of oxidative stress (via 

Fenton/Haber-Weiss reactions), chronic inflammation and autophagy [32]. The mode of iron 

supplementation also appears to be important, as oral supplementation has not been shown to be 

effective in improving exercise capacity in patients with HF with reduced ejection fraction and iron 

deficiency [33]. 

Based on these preliminary data demonstrating a rapid escalation in hemoglobin level (within 

30 days after interventions aimed at increasing iron and heme), we conclude that the effective 

approach to treating heme synthesis (including anaemia) in CD must consider not only the iron 

availability, but also integrate a therapeutic strategy which counteracts catabolism. Therefore, the 

standard intravenous or oral iron supplementation should incorporate the supply of specific 

mixtures of EAAs and vitamins involved in biochemical pathway of the heme synthesis as illustrated 

in the Figure 5. Consequently, the careful evaluation of nutritional status of patients, the presence 

of catabolism and of molecules involved in heme synthesis, as well as their integration, must 

therefore be the first step of the personalized therapeutic intervention aimed at correcting the state 
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of anaemia in patient with CD such as CHF. Our therapeutical approach based on biochemical data 

should be confirmed in a large-scale clinical trial. 

 

Main messages 

• In chronic hypercatabolic diseases (such as CHF), the metabolism of iron and heme-protein 

is markedly impaired, inducing anaemia and likely impairment of many other hemoproteins involved 

in essential metabolic pathways. 

• Heme is the metabolically active part of haemoglobin. It is characterised by the presence of 

iron atoms linked to tetrapyrrole groups. 

• Many other important biologically active molecules named hemoproteins (including Hb) 

contain heme as the metabolically active part, with surrounding proteins (as globin molecules) 

containing a large number of different amino acids.  

• Maintenance of an adequate blood concentration of both iron and heme is fundamental for 

proper function of the heme-containing enzymes. 

• In patients with anemia and chronic hypercatabolic diseases, the correction of deficiencies 

in iron, as well as metabolic substrates required for all hemoproteins, is essential for proper 

treatment. 
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Table 1. Comparison of baseline antropometric and clinical biochemical data from patients who 

have received integrated therapy and iron standard therapy (control). Note that patients that 

received iron standard therapy have nutritional parameters (albumin and vitamins) close to the 

lower limit of normal range. 

 

 
INTEGRATED THERAPY 

(n = 15) 

STANDARD THERAPY 

(n = 15) 

Normal 

value 

Age (y.o) 78.3 ±8.5 76.1 ±11 --- 

BMI 26.9 ±1.85 25.5±1.91 <25 

Haemoglobin (g/dl) 10.2 ±0.8 10.37 ±0.91 >11.5 

Creatinine (mg/dl) 1.06 ±0.25 1.02 ±0.19 0,5-1,1 

Albumin (g/dl) 3.31 ±0.37 3.55 ±0.08 >3.5 

Iron (%) 44.33 ±8.56 45.87 ±12.10 55-65 

Ferritin (mg/ml) 73.73 ±38.81 94.80 ±40.76 5-204 

Sideremia (ug/ml) 36.07 ±6.85 33.72 ±9.33 50-170 

Transferrin saturated (%) 14.33 ±4.24 12.88 ±2.18 20-45 

Transferrin total (mg/dl) 228.53 ±48.09 224.33 ±50.0 180-380 

Vit. B9 (ng/ml) 2.32 ±0.35 3.13 ±0.20 3 

1,25-OH Vit.D (pg/ml) 17.73 ±4.23 21.87 ±2.25 21-100 

RCP (mg/L) 10.67 ±2.43 10.82 ±2.70 <5 

NT-proBNP (pg/ml) 2449.2 ±2048.69 2650.27 ±2177.65 <450 

LVEF (%) 54 ±6 56 ±5 >50 

CVP (mmHg) 5.5±1.08 5.73 ±1.05 <8 
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Table 2. Clinical biochemical data before (baseline) and after (30 days) integrated therapy. * 

p<0.01 

 

INTEGRATED THERAPY BASELINE 30 DAYS t p 

Haemoglobin (g/dl) 10.1 ±0.76 11.06 ±0.83 * 3.304 0.003 

Ferritin (mg/ml) 73.73 ±38.81 390.93 ±196.4 * 6.147 0.000 

Sideremia (µg /ml) 36.07 ±6.85 81.93 ±16.84 * 9.770 0.000 

Transferrin saturated (%) 14.33 ±4.24 51.28 ±10.24 * 12.912 0.000 

Transferrin total (mg/dl) 228.53 ±48.09 253.0 ±50.37 1.361 0.184 

 

 

 

Table 3. Clinical biochemical data before (baseline) and after (30 days) standard iron therapy. * 

p<0.01 

 

STANDARD THERAPY BASELINE 30 DAYS t p 

Haemoglobin (g/dl) 10.37 ±0.91 10.66 ±0.93 0.863 0.395 

Ferritin (mg/ml) 94.80 ±40.76 631.47 ±289.66 * 7.106 0.000 

Sideremia (µg /ml) 33.72 ±9.33 109.0 ±28.02 * 9.872 0.000 

Transferrin saturated (%) 12.88 ±2.18 56.23 ±9.85 * 16.642 0.000 

Transferrin total (mg/dl) 224.33 ±50.0 218.33 ±55.74 0.310 0.759 
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Figure legends  

 

Figure 1. Haemoglobin  structure. 

 

Figure 2. Heme synthesis and degradation pathways. 

 

Figure 3. Schematic representation of the effect of chronic diseases and malnutrition on the onset 

of anaemia. 

 

Figure 4. A and B) Change in hemoglobin concentration in each patient consequent to integrated 

therapy. Histogram shows the mean (±sd) concentration of haemoglobin before (pre) and after 

(post) integrated therapy. C and D) Change in hemoglobin concentration in each patient consequent 

to iron standard therapy. Histogram shows the mean (±sd) concentration of haemoglobin before 

and after iron standard therapy. The black line indicates the minimum reference value. * p<0.01. 

 

Figure 5. Schematic representation of the effects of integrated therapy on the containment of 

anemia. 
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