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Abstract: It is a theoretical exportation for mass transpiration and thermal transpiration of Casson
nanofluid over an extending cylindrical surface. The Stagnation point flow through porous matrix is
influenced by magnetic field of form strength. Appropriate similarity functions are availed to yield
the transmuted system of leading differential equations. Existence for the solution of momentum
equation is proved for various values of Casson parameter β, magnetic parameter M, porosity
parameter Kp and Raynolds number Re in two situations of mass transpiration (suction/injuction).
Moreover, uniqueness results are discussed and for skin friction factor are established to attain
accuracy for large injection values. Thermal and concentration profiles are delineated numerically by
applying Runge-Kutta method and shooting technique.
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1. Introduction

Non Newtonian fluids do not satisfy the Newton’s law of viscosity e.g. juice of apple, few oils,
cream, honey, blood, toothpaste etc. Casson is a different type of fluid among all of them. claimed
that for some fluids the rheological model is better as compared to the viscoelastic model. And he
also favored this model for blood as well as for chocolate. Basically, the sample of casson fluids is
made up due to the connections or interactions between the phases of liquids and solid. When yield
stress becomes compulsory and it is lower than the shear stress, Cason fluids behaves like solids. e.g.
Soup, tomato, honey, etc. Human blood is also an example of Casson fluid. Shah et al. [1] investigated
the flow of casson nano fluid along with activation energy as well as the chemical reaction by using
the stretched surface. Shah et al. [2] discussed the flow of casson fluid by stretched sheet along with
the impact of radiation into contemplation. Hamid et al. [3] investigated the stretched sheet with
Mhd casson fluid flow and it’s effect on thermal radiation which is acting linearly. Priyadharshini and
Ponalagusamy [4] discussed the impact of MHD on the paramerers of blood in stenosed artery along
with the magnetic nanoparticals.

Some analytical uses of straight-line flows along with the stretching/shrinking sheet or by
the regular string consist in different processing of collecting i.e. industry of polymer, a porous
stretching/shrinking of plastic films, artificial filaments, fibers of counterfeit, melting of metals,
expulsion of metals, persistent throwing, glass blowing etc. [5]. Firstly, the problem of the stretching
sheet was discussed by Sakiadis [[6], [7]]. Awaludin et.al. [8] discussed the boundary layer flow of
magnetohydrodynamic over stretching and shrinking sheet. Dzulkifli et. al. [9] analyzed the flow of
stagnation point as well as relocation of heat over stretching and stretching sheet by using the nano
fluid along with the impact of slip velocity. Bakar et.al.[10] disussed on analysis of relocation of heat
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along with the nanofluid by using stretching / shrinking surface with the impact of suction. Malvandi
et al. [11] discussed about the flow of stagnation point by using the nonlinear stretching/shrinking
sheet which is a porous surface.

In 1942, Haanas Alfren introduced terminology of MHD “Magnetohydrodynamic”. Large number
scholars has done researches to understand the properties of MHD and to check these properties
impact with various terms of nanofluid Now a days using in various fields of life such as astrophysics,
medical science, geography, and many other. Impact of activation energy of Arrhenius over a nonlinear
stretching surface with convective third grade nanofluid in MHD flow investigated by Hayat et al. [12].
Nanomaterials treatment regardless of the imposition of MHD streamline considering the melting
sheet reviewed by Dinh et al. [13]. Explored MHD nanofluid flow over a porous formation of shrinking
walls of entropy conducted by Rashid et al. [14]. Research taken on magnetohydrodynamic current
of nanofluid through a vertical permeable plate that flows semi-infinitely by Pavar et al. [15]. Chen
et al. [16] studied Mixed convection nanofluid stream in vertical channel entropy production in
magnetohydrodynamic.

Nano liquids are potential heat exchange fluids with improved thermos-physical properties
and heat trade execution can be associated with various tools for better exhibitions Work nowadays
in the area of nano-materials grown rapidly due to its comprehensive implementations in variety
of fields. Scholars paid so interest in recent array in this field due to their various applications,
heat and mass transfer In the engineering and industrial appliances sector, for example Nuclear
reactor cooling, furnace, coolant, polymer Process, filament plastics. Improving fluid thermal
conductivity of nanoparticles studied by Choi and Eastman [17]. Nanofluid jet cooling fluid flow
and heat transfer analysis on a hot surface with varying roughness studded by Mahdavi et al. [18].
Review the laminar-turbulent transition zone of the heat and fluid streaming of an Al2O3-water
nanofluid conducted by Baclot et al [19]. Saif et al. [20] condected research on Jeffrey nanofluid
magnetohydrodynamic flow becuse of a curved stretching surface. Three dimensional casson-carreau
nanofluid flow numerical scrutinization interrogated by Shahid et al. [21].

Transportation of heat and mass for Casson nano fluids across extending cylindrical surface is
elaborated herein. The non-linearity involved in the formulation is tackled by numeric simulation on
matlab platform by employing R-K method combined with shooting technique. The innovation of the
work highlighted the existence of solution with uniqueness of results and bounds for skin friction.

2. Mathematical Formulation

In the segment, we are concerned with the following incompressible Casson Nanofluid model

∂tρ + u.∇ρ = 0

ρ(∂tu + u.∇u) = −∇ρ− (1 +
1
β
)µ∆u− f

div u = 0

∂tT + div(u T) =
k

ρCp
∇2T + τ(DB ∂rT ∂rC +

DT
T∞

(∂rT)2)

∂tC + div(u C) = DB ∇2C ++
DT
T∞

(∂rT)2


(1)

Consider an incompressible and electrically conducting fluid which flows steady state across an axially
extending cylinder (radius = R). There is a non varying magnetic field of intensity Bo acts normally to
the axis of symmetry. The temperature Tw and concentration Cw are taken at the cylinder and T∞ and
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C∞ are the far field temperature and concentration. Casson fluid parameter is β and k′ is the porosity
of medium. The formulation in (r, θ, z) is constituted keeping in cantact with the assumptions.

∂(rw)

∂z
+

∂(ru)
∂r

= 0,

w
∂w
∂z

+ u
∂w
∂r

= ν(1 +
1
β
)(

∂2w
∂r2 +

1
r

∂w
∂r

)−
σB2

0w
ρ
− ν

k′
w,

w
∂T
∂z

+ u
∂T
∂r

= α(
∂2T
∂r2 +

1
r

∂T
∂r

) + τ(DB
∂T
∂r

∂C
∂r

+ (
∂T
∂y

)2 DT
T∞

),

w
∂C
∂z

+ u
∂C
∂y

= DB(
∂2C
∂r2 +

1
r

∂C
∂r

) +
DT
T∞

1
r
(

∂

∂r
(r

∂T
∂r

)).


(2)

with boundary conditions:

u = Uw, w = ww, T = Tw, C = Cw, n− nw = 0, at r = a,

w→ 0, T → T∞, C → C∞, as r → ∞.

}
(3)

Figure 1. Physical configuration and coordinate system

In order to yield dimensionless form, similarity transformations are entitled as:

ξ = (
r
a
)2, u = −ca

f (ξ)√
ξ

, w = 2c f ′(ξ)z, θ(ξ)− T − T∞

Tw − T∞
= 0, φ(ξ)− C− C∞

Cw − C∞
= 0.

}
(4)

The first expression in (2) becomes an identity and the remaining’s take the form as follow:

(1 +
1
β
)ξ f ′′′ + f ′′ − Re[ f ′2 − f f ′′]− (M + Kp) f ′ = 0 (5)

ξθ′′ + (1 + PrRe f )θ′ + ξPr[Nbθ′φ′ + Ntθ′2] = 0 (6)

ξφ′′ + (1 + LeRe f )φ′ +
Nt
Nb

[ξθ′′ + θ′] = 0 (7)
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Where the expression (3) are transformed:

f (1) = γ, f ′(1) = 1, θ(1) = 1, φ(1) = 1,

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0,

}
(8)

3. Existence

Consider the BVP (boundary value problem)

(1 +
1
β
)ξ f ′′′ + f ′′ − Re[ f ′2 − f f ′′]− (M + Kp) f ′ = 0 (9)

with
f (1) = γ, f ′(1) = 1, f ′(∞)→ 0.

In order to get the corresponding IVP (initial value problem), the missing initial condition is
assumed to be

f ′′(1) = ε, (10)

Here ε, as a free parameter is relevant to skin friction parameter f (ξ; ε) denotes the solution. It is
because an IVP can be uniquely solved (locally). Thus, a topological shooting argument for some
choice of ε will yield. For convince, the dependence of f on ε may be skipped for some time. The
existence of f ′(ξ; ε) for all ξ > 1 to satisfy Eq. (8). It may yield a solution to BVP. Two sets X and Y are
taken as:

X = ε < 0| a f irst point ξX > 1 is such that f ′(ξ) > 0 and f ′′(ξX) = 0 on [1, ξX ]

and
Y = ε < 0| a f irst point ξY > 1 such that f ′(ξ) < 0 and f ′′(ξY) = 0 on [1, ξY]

Both of these sets are shown to be open and non-empty in the two Lemmas below:
Lemma 1. The set X is non-empty and open.
Proof. From Eqs (9) and (10), for ξ = 1,

(1 +
1
β
) f ′′′(1) = Re− ε[(1 +

1
β
) + Rγ] + (M + kp) (11)

When ε = 0, it implies that f ′′′(1) = Re > 0. Then initially f ′ > 1 and f ′′ > 0 on (1, 1 + δ] for some
δ > 0. The continuity of the solutions of IVP and for ε < 0 approaching zero, f ′(ξ; ε) approaches
f ′(ξ; 0), i.e., f ′(ξ; ε) > 0 on (1, 1 + δ] with f (1 + δ; ε) > 1. But f ′(ξ; ε) < 1 and non-increasing for
ξ ∈ (1, 1 + δ1) for some 0 < δ1 < δ. f ′ is to have a minimum if it is to go over 1. So the existence of first
point ξX such that f ′′(ξX ; ε) = 0 and f ′(ξX ; ε) > 0 on [1, ξX ]. Therefore in case of ε < 0 approaching to
0 this implies that ε belong to A. In order to show that X is open, let ε̄ ∈ X is open, let ∈̄X. It is to show
that all ε approaching ε̄ are in X. Then f ′′(ξX) = 0 and 0 < f ′(ξX) < 1. At ξX(ε̄), the Eq. (5) yields

f ′′′(ξX) =
1

(1 + 1
β )ξX

[Re f ′2(ξX) + (M + Kp) f ′(ξX)] > 0.

As the situation for IVP is continuous in its initial conditions, ε is approaching close to ε̄, f ′′(ξ; ε) has
a root ξX(ε), near ξX(ε̄) with f ′(ξ; ε) > 0. Thus ε ∈ X. We are there with the only possibility that
f ′′ = 0 and f ′ = 0 simultaneously. When these values are substituted in Eq. (5), then f ′′′ = 0 to imply
f ′(ξ) = 0 for all ξ. This is a contradiction to Eq.(8).
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Lemma 2.The set Y is open and non-empty.
Proof. The Eq. (5) after integration yields as:

(1 +
1
β
)ξ f ′′(ξ) = (1 +

1
β
)ε + Re

∫ ξ

1
( f ′2(z)− f (z) f ′′(z))dz + (M + Kp)( f (ξ)− γ) (12)

and a subsequent integration by parts yields

(1 +
1
β
)ξ f ′′(ξ) = (1 +

1
β
)ε + 2Re

∫ ξ

1
f ′2(z)dz + Re[γ− f (ξ) f ′(ξ) + (M + Kp)( f (ξ)− γ)] (13)

It is to show that there is ε < 0, such that f ′ is equated to zero in the interval (1,2], say, before f ′′ = 0 in
strict. Suppose this assertion is not true and consider.
Case (1A). Taking f ′′ < 0, 0 < f ′ < 1 for ξ ∈ (1, 2], when γ ≥ 0: By integrating 0 < f ′ < 1 yields
γ < f < γ + ξ − 1 on (1,2]. Then Eq. (13), provides:

f ′′ < [
ε

2
+ 2Re + Reγ + (M + kp)](1 +

1
β
)

By selecting ε < −2(M + Kp)− 2Reγ− 4Re− 2 to have f ′′ < −1(1 + 1
β ) on (1,2] and thus f ′(2) < 0

which contradicts f ′ > 0 on (1,2].
Case (1B). f ′′ < 0, 0 < f ′ < 1 for ξ ∈ (1, 2], γ < 0. Also, the integration of 0 < f ′ < 1 on (1,2] yields
γ < f < γ + ξ − 1 on (1,2]. By employing these conditions in Eq. (13) to get

f ′′ < [
ε

2
+ 2Re + Reγ + (M + kp)](1 +

1
β
)

Choosing ε < −2(M + Kp)− 4Re− 2 then f ′′ < −1(1 + 1
β ) on (1,2] and f ′(2) < 0, it is a contradiction

to f ′ > 0 on (1,2].
Case (2). If there is first point ξ1 ∈ (1, 2] when f ′′(ξ1) = 0 with f ′′ < 0 on (1, ξ1). By taking conditions
on f ′′ as in case (1), it results in

f ′′ < [2Re +
ε

2
], whenγ < 0,

f ′′ < [Reγ + 2Re +
ε

2
], whenγ ≥ 0.


for ξ ∈ (1, ξ1]. Choosing

f ′′ < [−4Re, whenγ < 0,

f ′′ < −(2Reγ + 4Re), whenγ ≥ 0.

}
implies that f ′′(ξ1) < 0 it contradicts f ′′(ξ1) = 0.
Case (3). We are left with options that f ′′ = 0 and f ′ = 0, but the process of Lemma 1, yields that
f ′ ≡ 0 to contradict Eq. (8).
Hence Y is non void. Now it is to see that Y is open, let ε̄ ∈ Y with existence of ξY(ε̄) such that
f ′′ξY(ε̄) < 0 and f ′ξY(ε̄) = 0. The continuity of the solution of IVP, for ε close to ε̄, there exist ξY(ε)

with f ′′ξY(ε) < 0 and f ′ξY(ε) = 0, and so, Y is open.
Thus X and Y are non empty, disjoint and open sets, but (−∞, 0) is connected and so XUY 6= (−∞, 0).
Thus, there is ε∗ such that ε∗ 6∈ X and ε∗ 6∈ Y. As already noticed it in not possible to have f ′ = 0 and
f ′′ = 0 simultaneously; thus, thus only choice is f ′′(ξ; ε∗) < 0 and f ′(ξ; ε∗) > 0 for all ξ > 1.
Since f ′ is bounded below and decreasing, f ′(∞; ε∗) = Z exists where 0 ≤ Z < 1. It is to see that
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Z = 0. We let 0 ≤ Z < 1. As f ′′ < 0 for ξ > 1, f ′ is bounded below by Z > 0, and so, f approaches to
positive infinity. Finally the term f f ′′ is negative. The Eq. (5) provides as below:

ξ f ′′′(ξ) = [− f ′′(ξ)− (1 +
1
β
)−1[Re( f f ′′ − f ′2) + (M + Kp) f ′(ξ)]] > ReC2 = K > 0

for ξ to be large enough, there exists a point ξ2 > 1 and ξ > ξ2 to imply that

ξ f ′′′(ξ) >
K
2

By integrating the above expression

f ′′(ξ) > f ′′(ξ2) +
K
2
[ln ξ − ln ξ2] f or ξ > ξ2,

Let ξ → ∞ then f ′′ → ∞, it contradicts to the fact that f ′′ < 0. Hence we have f ′(∞; ε∗) = 0 the
following theorem is established.
Theorem 1. There exists a solution to the boundary value problem for any Re > 0 and −∞ < γ < ∞,
to satisfy f ′(ξ) > 0 and f ′′(ξ) < 0 for all ξ > 1.

4. Uniqueness

Now, we prove uniqueness of results:

Theorem 2, If −∞ < γ < ∞ and Re > 0, then we cannot have two solutions for BVP (see 8)

(1 +
1
β
)ξ f ′′′(ξ) + f ′′(ξ)− Re( f ′2 − f f ′′)− (M + Kp) f ′(ξ) = 0

when f ′(ξ) > 0.
Proof. From Eq. (5), f ′(ξ; ε∗) cannot attain maximum. Thus for a solution with f ′(ξ; ε∗) > 0,
f ′′(ξ; ε∗) < 0. So for any positive solution 0 < f ′(ξ; ε∗) < 1.
Let v = ∂ f

∂α . The differentiation of Eq. (5) with respect to ξ yields:

(1 +
1
β
)ξ f iv + f ′′′ − Re[2 f ′ f ′′ − f f ′′′ − f ′ f ′′]− (M + Kp) f ′′ = 0 (14)

(1 +
1
β
)ξv′′′ + v′′ − Re[2 f ′v′ − v f ′′ − f v′′]− (M + Kp)v′ = 0 (15)

associated with
v(1) = v′(1) = 0, v′′(1) = 1. (16)

Thus for ξ > 1, we have v′ positive and increasing and v′ > 0 and increasing for ξ > 1.
It is to show a positive maximum does not exists for v′(ξ, ε∗). Let a maximum exists at first point for
which v > 0, v′ > 0, v′′ = 0 and v′′′ ≤ 0. Substituting v′′ = 0 into Eq. (15) yields

(1 +
1
β
)ξv′′′ = Re[2 f ′v′ − v f ′′] + (M + Kp)v′ > 0 (17)

It becomes contrary and hence v′ cannot have a maxima. So v′ = ∂ f ′
∂α > 0.

IF we let two solutions f ′(ξ; ε∗) and f ′(ξ; ε∗∗) with ε∗∗ > ε∗, and using Mean Value Theorem

f ′(ξ; ε∗∗)− f ′(ξ; ε∗) = (
∂ f ′

∂ε
)ε=ε̂(ε

∗∗ − ε∗) = v′(ξ; ε̂)(ε∗∗ − ε∗) (18)
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where ε∗ < ε̂ < ε∗∗. Now v′ is bounded below by L > 0 for ξ large as it cannot have a maximum.
Suppose M = L(ε∗∗ − ε∗) and ξ → ∞, From Eq. (18),
0 = 1− 1 = f ′(ξ; ε∗∗)− f ′(ξ; ε∗) = v′(ξ; ε̂)(ε∗∗ − ε∗) > M > 0
It becomes contrary.

5. Bounds for skin friction factor.

Bounds are derived for coefficient of skin friction f ′′(1) = ε∗. As f ′(ξ; ε∗) be a solution of the BVP
to satisfy f ′′(1; ε∗) = ε∗ < 0 and cannot have a maximum. It is claimed that for a solution to company
the boundary condition (8), yields

f ′′′(1) =
1

(1 + 1
β )

[Re− ε(1 + Reγ) + (M + Kp)] > 0 (19)

Consider,
Case-1: Solutions with f ′(ξ; ε∗) > 0 for ξ > 1: let f ′′′(1) < 0 as f ′ is down concave initially. To satisfy
Eq. (8), f ′ must change concavity at some point. For some ξ3 such that f ′(ξ3) > 0, f ′′(ξ3) < 0, and
f ′′′(ξ3) = 0 with f iv(ξ3) ≥ 0. Differentiating Eq. (5), yields:

(1 +
1
β
)ξ f iv + (2 +

1
β
+ Re f ) f ′′′ − Re f ′ f ′′ − (M + Kp) f ′′ = 0, 1 < ξ < ∞, (20)

From Eq. (20), at ξ = ξ3

(1 +
1
β
)ξ3 f iv(ξ3) = Re f ′(ξ3) f ′′(ξ3) + (M + Kp) f ′′(ξ3) < 0 (21)

Also, seen in Lemma 1, f ′′′(ξ3) = f ′′(ξ3) = 0, so it becomes contrary. Next let f ′′′(1) = 0, in Eq. (20) to
get:

f iv(1) =
1

(1 + 1
β )

[Re + (M + Kp)]ε < 0 (22)

Then initially, f ′′′ < 0 for ξ > 1, and f ′′′ cannot change sign.
Case-2: Solution for which f ′(ξ; ε∗) < 0: let f ′′′(1) < 0 and f ′ is down concave initially. Because there
exist a first point ξ4 such that f ′(ξ4) = 0 and f ′′(ξ4) < 0, f ′ is not positive for all ξ. Also, f ′ should
be concave up to satisfy Eq.(8) for some ξ > ξ4 and it attained a minimum. As f ′ does not attain
maximum, f ′ necessarily increase from its minimum monotonically, and then tends to 0 from below to
become concave down.
It becomes clear that, f ′′′ must change sign from minus to plus and back to minus. Thus a point ξ5

is such that f ′′′ has a positive max, i.e., f ′′′(ξ5) > 0, f iv(ξ5) = 0, and f (v)(ξ5) ≤ 0. The Eq. (20) is
differentiated and evaluated at ξ5 to produce,

ξ5 f (v)(ξ5) =
1

(1 + 1
β )

Re( f ′′(ξ5))
2 ≥ 0 (23)

If f ′′(ξ5) 6= 0, contradiction is arrived: Taking the case f ′′(ξ5) = f v(ξ5) = 0. The Eq. (20) is
differentiated two times to have f vi(ξ5) = 0. Then Eq. (20) is differentiated thrice to get a result for
ξ = ξ5

ξ5 f (vii)(ξ5) =
1

(1 + 1
β )

2Re( f ′′′(ξ5))
2 > 0.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2020                   doi:10.20944/preprints202012.0168.v1

https://doi.org/10.20944/preprints202012.0168.v1


8 of 16

So finally, f iv(ξ5) = f v(ξ5) = f vi(ξ5) = 0 with f vii(ξ5) > 0. For ξ nearly greater than ξ5, f iv is positive
and f ′′′ is increasing to contradict if f ′′′ is to possess maximum at ξ5. We have

f ′′′(1) =
1

(1 + 1
β )

[Re− ε∗(1 + Reγ) + (M + Kp)] > 0 (24)

This bounds provides useful information, if γ ≥ − 1
Re . However, we have

Re + (M + Kp)

1 + Reγ
< ε∗, i f γ < − 1

Re
(25)

then an upper bound on ε∗ can be attained if γ ≤ − 2
R . At this stage , it is assumed that

f iv(1) =
1

(1 + 1
β )

(Re + M + Kp)ε−
1

(1 + 1
β )

(2 +
1
β
+ Reγ)[Re− (1 + Reγ)ε + (M + Kp)] < 0 (26)

First if f iv(1) > 0, then there exists a first point ξ6 such that f vi(ξ6) = 0 with f v(ξ6) ≤ 0; otherwise,

f iv(ξ) > 0, f or ξ > 1 (27)

It will leads to a contradiction. Integration of Eq. (4.19) yields:

f ′′′(ξ) > K, f or ξ > 1 (28)

where K = 1
(1+ 1

β )
[Re− ε(1 + Reγ) + (M + Kp)] > 0. Integrating second time

f ′′(ξ) > ε + K(ξ − 1), f or ξ > 1 (29)

When ξ → ∞, let f ′′ → ∞ then f ′ → 0 as needed for Eq. (8).

Table 1. Values of f ′′(1) for Re = 1, M = Kp = 0.1 and β = 10.

γ Lower bounds on f ′′(1) f ′′(1) num. approx Upper bounds on f ′′(1)

-0.5 NA -1.0007 NA
-1.0 NA -0.8389 NA
-3.0 -0.600 -0.4432 -0.402
-4.0 -0.400 -0.3414 -0.340
-6.0 -0.240 -0.2260 -0.220
-8.0 -0.170 -0.1663 -0.160
-10.0 -0.133 -0.1320 -0.131

Thus f iv goes to decrease from 0 at some point ξ6. Differentiate Eq. (20) and evaluate at ξ6 to get

ξ6 f (v)(ξ6) = Re( f ′′(ξ6))
2 ≥ 0

If f ′′(ξ6) 6= 0, it makes a contradiction. If f ′′(ξ6) = 0, then a similar procedure as above provides
f vi(ξ6) = 0 and f vii(ξ6) > 0. Thus f iv > 0 for right interval of ξ6, it is not negative as needed, so
f iv(1) 6> 0.
If f iv(1) = 0 then Eq. (24) becomes f v(1) = Rε2 > 0 then contradiction is attained through above
arguments. Solving for ε in Eq. (26) and using Eq. (25) yields.

Re + (M + Kp)

1 + Reγ
< ε∗ <

(Re + M + Kp)(2 + 1
β + Reγ)

(1 + 1
β )(R−M− Kp) + (2 + 1

β + Rγ)(1 + Rγ)
, i f γ ≤ − 2

R
(30)
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It can be noticed that both bounds converge to zero, and so, f ′′(1) converges to zero as γ (γ < 0)
tends to infinity. Computations of skin friction coefficient f ′′(1) = ε∗ are provided in Table 1. Here
sharpening of the bounds on f ′′(1) is elucidated for a fixed a Re = 1, as the parameter γ enhances.
The bound are acceptable for the solutions of the BVP if γ ≤ − 2

R . Now we discuss the bounds for
γ > − 1

2R . firstly for f ′(ξ; ε∗) > 0 when ξ > 1, and secondly fot f ′(ξ; ε∗ < 0). A lemma is presented
for proof of Theorem 3.

Lemma 3. Suppose f ′(ξ; ε∗) > 0 is solution of Eq.(5) with associated conditions (8). If γ > − 1
2Re ,

then
lim

ξ→∞
[−ξ( f ′′(ξ))2 +

2Re
3

( f ′(ξ))3 + (M + Kp)( f ′(ξ))2] = 0.

Proof.From theorem 1 we take f ′(ξ; ε∗) > 0 for ξ > 1 and f ′′(ξ; ε∗) < 0 for ξ > 1. Then f is increasing
and f ′ is decreasing function. As γ > − 1

2Re , then 1− 1
β + 2Reγ > 0 for ξ > 1. Multiplication of Eq.(5)

with f ′′(ξ) and integrating to get

∫ ξ

1
(1− 1

β
+ 2Re f (z))( f ′′(z))2dz− (1 +

1
β
)ε2 +

2Re
3

+ (M + Kp) =

−(1 + 1
β
)ξ( f ′′(ξ))2 +

2Re
3

( f ′(ξ))3 + (M + Kp)( f ′(ξ))2

 (31)

Here, the LHS of equation Eq.(31) is an increasing function and similarly the RHS. As f ′(ξ; ε∗) is a
solution to the B.V.P, we have f ′ → 0 as ξ → ∞. As −(1 + 1

β )ξ( f ′′(ξ))2 increases and bounded above
by 0, its limit as ξ → ∞ exists.
Also let limit is l 6= 0. Since limξ→∞ f ′(ξ) = 0 and −(1 + 1

β )ξ( f ′′(ξ))2 < 0 for ξ > 1, we must have
l < 0. Suppose l = −m. Keeping in view That RHS of Eq.(31) is increasing, we have

−(1 + 1
β
)ξ( f ′′(ξ))2 +

2R
3
( f ′(ξ))3 + (M + Kp)( f ′(ξ))2 < −m f or ξ ≥ 1

and by skipping second term on LHS to get:

(1 +
1
β
)ξ( f ′′(ξ))2 > m f or ξ ≥ 1.

It implies as:

( f ′′(ξ)−
√

m
(1 + 1

β )ξ
)( f ′′(ξ) +

√
m

(1 + 1
β )ξ

) > 0 f or ξ ≥ 1,

As the second term on the left is negative,

f ′′(ξ) <
√

m
(1 + 1

β )ξ
f or ξ ≥ 1.

Integration of this inequality provides as:

f ′(ξ) < 1− 2
√

m
(1 + 1

β )
(
√

ξ − 1) f or ξ ≥ 1,

and let ξ → ∞ then f ′ → −∞ which is contradiction to Eq. (8).
Theorem 3. Let f ′(ξ; ε∗) > 0 is a solution of Eq.(5) associated with boundary conditions (8). If

γ > − 1
2R , then ε∗ < −

√
1

(1+ 1
β )
[ 2Re

3 + (M + Kp)]
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Proof. Using Lemma 3 results and letting ξ → ∞ in Eq. (31)

∫ ξ

1
(1− 1

β
+ 2Re f (z))( f ′′(z))2dz = (1 +

1
β
)ε2 − 2Re

3
+ (M + Kp) > 0,

since 1− 1
β + 2R f > 0 for ξ > 1. Thus

ε∗ < −
√

1
(1+ 1

β )
[ 2Re

3 + (M + Kp)].

Although the existence of solutions where f ′(ξ; ε∗) < 0 is yet an open problem. Suppose such solution
exist, then a bound on the skin friction coefficient is established in next Theorem 4. Two lemmas are
required for the proof of this bounds

Lemma 4. suppose there exist a solution of Eq.(5) associated with boundary conditions (8) where
f ′(ξ; ε∗) < 0. Then limξ→∞(1 + 1

β )ξ f ′′(ξ) = 0.

Proof. In preview of the case γ ≤ − 2
Re , f ′ must attain a negative minimum and then turn concave

down as f ′ → 0 from below. Thus there exist a point ξ7 such that f ′ < 0, f ′′ > 0, and f ′′′ < 0 for
ξ > ξ7. By using these inequalities and rearranging Eq. (5) into the form

(1 +
1
β
)ξ f ′′′ + (1 + Re f ) f ′′ − Re( f ′)2 − (M + Kp) f ′ = 0, 1 < ξ < ∞, (32)

It is concluded that
f (ξ) > − 1

Re for ξ > ξ7.
Hence f is decreasing and bounded below for ξ > ξ7, and so, f (∞) = l ≥ − 1

Re where l is finite. This
results in

lim
ξ→∞

Re f (ξ) f ′(ξ) = 0. (33)

Hence for all ε1 > 0, there is ξ̄ > ξ7 to yield:

− ε1

4
< Re f (ξ) f ′(ξ) <

ε1

4
f or ξ > ξ̄7. (34)

Keeping in view of contradiction, suppose that limξ→∞(1 + 1
β )ξ f ′′(ξ) 6= 0, there exist an ε1 > 0 and a

sequence ξi → ∞ such that
|(1 + 1

β )ξi f ′′(ξi)| ≥ ε1 for i = 1, 2, .....
and since f ′′ > 0 for ξ > ξ̄7, we have

(1 +
1
β
)ξi f ′′(ξi) ≥ ε1 f or ξi > ξ7. (35)

For any positive integer N, the inequalities (34)-(35) hold where ξN > ξ̄ > ξ7. We get

(1 +
1
β
)ξi f ′′(ξi) + Re f (ξi) f ′(ξi) > ε1 −

ε1

4
=

3ε1

4
f or ξi ≥ ξN . (36)

Arrangements of Eq. (13) yields

2Re
∫ ξ

1
( f ′(z))2dz+ Reγ+ (1+

1
β
)ε = (1+

1
β
)ξ f ′′(ξ) + Re f (ξ) f ′(ξ) + Re[(M+Kp)( f (ξ)− γ)], (37)

here LHS is increasing. It is concluded that the inequality (36) stands for all ξ ≥ ξN and (36) becomes

(1 +
1
β
)ξ f ′′(ξ) ≥ 3ε1

4
− Re f (ξ) f ′(ξ) f or ξ ≥ ξN (38)
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and using (34) in (38) yields
(1 + 1

β )ξ f ′′(ξ) ≥ ε1
2 for ξ ≥ ξN .

Dividing both sides by ξ and integrating results in
f ′(ξ) ≥ f ′(ξN) +

ε1
2 [lnξ − lnξN ] for ξ ≥ ξN .

Finally, suppose ξ → ∞ and f ′ → ∞ which contradict Eq. (8) and thus proof of lemma is complete.
Lemma 5. Let there exists a solution of Eq.(5) with boundary conditions (8) when f ′(ξ; ε∗) < 0

provided that γ > − 1
2R ,
∫ ∞

1 (1− 1
β + 2R f (z))( f ′′(z))2dz > 0

Proof. It is sufficient to show that 1− 1
β + 2R f > 0 for ξ ≥ 1. From Lemma 4,it is seen that f ′ < 0,

f ′′ > 0 and f ′′′ < 0 for ξ > ξ7. Hence f ′′ > 0 and decreasing and f ′(∞) exists, then f ′′(∞) = 0.
Suppose ξ → ∞ in Eq.(31) and using Lemma 4 to get

lim
ξ→∞

[−ξ( f ′′(ξ))2 +
2Re

3
( f ′(ξ))3 + (M + Kp)( f ′(ξ))2] = 0,

and thus ∫ ∞

1
(1− 1

β
+ 2Re f (z))( f ′′(z))2dz = (1 +

1
β
)ε2 − 2Re

3
+ (M + Kp). (39)

Also, we have ∫ ξ

1
(1− 1

β
+ 2R f (z))( f ′′(z))2dz− (1 +

1
β
)ε2 +

2Re
3

+ (M + Kp) =

−(1 + 1
β
)ξ( f ′′(ξ))2 + (M + Kp)( f ′(ξ))2 +

2R
3
( f ′(ξ))3 < 0 f or ξ > ξ7

 (40)

It is to note that both terms on the right are negative, and so,

∫ ξ

1
(1− 1

β
+ 2Re f (z))( f ′′(z))2dz = (1 +

1
β
)ε2 − 2Re

3
++(M + Kp) f or ξ > ξ7. (41)

Thus
∫ ξ

1 (1−
1
β + 2Re f (z))( f ′′(z))2dt tends to infinity from below, and 1− 1

β + 2Re f is to be positive

for large values of ξ. Since γ > − 1
2Re , and 1− 1

β + 2Re f starts out positive because f ′ has only one

sign change − from positive to negative − f attains one maximum and so does 1− 1
β + 2Re f . Thus

1− 1
β + 2Re f > 0 for ξ ≥ 1 and hence, the proof of lemma.
Theorem 4. Let there is a solution for Eq.(5) associated with the boundary conditions (8) where

f ′(ξ; ε∗) < 0. If γ > − 1
2Re , then ε∗ < min[−

√
1

(1+ 1
β )
[ 2Re

3 + (M + Kp)],− Reγ

(1+ 1
β )
]

Proof. Suppose ξ → ∞, using Lemma 4,Eq. (33) in Eq.(37) to achieve as below

∫ ∞

1
( f ′′(z))2dz = (

(1 + 1
β )ε + Reγ

2Re
) > 0,

ε∗ < − Reγ

(1 + 1
β )

(42)

Using Lemma 5 in Eq. (39) to get

ε∗ < −
√

1
(1 + 1

β )
[
2Re

3
+ (M + Kp)], i f γ > − 1

2Re
, (43)

From combining the inequalities (42)-(43) we get

ε∗ < min[−
√

1
(1+ 1

β )
[ 2Re

3 + (M + Kp)],− Reγ

(1+ 1
β )
], if γ > − 1

2Re .
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6. Results and Discussion

The current results are checked for validation in Table 2 and Table 3. Their acceptable accord
with those by Mastroberardino and Siddique [22] has eslablished the accuracy of the present numeric
scheme. The outcomes for velocity f ′(ξ), temperature θ′(ξ) and concentration φ′(ξ) are sketched in
Figure 2 to Figure 5 for two cases of γ(γ = −0.5andγ = 0.5) with the variation of other influential
parameters. The velocity f ′(ξ) vividly decelerated against the increments in magnetic parameter M
as well as that of porosity parameter Kp as seen in Figure 2. The strength of M means growth of
electromagnetic resistive force (Lorentz force) which inherits the flow. Similarly, parameter of porous
matrix (Kp) offers enhanced resistance to the velocity. The incremented values of Re and Casson
parameter β also slowed the flow velocity f ′(ξ) as delineated in Figure 3. Here the viscous effects
are enhanced (to oppose to) momentum. Furthermore, it is noticed that velocity of flow is faster in
case of injection (γ > 0) than for suction (γ < 0). Figure 4 exposed that the nanofluid diffusion
parameters namely Nb (Brownian diffusion) and Nt (Thermophorsis diffusion) are responsible to raise
the temperature function θ(ξ) but the progressive values of Pr reduced θ(ξ). The fluid temperature
for suction is higher than for injection. The greater values of Le and Re diminish the nanoparticle
concentration φ(ξ) in the boundary layer region as depicted in Figure 5.
The absolute values of skin friction are augmented in direct proportion with Kp, M, Re and β for three
cases of γ (γ < 0, γ = 0, γ > 0) as enumerated in Table 4. Physically, Kp signifies the resistance of
porous matrix, M for electromagnetic resistive force, Re (Reynolds number) and β the non-newtonian
viscous effects (for Casson fluid). Hence the drag force enhances. Table 5 indicates that Nusselt
number −θ′(0) increases with Pr and Nt but it diminishes against Nb. Also, the Sherwood number
−φ′(0) exceeds directly with Le and Re.

Table 2. The skin friction coefficient by varying M and Re.

M Re Mastroberardino and Siddique[22] Present Results
γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

0 10 -6.62227 -1.67757 -6.6223 -1.6778
2 -6.88470 -1.92938 -6.8847 -1.9294
5 10 -7.24505 -2.27933 -7.2451 -2.2793
2 1 -2.21659 -1.72075 -2.2180 -1.7214

5 -4.33228 -1.86364 -4.3330 -1.8638
10 -6.88470 -1.92938 -6.8847 -1.9294

Table 3. Nusselt number table for varying γ, Re, M, and Pr.

γ Re M Pr Mastroberardino and Siddique[22] Present Results

0.5 10 2 7 36.60283 36.6027
0.0 6.08375 6.0857
-0.5 0.00002 0.00002
0.5 1 4.57611 4.5741

5 18.99556 18.9952
10 36.60283 36.6027
10 0 36.60105 36.6115

2 36.60283 36.6027
5 36.60551 36.5906
2 0.7 4.18133 4.1801

2 11.13801 11.1360
7 36.60283 36.6027
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Table 4. Skin friction − f ′′(0) for varying Kp, M, Re, and β.

Kp M Re β γ = −0.5 γ = 0 γ = 0.5

0.5 2 10 0.5 1.5608 2.2392 3.1970
1.0 1.6001 2.2818 3.2380
1.5 1.6386 2.3234 3.2781
0.5 0 1.3953 2.0576 3.0218

2 1.5608 2.2392 3.1970
5 1.7862 2.4814 3.4307
2 1 1.2200 1.3002 1.3851

5 1.4208 1.7861 2.2385
10 1.5608 2.2392 3.1970
10 0.5 1.5608 2.2392 3.1970

1.0 1.7271 2.6988 4.1909
1.5 1.8000 2.9378 4.7615

Table 5. Nusselt number −θ′(0) and Sharwood number −φ′(0) for varying Pr, Nb, Nt, Le and Re.

Pr Nb Nt Le Re −θ′(0) −φ′(0)

0.72 0.1 0.1 1 10 4.2980
0.1 5.6546
1.3 7.0521
0.72 0.1 4.2980

0.2 4.1206
0.3 3.9488
0.1 0.1 4.2980

0.2 4.2028
0.3 4.1100
0.1 1 2.4484

2 7.8881
3 13.1081
1 1 0.6743

5 1.4877
10 2.4484
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Figure 2. Plot for velocity profile f ′(ξ) with varying values of M and Kp.
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Figure 3. Plot for velocity profile f ′(ξ) with varying values of Re and β.
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Figure 4. Plot for temperature profile θ(ξ) with varying values of Nb, Nt and Pr.
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Figure 5. Plot for conentration profile φ(ξ) with varying values of Le and Re.
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7. Conclusions

Heat transportation under mass transpiration and magnetic field is studied in the flow of Casson
nanofluid towards an extending cylinder. The varying parameters of velocity and temperature are
elaborated when influential parameters are varied in ranges. We discussed the existence of solution and
showed uniqueness of results The priori bounds on skin friction are also determined and explained.
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