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Motivation

* Pipeline Integrity important to the energy industry
* Undetected defects can cause significant damage
 Intrusive methods cause operational challenges

* Non-intrusive magnetic methods like LSM are

Machine Learning-based Anomaly Detection with Magnetic Data
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Customized 1D CNN for multi-output prediction

promising in detecting/characterizing pipeline defects
* Anomaly detection from multi-sensor, multi-alignment
LSM data not trivial
« Study to explore Scalable ML methods for this task
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Schematic of LSM technology showing data collection across multiple sensors, and gathers data in all three

spatial directions

Data and Preprocessing

* Multi-sensor LSM data are multi-modal, non-aligned
sequences, that affects ML model predictions
* Fast Dynamic Time Warping algorithm re-aligns

Data leakage in random test/train split ,,. w0
Masked defect regions with +/- 10 ft | =L
Train samples: 35000 s h =
Test samples: 10000 goe E
The "point-based” methods can detect of -

Sequence learning using
CNN with 1D filters used to

extract spatial features
Multi-task C|.aSSIfICatI0n used m
to characterize defect R N /

properties
Concatenation operations at
the spatial levels to isolate

defect, but not characterize them

0 1
Non-dimensional Length

Concatenation Operation Concatenation Operation

i mration ~— —~—
effects of different sensors c -

One defect held out as test
dataset

ConvNet Performance

All Channels

Holdout test data

dataset with O(N) time and space complexity Y ﬁ W’Y % y
A 0.8 /\ [\J\”J w 08%
~ Initial T Ir;‘i};tald o J/J \ | 2;
shifted shifte 0.2 \ -0.2§
o L \ | L "
B 0 5000 10960 15000 20000
Number of noints
o Ini.tial — Initial TL; D R
shifted shifted
* Robust multi-sensor data alignment using FastDTW achieved
_ _ * Point-based supervised/unsupervised learning methods identify defects
Defect |Location| Volume | Depth Width
successfully.
D1 2 ft 0.2 0.77 0.45 + Slower methods sped up using RAPIDS-AI cuML library
D2 76 ft 0.6 0.62 1 * Multi-output CNN techniques are useful tools for characterizing defects

* Feasibility for field data explored and suitable methods identified
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SVC
Training time
« N =10000 points
« All times in seconds
« SVC is slowest!

True label

Non-dimensional Length
Supervised point methods [based on scikit-learn library]
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MLP Classifier

Algorithm

MLP Classifier
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' 10*N | 100*N

69 772

Speed up of SVC [RBF kernel] using RAPIDS-AI cuML library

Data points | scikit—learn | RAPIDS-AI Speed up
10000 8.76 2.90 3
100000 751 3.75 200
1000000 18274 08 186
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