Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Effect of Mechanical Vibrations During Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of four Apple Cultivars

Version 1 : Received: 6 December 2020 / Approved: 7 December 2020 / Online: 7 December 2020 (16:00:33 CET)

A peer-reviewed article of this Preprint also exists.

Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81. Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The Effect of Mechanical Vibration during Transport under Model Conditions on the Shelf-Life, Quality and Physico-Chemical Parameters of Four Apple Cultivars. Agronomy 2021, 11, 81.

Abstract

The study assessed the changes in the quality and physical and chemical parameters of apples of four cultivars (‘Gala’, ‘Idared’, ‘Topaz’, ‘Red Prince’) subjected to mechanical vibrations during transport under model conditions and after storage (shelf-life). Quality changes in apples were evaluated based on skin and flesh colour, total soluble solids, dry matter, firmness, titratable acidity, pH value, total polyphenol content and antioxidant capacity. The applied vibrations at a frequency of 28 Hz caused changes in the above parameters, which were visible also after storage and depended on cultivar, but did not show any clear trend or direction. Skin colour varied whereas flesh colour remained stable. Vibrations resulted in a decrease in firmness. The greatest stability of quality parameters, the highest content of bioactive compounds and the highest antioxidant capacity were observed for ‘Red Prince’ and ‘Topaz’ apples – this refers to the control and treated samples before and after storage. However, total polyphenol content and antioxidant capacity increased in all studied cultivars as a result of vibrations and storage, which suggests that 28 Hz mechanical vibrations and short-term cold storage did not reduce the health promoting potential of the apples.

Keywords

fruit transport; mechanical damage; physiological disorders; fruit maturity; colour; firmness

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.