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Amplitude modulation (AM) is a characteristic feature of wind farm noise and has1

the potential to contribute to annoyance and sleep disturbance. This study aimed to2

develop an AM detection method using a random forest approach. The method was3

developed and validated on 6,000 10-second samples of wind farm noise manually4

classified by a scorer via a listening experiment. Comparison between the random5

forest method and other widely-used methods showed that the proposed method6

consistently demonstrated superior performance. This study also found that a com-7

bination of low-frequency content features and other unique characteristics of wind8

farm noise play an important role in enhancing AM detection performance. Taken9

together, these findings support that using machine learning-based detection of AM10

is well suited and effective for in-depth exploration of large wind farm noise data sets11

for potential legislative and research purposes.12
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I. INTRODUCTION13

Amplitude modulation (AM) of wind farm noise (WFN) is a unique feature known to14

contribute to annoyance (Ioannidou et al., 2016; Lee et al., 2011; Schäffer et al., 2016) and15

possibly sleep disturbance (Bakker et al., 2012; Liebich et al., 2020; Micic et al., 2018). AM16

in the context of WFN is defined as a periodic variation in sound pressure level (SPL) at17

the blade-pass frequency (Bass et al., 2016; Hansen et al., 2017), typically between 0.4 and 218

Hz, and is typically most prominent during the evening and night-time when environmental19

conditions tend to be more favourable for AM (Conrady et al., 2020; Hansen et al., 2019;20

Larsson and Öhlund, 2012). AM is a highly variable phenomenon, depending on meteoro-21

logical conditions (Conrady et al., 2020; Larsson and Öhlund, 2014; Paulraj and Välisuo,22

2017), distance from the wind farm and wind farm operating conditions (Hansen et al.,23

2019), making AM challenging to detect.24

AM is commonly detected using simple engineering methods (Hansen et al., 2017) using25

specific noise features (single predictor). For example, frequency domain-based methods26

(Larsson and Öhlund, 2014; Lundmark, 2011) detect and quantify AM using maximum27

spectral peaks between 0.6 Hz and 1.0 Hz. Time domain-based methods typically detect28

AM using SPL variations, where AM is classified as the difference between the 5th and29

95th percentile of SPL greater than 2 dB (Fukushima et al., 2013) or as a peak-to-trough30

difference of 3 dB or 5-6 dB (Bass, 2011; Cooper and Evans, 2013). Recently, the Institute31

of Acoustics UK has developed a hybrid method (Bass et al., 2016), which is a combination32

of time and frequency domain methods. This method uses the prominence ratio, a ratio33
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of peak and masking level, as a predictor of AM occurrence. The main advantage of these34

engineering methods is the ease of their implementation and computational speed, which35

makes them suitable for automated analysis of large data sets (Conrady et al., 2020; Hansen36

et al., 2019; Larsson and Öhlund, 2014). However, evaluation of the performance of these37

methods is currently limited to false positive rates alone, or to small data sets (Bass, 2011;38

Bass et al., 2016; Larsson and Öhlund, 2014) or lacking is altogether (Fukushima et al.,39

2013; Nordtest, 2002).40

Machine learning methods are emerging in many acoustical applications (Bianco et al.,41

2019) such as noise predictions (Valente, 2013), sound propagation (Hart et al., 2016a,b) and42

sound classification (Nykaza et al., 2017). These methods allow for combination of multiple,43

otherwise isolated noise features into one robust classifier. This overcomes one of the major44

issues associated with traditional AM detection methods, which is reliance on a single noise45

feature which poorly accounts for the highly variable and multifaceted phenomenon of AM46

(Hansen et al., 2017). Here we present an AM detection method derived from a random47

forest classification algorithm (Breiman, 2001). We trained and tested this new method was48

trained and tested on human-scored data sets (hereafter referred to as the benchmark data49

set) followed by comparison against three widely-used AM detection methods (Bass et al.,50

2016; Fukushima et al., 2013; Larsson and Öhlund, 2014). Overall, the machine learning-51

based method outperformed current methods and is effective for exploration of large wind52

farm noise data sets.53
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II. METHODS54

A. Overview of data collection55

The data set used for development and validation of the AM detection method contained56

WFN measured at four residences (H1-H4) located between 980 m and 3.5 km from the57

nearest wind turbine of South Australian wind farms (Supplementary Fig. S1). Residence58

H4 was unoccupied and located approximately 30 km from the nearest wind farm, and thus59

it was assumed that AM WFN did not exist at this location. Noise data were measured for60

one year at locations H1 and H2 and two weeks and five months at locations H3 and H4,61

respectively. The H3 data set also contained approximately three days of measurements of62

background noise when the wind farm was not operating. This data set together with the63

H4 data set were used for false positive rate evaluations.64

At all measurement locations, acoustic data were acquired using a Bruel and Kajer LAN-65

XI Type 3050 data acquisition system with a sampling rate of 8,192 Hz and a G.R.A.S type66

40 AZ microphone with a 26CG preamplifier, which has a noise floor of 16 dB(A) and a flat67

frequency response down to 0.5 Hz. Further details of the experimental setup are described68

in (Hansen et al., 2014, 2019).69

B. Benchmark data set generation70

Two benchmark data sets were constructed, one containing 6,000 10-second audio files of71

WFN and the other one of equal size containing no WFN (environmental background noise72

only). The latter data set was specifically constructed for testing false positive detection.73
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These data sets were selected randomly from recorded data (Supplementary Fig. S2). The74

WFN benchmark data set was primarily scored by a single scorer using a validated rating75

experiment procedure based on detection theory (Macmillan and Creelman, 2004). To eval-76

uate inter-scorer agreement, another expert scorer also rated a sub-sample of 100 randomly77

chosen audio samples. The scorers were acoustic engineers familiar with wind farm AM, who78

listened to the audio files and scored the presence versus absence of AM. AM presence was79

rated based on confidence level which varied from high confidence of AM absence (rating80

“1”), to uncertainty between AM presence/absence (rating “3”), to high confidence of AM81

presence (rating “5”) (Supplementary Fig. S3). The rating experiment was performed in a82

bedroom at the Adelaide Institute for Sleep Health, which has a background noise level of83

22 dBA. The noise reproduction system consisted of Bose Quite Comfort II headphones and84

a RME Babyface Pro sound card.85

C. Automated AM detectors86

The proposed AM detection method was compared against three previously published87

AM detection methods. The first method, labelled a1 (Bass et al., 2016), uses a “hybrid” ap-88

proach involving analysis in both the time- and frequency-domains. The other two methods89

labelled a2 (Larsson and Öhlund, 2014) and a3 (Fukushima et al., 2013) are implemented90

in the frequency- and time-domains, respectively.91

Method a1 band-pass filters the signal over the expected AM frequency range, calculates92

the fast-time weighted SPL time series, detrends the data, then transforms the detrended93

SPL time series data to the frequency-domain. AM is then detected where the prominence94
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ratio (PR), the ratio between the spectral peak in the blade-pass frequency range and the95

noise floor, is greater than four (Bass et al., 2016).96

Method a2 is implemented by firstly applying a low-pass filter at 1 kHz, calculating the97

fast-time weighted SPL and then transforming this time series into the frequency-domain.98

The AMfactor, the maximum spectrum amplitude between 0.6 Hz and 1 Hz, is then used to99

obtain the threshold for AM detection. The suggested threshold is 0.4 (Larsson and Öhlund,100

2014).101

Method a3 is implemented by applying a low-pass filter at 1 kHz and then detrending the102

fast-time weighted SPL. After quantifying the variation of detrended SPL via calculating103

the difference between statistical noise levels L95 and L5, this value, referred to as DAM ,104

is used as a threshold for detecting AM. The suggested threshold varies from 2 dB to 6dB105

(Bass, 2011; Cooper and Evans, 2013; Fukushima et al., 2013). More details regarding these106

methods are available as pseudo code provided in Supplementary Algorithm 1-3. Also, the107

source code for method a1, as provided by (Coles et al., 2017) was reimplemented using108

MATLAB in our study (Supplementary Fig. S4).109

D. Random Forest classifier for AM detection110

A random forest classifier (Breiman, 2001) consists of decision trees, which represent111

possible outcome maps for a series of related choices. Decision trees are easy to use and112

generally work very well with the data used to create them, but are more problematic for113

predictive learning models requiring more flexibility for accurate classification of new data114

(Hastie et al., 2009). To overcome these decision tree problems, the random forest classifier115
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uses bootstrap sampling and random variable selection to build multiple trees, which are116

then combined into a random forest classifier as shown in Fig. 1. To classify an input sample117

(i.e., AM or no AM), the relevant audio features are plugged into every predictor (tree) in118

the classifier. Then each predictor classifies the sample as “AM” or “no AM”. Finally, a119

majority voting approach is used to decide if the input audio can be classified as containing120

“AM” or “no AM”. This achieves a probabilistic classifier, where the ratio between the121

number of trees voting “AM” out of the total tree population represents the probability of122

AM being present.123

Tree 1

Feature 1

Feature m

Tree 2

AM

No AM

NoAM
Tree n

Majority
voting

Input Output

Random Forest classifier

Probability of

. .
 .

. .
 . AM/NoAM

FIG. 1. (Color online). Random forest classifier.

Optimisation of hyperparameters, that is parameters which are set before the learning124

begins, was done using a random searching technique (Bergstra and Bengio, 2012). The125

following set of hyperparameters were adjusted: number of trees, number of features consid-126

ered for splitting at each leaf node, maximum number of decision splits, and the minimum127
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number of data points allowed in a leaf node. The random searching technique utilises a128

range of realistic hyperparameters values, as shown in Tab. I.129

TABLE I. Value ranges of the hyperparameters used for random searching.

Hyperparameter Range

Num tree {2, 4, 8, ...1024}

Max num feature {1, 2, 3, ...31}

Max num split {2, 4, 8, ...4096}

Max leaf size {2, 4, 8, ...1024}

E. Audio feature extraction130

WFN spectra are dominated by lower-frequencies, particularly at distances greater than 1131

km from a wind farm (Hansen et al., 2017). Also, WFN can contain both tonal AM (Hansen132

et al., 2019) and/or broadband AM. Furthermore, AM can occur at frequencies ranging133

from 30 Hz to more than 1 kHz, and the peak-to-trough magnitude can vary between each134

successive oscillation period (Larsson and Öhlund, 2014). To help capture the highly variable135

and evolving nature of WFN, which likely influences AM characteristics and consequently136

detection performance, a comprehensive range of 31 noise features were used in this study137

(Supplementary Table. S1). The noise features were divided into five categories, including138

spectral shape features, tonality features, overall noise features, time domain features and139
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features extracted from the other automated AM detection methods described in Section C.140

Further details regarding the feature extraction process are provided in Supplementary Fig.141

S5.142

F. Evaluation metrics143

The performance of the automated AM detection methods was evaluated using both144

a precision-recall curve (PR) and the Matthews correlation coefficient (MCC), which are145

well suit to imbalanced data sets (Lever et al., 2016). To construct the PR curve, pairs146

(precision, recall) were calculated from the counts of true positive (TP ), true negative147

(TN), false positive (FP ) and false negative (FN) as follows148

recall =
TP

TP + FN
; precision =

TP

TP + FP
(1)

The aggregate metric of MCC is a more informative and faithful score of overall classifi-149

cation performance compared to common metrics such as accuracy or F1-score (Chicco and150

Jurman, 2020). The MCC ranges from -1 (classification is always wrong) to 0 (classification151

is no better than random guess) to 1 (classification is always correct), and it is calculated152

as follows153

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2)

The use of a single metric, and even an aggregate metric like MCC, can be misleading154

without careful inspection of the underlying results. Thus, in this study, additional metrics155
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including Cohen’s kappa, accuracy, area under ROC curve, etc., (Lever et al., 2016), were156

also calculated as secondary results (Supplementary Table. S2).157

G. Data and statistical analysis158

All signal, data and statistical analyses were implemented in MATLAB, in which the159

noise feature extraction was implemented using the Audio Toolbox. The random forest160

model was implemented using the Statistics and Machine learning Toolbox. The statistical161

significance threshold used was α = 0.05. All data are reported as mean [95 % confidence162

interval], unless otherwise indicated. Pearson correlation coefficients were used to examine163

the strength of linear relationships between features.164

H. Data availability165

The MATLAB code used to extract features and build the random forest-based AM166

detection method can be found in the GitHub open repository together with the scored data167

set https://github.com/ducphucnguyen/WFN_AM_Detection.168

III. RESULTS169

A. Benchmark data set characteristics170

The benchmark data set of 6,000 10-second audio files was unbalanced with around 40%171

of audio samples containing AM (Fig. 2a). The AM confidence rating was transformed into172

a binary score (AM vs. no AM) using a confidence rating threshold of three. Samples with173
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ratings greater than three were classified as AM, and all other samples were classified as no174

AM. Both positive and negative skewness was observed from the rating distribution, indi-175

cating high confidence in scorer rating. The MCC and F1-score for inter-scorer agreement176

were (mean [95% CI) 0.65 [0.49, 0.80] and 0.77 [0.66, 0.87], indicating a high degree of agree-177

ment (Warby et al., 2014) (See Supplementary Table. S3 for other metrics). Distributions178

of scored audio files over months, hours and wind farm power output relative to capacity179

were also nearly uniform, consistent with ecological validity (Fig. 2b).180

B. Random forest-based AM detection performance181

Hyperparameters were estimated using the out-of-bag samples, which comprised approx-182

imately 37% of the total samples not used for training the classifier. The hyperparameters183

were chosen after 500 iterations by maximising the area under the precision-recall curve184

(AUPRC), (Breiman, 1996) (Fig. 3a). The optimal hyperparameter settings were: 1,024185

trees, a maximum of 16 features, a maximum of 2,048 splits and a minimum of 4 samples in186

the leaf nodes. The precision-recall curve in Fig. 3b shows the optimal random forest clas-187

sifier based on these hyperparameters with AUPRC = 0.85 [0.84, 0.86] (See Supplementary188

Table. S4 for other metrics).189

Some selected features may not useful for AM prediction given a cluster of highly corre-190

lated variables in the dendrogram (showing the hierarchical relationship between features)191

and high Pearson correlation coefficient in Fig. 3c. The four most importance features for192

predicting AM are AMfactor, SpectralCrest, diffLCLA and PR (Fig. 3d).193
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FIG. 2. (Color online). Characteristics of benchmark data sets. A, scorer ratings distribution with

corresponding binary classification. B, distributions of audio files per month, hour and wind farm

power percentage output relative to capacity.

C. Performance of the automated detectors194

The performance of the random forest-based AM detection method was compared to195

three automated detectors (a1-a3) on precision-recall plots (Fig. 4a). The test set for196

detectors a1-a3 was all samples in the benchmark data set while the out-of-bag samples197

were used as the test set for the random forest detector. The random forest-based method198

outperformed the other methods (ANOVA P -value < 0.001), with an AUPRC of 0.85. The199
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FIG. 3. (Color online). Random Forest classifier. A, hyperparameter tuning using a randomized

search technique. The size of the circles represents the maximum splits. Minimum leaf node

samples are not shown. B, the precision-recall curve of the best random forest classifier. The shaded

area indicates 95% CI. C, Pearson correlation coefficient (Pearson’s r) map with dendrogram for
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performance of a1-a3 was poor with the mean AUPRC ranging from 0.43 to 0.55 (Table200

II). The performance of a1 was better than a2 and a3 (all P < 0.001), and a2 performed201

better than a3 (P < 0.001).202

TABLE II. Area under the precision-recall curves and optimal MCC of four methods.

Method AUPRC Max MCC

Random forest 0.85 [0.84 0.86] 0.62

a1 0.55 [0.52 0.58] 0.29

a2 0.47 [0.45 0.49] 0.32

a3 0.43 [0.40 0.44] 0.28

The performance of AM detection algorithms has previously been described in terms of203

the false positive rate (FPR) (Bass et al., 2016; Larsson and Öhlund, 2014), and thus this204

metric was also examined (Fig. 4b). As the random forest classifier is based on probabilistic205

values, a threshold of 0.5 was used for binary classification of AM. Thus, if more than 50% of206

trees in the classifier voted for “AM”, the sample was classified as an AM sample, otherwise207

“no AM” was declared. The cut-of values for method a1-a3 were 4, 0.2 and 2, respectively208

(See Methods section). The false positive rate of the random forest classifier was low (1.6%)209

compared to methods a1-a3 (50%, 19% and 62%, respectively). The false positive rate of210

methods a1 and a3 was not reported in the original descriptions of these methods (Bass211
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et al., 2016; Fukushima et al., 2013), but was reported to be 2.6% for method a2 (Larsson212

and Öhlund, 2014), and thus substantially lower than in our data set analysed in this study.213

To evaluate if the performance of all detectors could be improved using different threshold214

values, thresholds for each method were varied systematically to find the highest MCC215

values as shown in Fig. 4c. The optimal threshold for the random forest classifier was216

0.44 (44% of trees voted “AM”). The optimal threshold for method a1 was PR=6.7, which217

is higher than the original reported value of PR = 4 in (Bass et al., 2016) and the value218

obtained using a Receiver Operating Characteristic curve (PR=3) in (Hansen et al., 2019).219

In contrast, the optimal thresholds for method a2 and a3 were lower than original suggested220

values (Fukushima et al., 2013; Larsson and Öhlund, 2014). For comparison, the MCC221

between two scorers was calculated and considered as the ceiling value for the AM detection222

task (MCC = 0.65), supporting that the performance of the random forest classifier was223

remarkably close to human performance.224

D. Interpretable predictor225

The random forest classifier with 31 features and 1,024 trees outperformed traditional226

detection methods and showed performance comparable with human classifiers. However,227

random forest classifiers work much like a black box, which is difficult to interpret. The228

classifier also requires skilled human and computer resources to implement. Given the229

feature importance findings of the importance of AMfactor, diffLCLA, SpectralCrest230

and PR features, we thus aimed to build a simplified classifier, which can be used as a231

simpler and more portable classifier for AM detection. This simplified classifier was a single232
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FIG. 4. (Color online). Performance of automated detectors. A, performance using the benchmark

data set, where the values associated with each curve are mean [95% confidence interval]. The

shaded area is the 95% CI. B, false positive rate of each detection method estimated from the no

wind farm noise data set. The dashed lines indicate the AM classification threshold. C, optimal

AM detection threshold according to MCC, where negative values indicate performance worse than

by chance
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decision tree built from four features, as shown in Fig. 5. The performance of the single233

decision tree showed AUCPR = 0.68 [0.64, 0.71], which is lower than the random forest234

classifier, yet still higher than methods a1-a3. These results further illustrate that a simple235

combination of several features outperforms traditional single feature detection methods.236

diffLCLA≥12

AMfactor≥0.21

PR≥3.6

SpectralCrest≥30

YesNo

YesNo

YesNo

YesNo

AMNo AM

No AM

No AM

No AM

FIG. 5. (Color online). A simplified single tree classifier utilising the four most important features

for identified by the random forest classifier AM detection.

IV. DISCUSSION237

A validated and high-performing WFN AM classifier based on random forest machine238

learning technique was presented. This classifier substantially outperforms currently avail-239

able classifiers, with a predictive power close to its practical limit set by human scoring.240
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This approach shows major promise as an effective automated tool which could be used for241

detecting WFN AM presence in large data sets, such as for research or to support regulatory242

purposes. This approach also reveals new insights into the nature of AM itself, as it shows243

that other acoustical parameters apart from noise level variations are important for AM244

detection.245

AM is a challenging signal to detect as its characteristics vary depending on meteorological246

conditions. As a result, the spectral content and time varying features are not constant.247

Despite these changes, the auditory system can still recognize the presence of wind farm248

AM. Thus, our presented algorithm sought to incorporate the most important acoustical249

features predictive of human scored AM. The selected features cover the whole range of250

the most dominant WFN characteristics, including noise level variation (or AM), tonality251

and low-frequency content. Two features incorporate noise level variations (AMfactor and252

PR), the difference between LCeq and LAeq is an indicator of low-frequency noise presence253

and the spectral crest provides a simple measure of tonality. These findings support that254

human perception of AM is more complex than assumed by previous AM detection methods255

which are based on noise level variations alone. Hence, it is not surprising that the method256

presented here achieved substantial improvements in performance compared to previous257

methods.258

Very high false positive rates were found for methods a1-a3, which is inconsistent with259

previous reports in (Bass et al., 2016; Larsson and Öhlund, 2014). However, it is worth260

noting that method a1 was originally designed and evaluated on 10-minute samples, as261

opposed to the 10-second samples used in our work, and method a1 classifies AM if more262
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than 50% of 10-second blocks within 10 minutes contain AM. By introducing the above263

criterion, the false positive rate may be substantially reduced, as reported in (Bass et al.,264

2016). However, 10-second long samples appear to have higher ecological validity, as typical265

AM events usually last around 10-15 seconds (Larsson and Öhlund, 2014). With regards to266

the false positive rate for method a2, an arbitrary 30 dBA LAeq cut-off was imposed in the267

original evaluation, which was not used in our study, and likely helps to explain the large268

discrepancy between the originally reported 2.6% (Larsson and Öhlund, 2014) and the 19%269

false positive rate in our study. If the 30 dBA cut-off is applied to our data before method270

a2 is used to detect AM, the false positive rate is reduced from 19% to 9%. This number is271

expected to further reduce if data were measured in a quiet area, where many samples would272

have associated noise levels less than 30 dBA. Therefore, these findings further support that273

false positive rate metrics are problematic for evaluating detection performance (Warby274

et al., 2014), as this only represents one parameter in a confusion matrix.275

A limitation of the present study is the under-representation of noise data measured276

greater than 1 km used for training and testing the random forest classifier. As a result,277

the proposed classifier may not work well for detecting AM measured several kilometers278

from the nearest wind turbine, where AM may have different characteristics (Hansen et al.,279

2019). The classifier could not be tested on data sets measured outside of South Australia,280

where weather conditions and topography near wind farms will inevitably to vary. Although281

the reliability of human scoring has been tested, using a single scorer to classify the AM282

is not ideal. As suggested by Wendt et al. (2015), two or more scorers and a consensus283

scoring approach may be preferable to a single scorer to help ensure broader generalisability.284
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Nevertheless, a single scorer is more practical and avoids potential effects of poor inter-scorer285

agreement. Also, good inter-scorer agreement was found in a smaller subset of the data,286

supporting this approach.287

Although detector a1 clearly warrants improvements in order to increase accuracy, the288

source code (Coles et al., 2017) is readily available, making it easy to understand the method-289

ology and to implement the method. Although the other methods were reproduced as closely290

as possible, our codes may be different from the original codes. This is a similar problem291

previously identified for the reproduction of the tonality assessment code in Søndergaard292

et al. (2019) . Thus, depositing source code to open source repositories, together with rel-293

evant data sets would greatly advance the development of practical and robust amplitude294

modulation detection methods.295

V. CONCLUSIONS296

In summary, this study demonstrates that random forest-based AM detection is a good297

approach for AM classification, and substantially outperforms traditional AM detection298

methods to achieve classification performance close to that of humans. It was also shown299

that a simplified classifier based on a single decision tree using the four main features iden-300

tified through the random forest approach also achieves good classification performance.301

This approach is readily interpretable and easy to implement without the need for extensive302

computer resources. Finally, it is important to stress that the main aim for developing an303

improved AM detection algorithm was to better understand the characteristics of this phe-304

nomenon, and thus algorithm performance was prioritized above algorithm simplicity and305

20

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2020                   doi:10.20944/preprints202012.0152.v1

https://doi.org/10.20944/preprints202012.0152.v1


AM detection method

low computational time. We hope that, in the future, further insight into the prevalence306

of AM, associated meteorological conditions, and impacts on humans will help to explain307

underlying noise generation mechanisms. Ultimately, this will improve the design of wind308

turbines such that they are less disturbing and hence, more acceptable to surrounding com-309

munities.310
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Conrady, K., Bolin, K., Sjöblom, A., and Rutgersson, A. (2020). “Amplitude modulation340

of wind turbine sound in cold climates,” Applied Acoustics 158, 107024.341

Cooper, J., and Evans, T. (2013). “Automated detection and analysis of amplitude modu-342

lation at a residence and wind turbine,” in Acoustics 2013, Victor Harbor, Australia.343

Fukushima, A., Yamamoto, K., Uchida, H., Sueoka, S., Kobayashi, T., and Tachibana,344

H. (2013). “Study on the amplitude modulation of wind turbine noise: Part 1–physical345

investigation,” in Internoise 2013.346

22

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 December 2020                   doi:10.20944/preprints202012.0152.v1

http://https://sourceforge.net/projects/ioa-am-code/
http://https://sourceforge.net/projects/ioa-am-code/
http://https://sourceforge.net/projects/ioa-am-code/
https://doi.org/10.20944/preprints202012.0152.v1


AM detection method

Hansen, C. H., Doolan, C. J., and Hansen, K. L. (2017). Wind Farm Noise: Measurement,347

Assessment and Control, 1 ed. (John Wiley Sons Ltd).348

Hansen, K., Zajamsek, B., and Hansen, C. (2014). “Identification of low frequency wind tur-349

bine noise using secondary windscreens of various geometries,” Noise Control Engineering350

Journal 62(2), 69–82.351
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Larsson, C., and Öhlund, O. (2014). “Amplitude modulation of sound from wind turbines369

under various meteorological conditions,” Journal of the Acoustical Society of America370

135(1), 67–73.371

Lee, S., Kim, K., Choi, W., and Lee, S. (2011). “Annoyance caused by ampli-372

tude modulation of wind turbine noise,” Noise Control Engineering Journal 59(1),373

38, http://www.ingentaconnect.com/content/ince/ncej/2011/00000059/00000001/374

art00005, doi: 10.3397/1.3531797.375

Lever, J., Krzywinski, M., and Altman, N. (2016). “Classification evaluation” .376
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