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A machine learning approach for detecting wind farm noise amplitude modulation
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1 Amplitude modulation (AM) is a characteristic feature of wind farm noise and has
2 the potential to contribute to annoyance and sleep disturbance. This study aimed to
3 develop an AM detection method using a random forest approach. The method was
4 developed and validated on 6,000 10-second samples of wind farm noise manually
5 classified by a scorer via a listening experiment. Comparison between the random
6 forest method and other widely-used methods showed that the proposed method
7 consistently demonstrated superior performance. This study also found that a com-
8 bination of low-frequency content features and other unique characteristics of wind
0 farm noise play an important role in enhancing AM detection performance. Taken
10 together, these findings support that using machine learning-based detection of AM
1 is well suited and effective for in-depth exploration of large wind farm noise data sets
12 for potential legislative and research purposes.
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13 I. INTRODUCTION

14 Amplitude modulation (AM) of wind farm noise (WFN) is a unique feature known to
15 contribute to annoyance (loannidou et al., 2016; Lee et al., 2011; Schéffer et al., 2016) and
16 possibly sleep disturbance (Bakker et al., 2012; Liebich et al., 2020; Micic et al., 2018). AM
17 in the context of WEFN is defined as a periodic variation in sound pressure level (SPL) at
18 the blade-pass frequency (Bass et al., 2016; Hansen et al., 2017), typically between 0.4 and 2
1w Hz, and is typically most prominent during the evening and night-time when environmental
20 conditions tend to be more favourable for AM (Conrady et al., 2020; Hansen et al., 2019;
2 Larsson and Ohlund, 2012). AM is a highly variable phenomenon, depending on meteoro-
2 logical conditions (Conrady et al., 2020; Larsson and Ohlund, 2014; Paulraj and Vilisuo,
2 2017), distance from the wind farm and wind farm operating conditions (Hansen et al.,

2+ 2019), making AM challenging to detect.

2 AM is commonly detected using simple engineering methods (Hansen et al., 2017) using
2 specific noise features (single predictor). For example, frequency domain-based methods
2 (Larsson and Ohlund, 2014; Lundmark, 2011) detect and quantify AM using maximum
s spectral peaks between 0.6 Hz and 1.0 Hz. Time domain-based methods typically detect
» AM using SPL variations, where AM is classified as the difference between the 5 and
0 95" percentile of SPL greater than 2 dB (Fukushima et al., 2013) or as a peak-to-trough
a difference of 3 dB or 5-6 dB (Bass, 2011; Cooper and Evans, 2013). Recently, the Institute
2 of Acoustics UK has developed a hybrid method (Bass et al., 2016), which is a combination
;3 of time and frequency domain methods. This method uses the prominence ratio, a ratio
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u of peak and masking level, as a predictor of AM occurrence. The main advantage of these
55 engineering methods is the ease of their implementation and computational speed, which
s makes them suitable for automated analysis of large data sets (Conrady et al., 2020; Hansen
w et al., 2019; Larsson and Ohlund, 2014). However, evaluation of the performance of these
;s methods is currently limited to false positive rates alone, or to small data sets (Bass, 2011;
% Bass et al., 2016; Larsson and Ohlund, 2014) or lacking is altogether (Fukushima et al.,

o 2013; Nordtest, 2002).

n Machine learning methods are emerging in many acoustical applications (Bianco et al.,
2 2019) such as noise predictions (Valente, 2013), sound propagation (Hart et al., 2016a,b) and
s sound classification (Nykaza et al., 2017). These methods allow for combination of multiple,
s otherwise isolated noise features into one robust classifier. This overcomes one of the major
55 issues associated with traditional AM detection methods, which is reliance on a single noise
s feature which poorly accounts for the highly variable and multifaceted phenomenon of AM
w (Hansen et al., 2017). Here we present an AM detection method derived from a random
s forest classification algorithm (Breiman, 2001). We trained and tested this new method was
» trained and tested on human-scored data sets (hereafter referred to as the benchmark data
o set) followed by comparison against three widely-used AM detection methods (Bass et al.,
s 2016; Fukushima et al., 2013; Larsson and Ohlund, 2014). Overall, the machine learning-
52 based method outperformed current methods and is effective for exploration of large wind

53 farm noise data sets.
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s« II. METHODS

55 A. Overview of data collection

56 The data set used for development and validation of the AM detection method contained
s7. WFN measured at four residences (H1-H4) located between 980 m and 3.5 km from the
s nearest wind turbine of South Australian wind farms (Supplementary Fig. S1). Residence
so  H4 was unoccupied and located approximately 30 km from the nearest wind farm, and thus
o it was assumed that AM WFN did not exist at this location. Noise data were measured for
&1 one year at locations H1 and H2 and two weeks and five months at locations H3 and H4,
2 respectively. The H3 data set also contained approximately three days of measurements of
&3 background noise when the wind farm was not operating. This data set together with the
s« H4 data set were used for false positive rate evaluations.

65 At all measurement locations, acoustic data were acquired using a Bruel and Kajer LAN-
s X1 Type 3050 data acquisition system with a sampling rate of 8,192 Hz and a G.R.A.S type
&7 40 AZ microphone with a 26CG preamplifier, which has a noise floor of 16 dB(A) and a flat
¢ frequency response down to 0.5 Hz. Further details of the experimental setup are described

e in (Hansen et al., 2014, 2019).

70 B. Benchmark data set generation

7 Two benchmark data sets were constructed, one containing 6,000 10-second audio files of
7 WFN and the other one of equal size containing no WEN (environmental background noise
73 only). The latter data set was specifically constructed for testing false positive detection.

4
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7+ These data sets were selected randomly from recorded data (Supplementary Fig. S2). The
s WFN benchmark data set was primarily scored by a single scorer using a validated rating
76 experiment procedure based on detection theory (Macmillan and Creelman, 2004). To eval-
77 uate inter-scorer agreement, another expert scorer also rated a sub-sample of 100 randomly
7s  chosen audio samples. The scorers were acoustic engineers familiar with wind farm AM, who
7o listened to the audio files and scored the presence versus absence of AM. AM presence was
so rated based on confidence level which varied from high confidence of AM absence (rating
s “17), to uncertainty between AM presence/absence (rating “3”), to high confidence of AM
& presence (rating “5”) (Supplementary Fig. S3). The rating experiment was performed in a
&z bedroom at the Adelaide Institute for Sleep Health, which has a background noise level of
sa 22 dBA. The noise reproduction system consisted of Bose Quite Comfort I headphones and

ss  a RME Babyface Pro sound card.

86 C. Automated AM detectors

87 The proposed AM detection method was compared against three previously published
ss AM detection methods. The first method, labelled al (Bass et al., 2016), uses a “hybrid” ap-
g0 proach involving analysis in both the time- and frequency-domains. The other two methods
o labelled a2 (Larsson and Ohlund, 2014) and a3 (Fukushima et al., 2013) are implemented
a1 in the frequency- and time-domains, respectively.

o Method al band-pass filters the signal over the expected AM frequency range, calculates
o3 the fast-time weighted SPL time series, detrends the data, then transforms the detrended

a SPL time series data to the frequency-domain. AM is then detected where the prominence
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s ratio (PR), the ratio between the spectral peak in the blade-pass frequency range and the
s noise floor, is greater than four (Bass et al., 2016).

o7 Method a2 is implemented by firstly applying a low-pass filter at 1 kHz, calculating the
e fast-time weighted SPL and then transforming this time series into the frequency-domain.
oo The AM factor, the maximum spectrum amplitude between 0.6 Hz and 1 Hz, is then used to
o obtain the threshold for AM detection. The suggested threshold is 0.4 (Larsson and Ohlund,
o 2014).

102 Method a3 is implemented by applying a low-pass filter at 1 kHz and then detrending the
w3 fast-time weighted SPL. After quantifying the variation of detrended SPL via calculating
s the difference between statistical noise levels L95 and L5, this value, referred to as DAM,
s is used as a threshold for detecting AM. The suggested threshold varies from 2 dB to 6dB
s (Bass, 2011; Cooper and Evans, 2013; Fukushima et al., 2013). More details regarding these
w7 methods are available as pseudo code provided in Supplementary Algorithm 1-3. Also, the
s source code for method al, as provided by (Coles et al., 2017) was reimplemented using

1w MATLAB in our study (Supplementary Fig. S4).

110 D. Random Forest classifier for AM detection

m A random forest classifier (Breiman, 2001) consists of decision trees, which represent
2 possible outcome maps for a series of related choices. Decision trees are easy to use and
u3  generally work very well with the data used to create them, but are more problematic for
us  predictive learning models requiring more flexibility for accurate classification of new data
s (Hastie et al., 2009). To overcome these decision tree problems, the random forest classifier

6
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ue uses bootstrap sampling and random variable selection to build multiple trees, which are

jan

7 then combined into a random forest classifier as shown in Fig. 1. To classify an input sample

=

us  (i.e., AM or no AM), the relevant audio features are plugged into every predictor (tree) in

o the classifier. Then each predictor classifies the sample as “AM” or “no AM”. Finally, a

1

=

120 majority voting approach is used to decide if the input audio can be classified as containing
1 “AM” or “no AM”. This achieves a probabilistic classifier, where the ratio between the
122 number of trees voting “AM” out of the total tree population represents the probability of

123 AM being present.

Tree 1

Input X Output

Feature 1
Tree 2

[

0

[ Probability of
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[
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FIG. 1. (Color online). Random forest classifier.

124 Optimisation of hyperparameters, that is parameters which are set before the learning
15 begins, was done using a random searching technique (Bergstra and Bengio, 2012). The
s following set of hyperparameters were adjusted: number of trees, number of features consid-

17 ered for splitting at each leaf node, maximum number of decision splits, and the minimum
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number of data points allowed in a leaf node. The random searching technique utilises a

range of realistic hyperparameters values, as shown in Tab. I.

TABLE I. Value ranges of the hyperparameters used for random searching.

Hyperparameter Range

Num tree {2,4,8,...1024}
Max num feature {1,2,3,...31}
Max num split {2,4,8,...4096}
Max leaf size {2,4,8,...1024}

E. Audio feature extraction

WEFN spectra are dominated by lower-frequencies, particularly at distances greater than 1
km from a wind farm (Hansen et al., 2017). Also, WEN can contain both tonal AM (Hansen
et al., 2019) and/or broadband AM. Furthermore, AM can occur at frequencies ranging
from 30 Hz to more than 1 kHz, and the peak-to-trough magnitude can vary between each
successive oscillation period (Larsson and Ohlund, 2014). To help capture the highly variable
and evolving nature of WEN, which likely influences AM characteristics and consequently
detection performance, a comprehensive range of 31 noise features were used in this study
(Supplementary Table. S1). The noise features were divided into five categories, including

spectral shape features, tonality features, overall noise features, time domain features and

do0i:10.20944/preprints202012.0152.v1
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uo Tfeatures extracted from the other automated AM detection methods described in Section C.

w1 Further details regarding the feature extraction process are provided in Supplementary Fig.

142 85
143 F. Evaluation metrics
144 The performance of the automated AM detection methods was evaluated using both

s a precision-recall curve (PR) and the Matthews correlation coefficient (M CC'), which are
s well suit to imbalanced data sets (Lever et al., 2016). To construct the PR curve, pairs
wr  (precision, recall) were calculated from the counts of true positive (T'P), true negative

us (T'N), false positive (F'P) and false negative (F'N) as follows

reca “TPTFN preczszon—Tp+FP
149 The aggregate metric of M CC' is a more informative and faithful score of overall classifi-

150 cation performance compared to common metrics such as accuracy or F'l-score (Chicco and
51 Jurman, 2020). The M CC ranges from -1 (classification is always wrong) to 0 (classification
15218 no better than random guess) to 1 (classification is always correct), and it is calculated

153 as follows

MOC — TP xTN —FPx FN @
V(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

154 The use of a single metric, and even an aggregate metric like MCC, can be misleading

155 without careful inspection of the underlying results. Thus, in this study, additional metrics
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15 including Cohen’s kappa, accuracy, area under ROC curve, etc., (Lever et al., 2016), were

157 also calculated as secondary results (Supplementary Table. 52).

158 G. Data and statistical analysis

150 All signal, data and statistical analyses were implemented in MATLAB, in which the
1o noise feature extraction was implemented using the Audio Toolbox. The random forest
11 model was implemented using the Statistics and Machine learning Toolbox. The statistical
162 significance threshold used was ae = 0.05. All data are reported as mean [95 % confidence
163 interval], unless otherwise indicated. Pearson correlation coefficients were used to examine

14 the strength of linear relationships between features.

165 H. Data availability

166 The MATLAB code used to extract features and build the random forest-based AM
17 detection method can be found in the GitHub open repository together with the scored data

s set https://github.com/ducphucnguyen/WFN_AM_Detection.

1o III. RESULTS

170 A. Benchmark data set characteristics

171 The benchmark data set of 6,000 10-second audio files was unbalanced with around 40%
12 of audio samples containing AM (Fig. 2a). The AM confidence rating was transformed into

173 a binary score (AM vs. no AM) using a confidence rating threshold of three. Samples with

10
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s ratings greater than three were classified as AM, and all other samples were classified as no
s AM. Both positive and negative skewness was observed from the rating distribution, indi-
e cating high confidence in scorer rating. The MCC and F'l-score for inter-scorer agreement
w7 were (mean [95% CI) 0.65 [0.49, 0.80] and 0.77 [0.66, 0.87], indicating a high degree of agree-
s ment (Warby et al., 2014) (See Supplementary Table. S3 for other metrics). Distributions
e of scored audio files over months, hours and wind farm power output relative to capacity

10 were also nearly uniform, consistent with ecological validity (Fig. 2b).

181 B. Random forest-based AM detection performance

182 Hyperparameters were estimated using the out-of-bag samples, which comprised approx-
13 imately 37% of the total samples not used for training the classifier. The hyperparameters
184 were chosen after 500 iterations by maximising the area under the precision-recall curve
s (AUPRC), (Breiman, 1996) (Fig. 3a). The optimal hyperparameter settings were: 1,024
186 trees, a maximum of 16 features, a maximum of 2,048 splits and a minimum of 4 samples in
17 the leaf nodes. The precision-recall curve in Fig. 3b shows the optimal random forest clas-
188 sifier based on these hyperparameters with AUPRC = 0.85 [0.84, 0.86] (See Supplementary

18s  Table. S4 for other metrics).

190 Some selected features may not useful for AM prediction given a cluster of highly corre-
01 lated variables in the dendrogram (showing the hierarchical relationship between features)
12 and high Pearson correlation coefficient in Fig. 3c. The four most importance features for
103 predicting AM are AM factor, SpectralCrest, dif fLCLA and PR (Fig. 3d).

11
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FIG. 2. (Color online). Characteristics of benchmark data sets. A, scorer ratings distribution with
corresponding binary classification. B, distributions of audio files per month, hour and wind farm

power percentage output relative to capacity.

104 C. Performance of the automated detectors

105 The performance of the random forest-based AM detection method was compared to
s three automated detectors (al-a3) on precision-recall plots (Fig. 4a). The test set for
17 detectors al-a3 was all samples in the benchmark data set while the out-of-bag samples
s were used as the test set for the random forest detector. The random forest-based method
1o outperformed the other methods (ANOVA P-value < 0.001), with an AUPRC of 0.85. The

12
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FIG. 3. (Color online). Random Forest classifier. A, hyperparameter tuning using a randomized
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area indicates 95% CI. C, Pearson correlation coefficient (Pearson’s r) map with dendrogram for

illustrating clusters. D, feature importance in descending order from top to bottom. Error bars

indicate 95% CI.
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20 performance of al-a3 was poor with the mean AUPRC' ranging from 0.43 to 0.55 (Table
20 1I). The performance of al was better than a2 and a3 (all P < 0.001), and a2 performed

200 better than a3 (P < 0.001).

TABLE II. Area under the precision-recall curves and optimal MCC of four methods.

Method AUPRC Max MCC
Random forest 0.85 [0.84 0.86] 0.62
al 0.55 [0.52 0.58] 0.29
a2 0.47 [0.45 0.49)] 0.32
a3 0.43 [0.40 0.44] 0.28
203 The performance of AM detection algorithms has previously been described in terms of

2a the false positive rate (FPR) (Bass et al., 2016; Larsson and Ohlund, 2014), and thus this
205 metric was also examined (Fig. 4b). As the random forest classifier is based on probabilistic
26 values, a threshold of 0.5 was used for binary classification of AM. Thus, if more than 50% of
207 trees in the classifier voted for “AM”, the sample was classified as an AM sample, otherwise
208 “‘no AM” was declared. The cut-of values for method al-a3 were 4, 0.2 and 2, respectively
200 (See Methods section). The false positive rate of the random forest classifier was low (1.6%)
20 compared to methods al-a3 (50%, 19% and 62%, respectively). The false positive rate of
au methods al and a3 was not reported in the original descriptions of these methods (Bass

14
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22 el al., 2016; Fukushima et al., 2013), but was reported to be 2.6% for method a2 (Larsson
23 and Ohlund, 2014), and thus substantially lower than in our data set analysed in this study.
214 To evaluate if the performance of all detectors could be improved using different threshold
a5 values, thresholds for each method were varied systematically to find the highest MCC
26 values as shown in Fig. 4c. The optimal threshold for the random forest classifier was
27 0.44 (44% of trees voted “AM”). The optimal threshold for method al was PR=6.7, which
28 is higher than the original reported value of PR = 4 in (Bass et al., 2016) and the value
20 obtained using a Receiver Operating Characteristic curve (PR=3) in (Hansen et al., 2019).
20 In contrast, the optimal thresholds for method a2 and a3 were lower than original suggested
21 values (Fukushima et al., 2013; Larsson and Ohhmd, 2014). For comparison, the MCC
22 between two scorers was calculated and considered as the ceiling value for the AM detection
23 task (MCC = 0.65), supporting that the performance of the random forest classifier was

24 remarkably close to human performance.

225 D. Interpretable predictor

226 The random forest classifier with 31 features and 1,024 trees outperformed traditional
227 detection methods and showed performance comparable with human classifiers. However,
28 random forest classifiers work much like a black box, which is difficult to interpret. The
29 classifier also requires skilled human and computer resources to implement. Given the
20 feature importance findings of the importance of AM factor, dif fLCLA, SpectralCrest
21 and PR features, we thus aimed to build a simplified classifier, which can be used as a
23 simpler and more portable classifier for AM detection. This simplified classifier was a single

15
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decision tree built from four features, as shown in Fig. 5. The performance of the single
decision tree showed AUCPR = 0.68 [0.64, 0.71], which is lower than the random forest
classifier, yet still higher than methods al-a3. These results further illustrate that a simple

combination of several features outperforms traditional single feature detection methods.

diffLCLA=12

No AM AM

FIG. 5. (Color online). A simplified single tree classifier utilising the four most important features

for identified by the random forest classifier AM detection.

IV. DISCUSSION

A validated and high-performing WEN AM classifier based on random forest machine
learning technique was presented. This classifier substantially outperforms currently avail-

able classifiers, with a predictive power close to its practical limit set by human scoring.
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o This approach shows major promise as an effective automated tool which could be used for
22 detecting WEN AM presence in large data sets, such as for research or to support regulatory
a3 purposes. This approach also reveals new insights into the nature of AM itself, as it shows
24 that other acoustical parameters apart from noise level variations are important for AM

25 detection.

246 AM is a challenging signal to detect as its characteristics vary depending on meteorological
a7 conditions. As a result, the spectral content and time varying features are not constant.
xs  Despite these changes, the auditory system can still recognize the presence of wind farm
29 AM. Thus, our presented algorithm sought to incorporate the most important acoustical
0 features predictive of human scored AM. The selected features cover the whole range of
251 the most dominant WEN characteristics, including noise level variation (or AM), tonality
22 and low-frequency content. Two features incorporate noise level variations (AM factor and
3 PR), the difference between LCeq and LAeq is an indicator of low-frequency noise presence
s and the spectral crest provides a simple measure of tonality. These findings support that
s human perception of AM is more complex than assumed by previous AM detection methods
6 which are based on noise level variations alone. Hence, it is not surprising that the method
7 presented here achieved substantial improvements in performance compared to previous

s methods.

250 Very high false positive rates were found for methods al-a3, which is inconsistent with
0 previous reports in (Bass el al., 2016; Larsson and Ohlund, 2014). However, it is worth
%1 noting that method al was originally designed and evaluated on 10-minute samples, as
s2  opposed to the 10-second samples used in our work, and method al classifies AM if more
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3 than 50% of 10-second blocks within 10 minutes contain AM. By introducing the above
24 criterion, the false positive rate may be substantially reduced, as reported in (Bass et al.,
s 2016). However, 10-second long samples appear to have higher ecological validity, as typical
%6 AM events usually last around 10-15 seconds (Larsson and Ohlund, 2014). With regards to
27 the false positive rate for method a2, an arbitrary 30 dBA L 4., cut-off was imposed in the
»%s original evaluation, which was not used in our study, and likely helps to explain the large
%0 discrepancy between the originally reported 2.6% (Larsson and Ohlund, 2014) and the 19%
o0 false positive rate in our study. If the 30 dBA cut-off is applied to our data before method
an a2 is used to detect AM, the false positive rate is reduced from 19% to 9%. This number is
a2 expected to further reduce if data were measured in a quiet area, where many samples would
13 have associated noise levels less than 30 dBA. Therefore, these findings further support that
o false positive rate metrics are problematic for evaluating detection performance (Warby

a5 et al., 2014), as this only represents one parameter in a confusion matrix.

276 A limitation of the present study is the under-representation of noise data measured
o7 greater than 1 km used for training and testing the random forest classifier. As a result,
as the proposed classifier may not work well for detecting AM measured several kilometers
20 from the nearest wind turbine, where AM may have different characteristics (Hansen et al.,
20 2019). The classifier could not be tested on data sets measured outside of South Australia,
1 where weather conditions and topography near wind farms will inevitably to vary. Although
2 the reliability of human scoring has been tested, using a single scorer to classify the AM
23 1s not ideal. As suggested by Wendt et al. (2015), two or more scorers and a consensus

284 scoring approach may be preferable to a single scorer to help ensure broader generalisability.
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s Nevertheless, a single scorer is more practical and avoids potential effects of poor inter-scorer
86 agreement. Also, good inter-scorer agreement was found in a smaller subset of the data,
257 supporting this approach.

288 Although detector al clearly warrants improvements in order to increase accuracy, the
20 source code (Coles et al., 2017) is readily available, making it easy to understand the method-
20 ology and to implement the method. Although the other methods were reproduced as closely
201 as possible, our codes may be different from the original codes. This is a similar problem
202 previously identified for the reproduction of the tonality assessment code in Sendergaard
203 el al. (2019) . Thus, depositing source code to open source repositories, together with rel-
2 evant data sets would greatly advance the development of practical and robust amplitude

205 modulation detection methods.

26 V. CONCLUSIONS

207 In summary, this study demonstrates that random forest-based AM detection is a good
208 approach for AM classification, and substantially outperforms traditional AM detection
200 methods to achieve classification performance close to that of humans. It was also shown
s0 that a simplified classifier based on a single decision tree using the four main features iden-
;o0 tified through the random forest approach also achieves good classification performance.
sz This approach is readily interpretable and easy to implement without the need for extensive
33 computer resources. Finally, it is important to stress that the main aim for developing an
s0  improved AM detection algorithm was to better understand the characteristics of this phe-

s nomenon, and thus algorithm performance was prioritized above algorithm simplicity and
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w6 low computational time. We hope that, in the future, further insight into the prevalence
s of AM, associated meteorological conditions, and impacts on humans will help to explain
s underlying noise generation mechanisms. Ultimately, this will improve the design of wind
300 turbines such that they are less disturbing and hence, more acceptable to surrounding com-

310 munities.
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