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Abstract1

Molecular modeling is widely utilized in subjects including but not limited to physics,2

chemistry, biology, materials science and engineering. Impressive progress has been3

made in development of theories, algorithms and software packages. To divide and4

conquer, and to cache intermediate results have been long standing principles in de-5

velopment of algorithms. Not surprisingly, Most of important methodological advance-6

ments in more than half century of molecular modeling are various implementations of7

these two fundamental principles. In the mainstream classical computational molecular8

science, tremendous efforts have been invested on two lines of algorithm development.9

The first is coarse graining, which is to represent multiple basic particles in higher res-10

olution modeling as a single larger and softer particle in lower resolution counterpart,11

with resulting force fields of partial transferability at the expense of some information12

loss. The second is enhanced sampling, which realizes “dividing and conquering” and/or13

“caching” in configurational space with focus either on reaction coordinates and collec-14

tive variables as in metadynamics and related algorithms, or on the transition matrix15
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and state discretization as in Markov state models. For this line of algorithms, spa-16

tial resolution is maintained but results are not transferable. Deep learning has been17

utilized to realize more efficient and accurate ways of “dividing and conquering” and18

“caching” along these two lines of algorithmic research. We proposed and demonstrated19

the local free energy landscape approach, a new framework for classical computational20

molecular science. This framework is based on a third class of algorithm that facilitates21

molecular modeling through partially transferable in resolution “caching” of distribu-22

tions for local clusters of molecular degrees of freedom. Differences, connections and23

potential interactions among these three algorithmic directions are discussed, with the24

hope to stimulate development of more elegant, efficient and reliable formulations and25

algorithms for “dividing and conquering” and “caching” in complex molecular systems.26

Introduction27

Impact of molecular modeling in scientific research is clearly embodied by the number of28

publications. Results of a Web of Science (www.webofknowledge.com) search with vari-29

ous relevant key words is listed in Table 1. However, despite widespread applications, we30

remain far from accurately predicting and designing molecular systems in general. Further31

methodological development is highly desired to tap its full potential. Historically, molecular32

modeling has been approached from a physical or application point of view, and numerous33

excellent reviews are available in this regard.1–16 From an algorithmic perspective, “dividing34

and conquering” (DC) and “caching” intermediate results that need to be computed repet-35

itively are two fundamental principles in development of many important algorithms (e.g.36

dynamic programming17). As a matter of fact, the major focus of modern statistical machine37

learning is to learn (“caching” relevant information) and then carry out inference on top of38

which.18 In this review, we provide a brief discussion of important methodological devel-39

opment in molecular modeling as specific applications of these two principles. The content40

will be organized as the following. Part II describes fundamental challenges in molecular41
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modeling; Part III summarizes application of these two fundamental algorithmic principles42

in two lines of methodological research, coarse graining (CG)18–27 and enhanced sampling43

(ES);28–31 Part IV covers how machine learning, particularly deep learning, facilitate DC44

and “caching” in CG and ES,30,32–36 part V introduces local free energy landscape (LFEL)45

approach, a new framework for computational molecular science based on partially trans-46

ferable in resolution “caching” of local sampling, and the first implementation of this new47

framework by generalized solvation free energy (GSFE) theory37 is briefly discussed; and part48

VI discusses connections among these three lines of algorithmic development, their specific49

advantages and prospective explorations. Due to the large body of literature and limited50

space, we apologize to authors whose excellent work are not cited here.51

Table 1: Number of publications from web of science search on Sep, the 8th, 2020

Key words Number of publications
Molecular dynamics simulation 241,748
Monte Carlo simulation 189,550
QM-MM (quantum mechanical - molecular mechanical) simulation 9907
Dissipative particle dynamics simulation 3693
Langevin dynamics simulation 3893
Molecular modeling 2,072,091
All of the above 2,243,182

Challenges in molecular modeling52

Accurate description of molecular interactions53

Molecular interactions may be accurately described with high level molecular orbital theories

(e.g. coupled cluster theory38,39) or sophisticated density functionals combined with large

basis sets.40–44 However, such quantum mechanically detailed computation is prohibitively

expensive for any realistic complex molecular systems. Molecular interactions are tradition-

ally represented by explicit functions and pairwise approximations as exemplified by typical
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physics based atomistic molecular mechanical (MM) force fields (FF):45–48

U(~R) =
∑
bonds

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedral

Kχ(1 + cos(nχ− δ))

+
∑

impropers

Kimp(φ− φ0)
2

+
∑

nonbonded

(
εij

[(
Rminij
rij

)12

−
(
Rminij
rij

)6
])

+
qiqj
εrij

(1)

or knowledge based potential functions:49–51 These simple functions, while being amenable54

to rapid computation and are physically sound grounded near local energy minima (e.g.55

harmonic behavior of bonding, bending near equilibrium bond lengths and bend angles),56

are problematic for anharmonic interactions, which are very common in many molecular57

systems.52 It is well understood that properly parameterized Lennard-Jones potentials are58

accurate only near the bottom of its potential well. Frustration are ubiquitous in biomolec-59

ular systems and are likely fundamental driving force for conformational fluctuations.53–5560

One may imagine that a molecular system with all its comprising particles at their respective61

“happy” energy minima positions would likely be a stable “dead” molecule, which may be a62

good structural support but is likely not able to provide dynamic functional behavior.63

Pairwise approximations are usually adopted for its computational convenience, both in64

terms of dramatically reduced computational cost and tremendously smaller (when com-65

pared with possible many body potentials) number of necessary parameters to be fit in66

FF parameterization. It is widely acknowledged that construction of traditional FF (e.g.67

equation 1) is a laborious process. Development of polarizable9,56,57 and more complex FF68

with larger parameter sets58 alleviate some shortcomings of earlier counterpart. Expansion69

based treatments were incorporated to address anharmonicity.59 However, to tackle limi-70

tation of explicit simple functional form and pairwise approximation for better description71

of molecular interactions remain challenges to be met for molecular modeling community.72
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Additionally, even atomistic simulations are prohibitively expensive for large biomolecular73

complexes at long time scales (e.g. milliseconds and beyond).60–6274

Inherent low efficiency in sampling of configurational space75

Complexity of molecular systems is rooted in their molecular interactions, which engenders76

complex and non-linear correlations among molecular degrees of freedom (DOFs). Con-77

sequently, effective number of DOFs are greatly reduced. Therefore, complex molecular78

systems are confined to manifolds63 of much lower dimensionality with near zero measure in79

corresponding nominal high dimensional space (NHDS). Consequently, sufficient brute force80

random sampling in NHDS of interested molecular systems is hopeless.81

In stochastic trajectory generation by Monte Carlo (MC) simulations or candidate struc-82

tural model proposal in protein structure prediction and refinement (or other similar scenar-83

ios), new configuration proposal are carried out in NHDS, a lot of effort is inevitably wasted84

due to sampling outside the actual manifold occupied by the target molecular system. Such85

wasting may be avoided if we understood all correlations. However, understanding all cor-86

relations implicates accurate description of global free energy landscape (FEL) and there87

is no need to investigate it further! Due to preference of lower energy configurations by88

typical importance sampling strategies (e.g. Metropolis MC), stochastic trajectories tend89

to be trapped in local minima of FEL, this is especially true for complex molecular (e.g.90

biomolecular) systems which have hierarchical rugged FEL with many local minima.64,65 In91

trajectory generation by molecular dynamics (MD) simulations, configurational space is ex-92

plored by laws of classical mechanics and no wasting due to random moves exists. However,93

molecular systems may well drift away from their true manifolds due to insufficient accuracy94

of FF. Similar to stochastic trajectory generation, it takes long simulations to map FEL95

since molecular system tend to staying at any local minimum, achieve equilibrium among96

many local minima is just as challenging as in the case of stochastic counterpart.97
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DC and “caching” in traditional molecular modeling98

To cope with fundamental difficulties in molecular modeling, two distinct lines of method-99

ological development (CG and ES) based on DC and “caching” strategies have been con-100

ducted and tremendous progress has been made in understanding of molecular systems. As101

summarized below:102

Coarse graining, a partially transferable “caching” strategy103

Atomistic FF parameterization is the most well established coarse graining with a strong104

theoretical foundation, the Born-Oppenheimer approximation. Theoretically, MMFF are105

potential of mean force (PMF) obtained by averaging over many electronic DOFs for given106

atomic configurations. In practice, due to the fact that ab initio calculations are expensive107

and may have significant error when level of theory (and/or basis set) is not sufficient, ref-108

erence data usually include results from both quantum mechanical (QM) calculations and109

well-established experimental data.66–68 The DC strategy is utilized by selecting atomic clus-110

ters of various size to facilitate generation of QM reference data. The essential information111

learned from reference data is then permanently and approximately “cached” in FF param-112

eters through the parameterization process. Due to the separation of time scales between113

electronic and atomic motion, elimination of electronic DOFs is straight forward but comes114

with the price of incapability in describing chemical reactions. To harvest benefits of both115

quantum and atomistic simulations, a well-established DC strategy is to treat a small region116

involved interested chemical reaction at QM detail and its surrounding with MMFF.69–74117

This series of pioneering work was awarded Nobel prize in 2013, and QM-MM treatment118

continues to be the mainstream methodology for computational description of chemical re-119

actions.75,76120

The united atom model (UAM) is the next step in coarse graining,77 where hydrogen121

atoms are merged into bonded heavy atoms. This is quite intuitive since hydrogens have122
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much smaller mass on the one hand, and are difficult to see by experimental detection tech-123

niques utilizing electron diffraction (e.g. X-ray crystallography) on the other hand. For124

both polymeric and biomolecular systems, UAM remains to be expensive for many inter-125

ested spatial and temporal scales. Therefore, further coarse graining in various forms have126

been constructed. As a matter of fact, CG is usually used to denote modeling with particles127

that representing multiple atoms in contrast to atomistic simulations, and the same con-128

vention will be adopted in the remaining part of this review unless stated otherwise. Both129

“Top-down” (that based on reproducing experimental data) and “bottom-up” ( that based130

on reproducing certain properties of atomistic simulations) approaches are utilized.21,78 For131

polymeric materials, beads are either utilized to represent monomers or defined on consider-132

ation of persistent length,79 and dissipative particle dynamics (DPD) were proposed to deal133

with complexities arise from much larger particles.80 For biomolecular systems, a wide vari-134

ety of coarse grained models have been developed.20,21,23,24,81,82 Another important subject of135

CG methodology development is materials science.83,84 Earlier definition of CG particles are136

rather ad hoc.20 More formulations with improved statistical mechanical rigor appeared later137

on,22 with radial distribution function based inversion,79,85–87 entropy divergence88 and force138

matching algorithm89–91 being outstanding examples of systematic development. Present139

CG is essentially to realize the following mapping as disclosed by equation (4) in ref.22 :140

exp [−βVCG(RCG)] ≡
∫
drδ(MR(r)−RCG)exp [−βV (r)] (2)141

with r and R being coordinates in higher resolution and CG coordinates, MR(r) being the142

map operator from r to R, V and VCG being potential energy of higher resolution and CG143

representation respectively. Due to lack of time scale separation (see Fig. 1) for essentially all144

CG mapping, strict realization of this equation/mapping is not rigorously possible. A naive145

treatment of CG particles as basic units (with no internal degrees of freedom) would result146

in wrong thermodynamics.22 Due to corresponding significant loss of information, it is not147
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possible to develop a definition of CG and corresponding FF parameterization for compre-148

hensive reproduction of atomistic description of corresponding molecular systems. Different149

coarse graining have distinct advantages and disadvantages, so choosing proper CG strategy150

is highly dependent upon specific goal in mind. CG particles are usually isotropic larger151

and softer particles with pairwise interactions, or simple convex anisotropic object (e.g. soft152

spheroids) that may be treated analytically.24,92–94 Such simplifications provide both con-153

venience of computation and certain deficiency for capturing physics of target molecular154

systems. CG may be carried out iteratively to address increasingly larger spatial scales155

by “caching” lower resolution CG distributions with ultra CG (UCG) FF.22,95–99 Pairwise156

approximation and explicit simple function form remain to be limitations of interaction de-157

scription for traditional CG FF. When compared with atomistic FF, pairwise approximation158

deteriorate further due to lack of time scale separation (Fig. 1).159

Another simple and powerful type of CGmodel for biomolecular systems is Gō model100,101160

and elastic network models (ENM)102–104 or gaussian network models (GNM)105,106 with na-161

tive structure being defined as the equilibrium state, and with quadratic/harmonic interac-162

tions between all residues within given cutoff. Only a few parameters (e.g. cutoff distance,163

spring constant) are needed. Such models “caching” the experimental structures and are164

proved to be useful in understanding major conformational transitions and slow dynamics165

of many biomolecular systems.107,108166

Enhanced sampling, a nontransferable in resolution DC and “caching”167

strategy168

Umbrella sampling (US)109 is probably the first combination of DC and “caching” strategy

for better sampling of molecular system along a given reaction coordinate (RC) (or order

parameter) s. DC strategy is first applied by dividing s into windows, information for each

window is then partially “cached” by corresponding bias potentials and local statistics. Later

on, adaptive US (AUS)110,111 and weighted histogram analysis method (WHAM)112 was de-
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veloped to improve both efficiency and accuracy. MBAR113,114 was developed to achieve error

bound analysis which is lack in WHAM. Further development including adaptive bias force

(ABF)115–117 and metadynamics.118–120 Details of these methodologies were well explained

by excellent reviews.121–124 The common trick to all of these algorithms (and their variants)

is to “cache” visited configurational space with bias potentials/force and local statistics, thus

dramatically accelerate sampling of interested rare events. Denote CV as s(r) (r being phys-

ical coordinates of atoms/particles in the target molecular system), equilibrium distribution

and free energy on the CV may be expressed as:30

p0(s) =

∫
drδ [s− s(r)] p0(r) = 〈δ [s− s(r)]〉 (3)

p0(r) =
e−βU(r)∫
dre−βU(r)

(4)

F (s) = − 1

β
log[p0(s)] (5)

F (s) = − 1

β
log[p(s)]− V (s) (6)

with p(s) being the sampled distribution in simulation with corresponding bias potential169

V (s) for “caching” of visited configurational space.170

The starting point of these “caching” algorithms is specification of reaction coordinates171

(RC) or collective variables (CVs), which is a very challenging task for complex molecular172

systems in most cases. Traditionally, principle component analysis (PCA)125 is the most173

widely utilized and a robust way for disclosing DOFs associated with the largest variations.174

To deal with ubiquitous nonlinear correlations, kernels are often used albeit with the difficulty175

of choosing proper kernels.126 Additional methodologies, include multidimensional scaling176

(MDS),127 isomap,128 locally linear embedding (LLE),129 diffusion map130,131 and sketch177

map132 have been developed to map out manifold for high dimensional data. However, each178

has it own limitations. For example, LLE129 is sensitive to noise and therefore has difficulty179

with molecular simulation trajectories which are quite noisy; Isomap128 requires relatively180
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homogeneously sampled manifold to be accurate. Both LLE and Isomap do not provide181

explicit mapping between molecular coordinates and CVs; Diffusion and sketch maps are182

likely to be more suitable to analyze molecular simulation trajectories. Nonetheless, their183

successful application for large and complex molecular systems remain to be tested. All of184

above non-linear mapping algorithm are mainly suitable for manifold on a single scale. When185

we are interested in finding paths for transitions among known metastable states, transition186

path sampling (TPS)133–135 methodology maybe utilized to establish CV.187

Apparently, RC and/or CV based ES is a different path for facilitate simulation of com-188

plex molecular systems on longer time scales from coarse graining. One apparent plus side189

is that these algorithms are “in resolution” as no systematic discarding of molecular DOFs190

occur. With specification of RC and/or CVs, computational resource is directed toward the191

presumably most interesting dynamics of the target molecular system, and RC and/or CV192

maybe repetitively refined to obtain mechanistic understanding of interested molecular pro-193

cesses. However, the down side is that “cached” information on local configurational space is194

not transferable to other similar molecular systems. While rigorous transferability may not195

be easily established for any CG FF, practical utility of CG FF for molecular systems with196

similar composition and thermodynamic conditions have been quite common and useful.24197

Therefore, CG FF may be deemed as partially transferable.198

An important recent development of DC strategy for enhanced sampling is Markov state199

models (MSM),136–139 one great advantage of which is that no RC or CV is needed. Instead,200

it extracts long-time dynamics from independent short trajectories distributed in configu-201

rational space. Many important biomolecular functional processes have been characterized202

with this great technique.140–142 The most fundamental assumption is that all states for a203

target molecular system form an ergodic Markov chain:204

π(t+ τ) = π(t)P (7)205
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with π(t) and π(t + τ) being a vector of probabilities for all states at time t and t + τ re-206

spectively. P is the transition matrix with its element Pij being probability of the molecular207

system being found in state j after an implied lag time (τ) from the previous state i. Ap-208

parently as t goes to infinity for an equilibrium molecular system, a stationary distribution209

π will arise as defined below:210

π = πP (8)211

The advantage of not needing RC/CV does not come for free but with accompanying dif-212

ficulties. Firstly, one has to distribute start point of trajectories to statistically important213

and different part of configurational space, then select proper (usually hierarchical, with each214

level of hierarchy corresponds to a specific lag time) partition of configurational space into215

discrete states. This is the key step of DC strategy in MSM. No formal rule is available and216

experience is important. In many cases some try and error is necessary. Secondly, within217

each discrete state at a given level of hierarchy, equilibration is assumed to be achieved in-218

stantly and this assumption causes systematic discretization error, which fortunately may219

be controlled with proper partition and sufficiently long lag time.143 Apparently, metastable220

states obtained from MSM analysis is molecular system specific and thus not transferable.221

Another important class of enhanced sampling is to facilitate sampling with non-Boltzmann222

distributions and restore property at targeted thermodynamic condition through proper223

reweight.144 Most outstanding examples are Tsallis statistics,145,146 parallel tempering,147,148224

replica exchange molecular dynamics,149,150 Landau-Wang algorithm151 and integrated tem-225

pering sampling (ITS).152–154 These algorithms are not direct applications of DC and “caching”226

strategies and are not discussed further here.227
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Machine learning improves “caching”228

Toward ab initio accuracy of molecular simulation potentials229

Fixed functional form and pairwise approximation of non-bonded interactions are two major230

factors limiting the accuracy of molecular interaction description in both atomistic and CG231

FF. Neural network (NN) has capability of approximate arbitrary functions and therefore232

has the potential to address these two issues. Not surprisingly, significant progress has been233

made in this regard as summarized by recent excellent reviews.155–160 Cutoff and attention to234

local interactions remains the DC strategy for development of machine learning potentials.235

The major improvement over traditional FF is better “caching” that overcomes pairwise236

approximation and fixed functional form limitations. NN FF naturally tackle both issues as237

explicit functions are not necessary since NNs are universal approximators. The significance238

of many-body potentials161 and extent of pairwise contributions were analyzed.162,163 There239

are also efforts to search for proper simple functional forms, which are expected to be more240

accurate than present functional forms in traditional FF on the one hand, and alleviate241

overfitting/generalization difficulty and reduce computational cost of complex NN FF on the242

other hand,164,165 especially when training dataset is small. While most machine learning FF243

are trained by energy data,155,159 gradient-domain machine learning (GDML) approach166
244

directly learns from forces and realizes great savings of data generation.245

Just as in the case of traditional FF, transferability and accuracy is always a tradeoff.246

More transferability implicates less attention is paid to “cache” detailed differences among247

different molecular systems, hence less accuracy. Exploration in this regard, however, re-248

mains not as much as necessary.167–169 Unlike manual fitting of traditional FF, systematic249

investigation of tradeoff strategy is potentially feasible for machine learning fitting,170 and250

yet to be done for many interesting molecular systems. With expediency of NN training,251

development of a NN FF hierarchy with increasing transferability/accuracy and decreasing252

accuracy/transferability is likely to become a pleasing reality in the near future. Rapid fur-253
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ther development of machine learning potentials, particularly NN potentials, are expected.254

However, significant challenges for NN potentials remain on better generalization capability,255

description/treatment of long range interactions,171,172 wide range of transferability,173 faster256

computation174 and proper characterization of their error bounds. Should further significant257

progress be made on these issues, it is promising we may have routine molecular simulations258

with both classical efficiency and ab initio accuracy in the near future.259

Machine learning and coarse graining260

As in the case of constructing atomic level potentials, machine learning has been applied261

to address two outstanding pending issues in coarse graining, which are definition of CG262

sites/particles and parameterization of corresponding interactions between/among these263

sites/particles. Traditional CG FF, suffers from both pairwise approximation and accu-264

racy ceiling of simple fixed functional forms which are easy to fit. By using more complex265

(but fixed functional form) potentials with a machine learning fitting process, Chan et. al.175266

developed ML-BOP CG water model with great success. Deep neural network (DNN) was267

utilized to facilitate parameterization of CG potentials when given radial distribution func-268

tions (RDF) from atomistic simulations.176 CGnet demonstrated great success with simple269

model systems (alanine dipeptide).177 DeePCG model was developed to overcome pair ap-270

proximation and fixed functional form and demonstrated with water.178 Using oxygen site271

to represent water is rather intuitive. However, for more complex biomolecules such as pro-272

teins, possibility for selection of CG site explodes. To improve over intuitive or manual273

try and error definition of CG sites, a number of studies have been carried out179–182 to274

provide better and faster options for choosing CG sites. However, no consensus strategy275

is available up to date and more investigations are desired. The fundamental difficulty is276

that there is no sufficient time scale separation between explicit CG DOFs and discarded277

implicit DOFs, regardless of specific selection scheme being utilized. Intuitively, one would278

expect CG FF parameters to be dependent upon definition of CG sites/particles. In this re-279
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gard, auto-encoders were utilized to construct a generative framework that accomplishes CG280

representation and parameterization in a unified way.34 The spirit of generative adversarial281

networks was utilized to facilitate CG construction and parameterization, particularly with282

virtual site representation.183 It was found that description of off-target property by CG283

exhibit strong correlation with CG resolution, to which on-target property being much less284

sensitive.184 Such observation suggests that adjust CG for specific target properties might285

be a better strategy than searching for a single best CG representation. Despite potentially286

more severe impact of pairwise approximation for CG FF than in atomistic FF, quantitative287

analysis in this regard remain to be done.288

Machine learning in searching for RC/CVs and construction of MSM289

To overcome difficulties of earlier nonlinear CV construction algorithms128–130,132 and to re-290

duce reliance on human experience, auto-encoders, which is well-established for trainable291

(non-linear) dimensionality reduction, are utilized in a few studies.185–188 Chen and Fergu-292

son186 first utilized autoencoders to learn nonlinear CVs that are explicit and differentiable293

functions of molecular coordinates, thus enabling direct utility in molecular simulations for294

more effective exploration of configurational space. Further improvement185 was achieved295

through circular network nodes and hierarchical network architectures to rank-order CVs.296

Wehmeyer and Noé187 developed time-lagged auto-encoder to search for low dimensional297

embeddings that capture slow dynamics. Ribeiro et. al.188 proposed the reweighted au-298

toencoded variational Bayes to iteratively refine RC and demonstrated in computation of299

the binding free energy profile for a hydrophobic ligand-substrate system. Building a MSM300

for any specific molecular system requires tremendous experience and many steps in process301

are error prone. To overcome these pitfalls, VAMPnet that based on variational approach302

for Markov process was developed to realize the complete mapping steps from molecular303

trajectories to Markov states.189304
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The local free energy landscape approach305

Both CG and ES methodologies facilitate molecular simulation by effectively reducing lo-306

cal sampling. In CG, it is realized through “caching” (integration) of distributions for307

faster/discarded DOFs with proper CG FF, and thus has the inevitable cost of losing res-308

olution (information), accompanied by the desired attribute of (partial) transferability to309

various extent. ES reduces lingering time of molecular systems in local minima through310

“caching” visited local configurational space, which is usually defined by relevant DC strate-311

gies, with biasing potentials. When compared with CG, there is no resolution loss. How-312

ever, “cached” manifold of configurational space is molecular process specific and thus not313

transferable at all. In molecular modeling community, these two lines of methodologies are314

developed quite independently. Nevertheless, one might want to ask why not have both315

advantages in one method, that is to reduce repetitive local sampling without loss of resolu-316

tion and with “cached” results being partially transferable. The local free energy landscape317

(LFEL) approach190 is proposed with this intention in mind. Historically, parameteriza-318

tion of FF by coarse graining has been the only viable framework due to two fundamental319

constraints. Firstly, in earlier days of molecular modeling, typical computers have memory320

space of megabytes or less, render it impossible to accommodate millions or more parameters321

needed to fit complex LFEL; Secondly, while both neural network and autodifferentiation322

were invented decades ago, the computational molecular science community did not master323

these techniques for fitting large number of parameters efficiently until recently. With these324

two constraints removed, possibility for alternative path arise to break monopoly of classical325

molecular modeling by FF parameterization via coarse graining. Specifically, one may carry326

out direct fitting of LFEL and all important information on local distributions of molecular327

DOFs obtained from expensive local sampling may be “cached”. This is in strong contrast328

to coarse graining based parameterization, in which local distributions are substituted by329

averaging in relevant lower dimensional space projection (e.g. pairwise distances among CG330

sites). However, it is essential to assemble LFEL and construct FEL of the interested molec-331

15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2021                   doi:10.20944/preprints202012.0081.v3

https://doi.org/10.20944/preprints202012.0081.v3


ular system, and this is the core of the LFEL approach. For a molecular system with N332

DOFs, this LFEL approach may be expressed as:333

P (r1, r2, · · · , rN) = P (R1, R2, · · · , RM)(M ≤ N) (9)334

335

Ri = (ri1 , ri2 , · · · , ril) (10)336

P (R1, R2, · · · , RM)

=
M∏
i=1

P (Ri)
P (R1, R2, · · · , RM)∏M

i=1 P (Ri)
(11)

≈
M∏
i=1

P (Ri), and sampling all Rs with mediated GCF (12)

G = −kBT lnP (r1, r2, · · · , rN)

= −kBT lnP (R1, R2, · · · , RM)

≈ −kBT
M∑
i

lnP (Ri), and sampling all Rs with mediated GCF (13)

a N -DOF molecular system is reorganized intoM overlapping regions (Equation 9), each re-

gion has some number of DOFs (Equation 10). The key step of LFEL approach is expressed

in Equation 11, in which the first product term (addressed as “local term(s)” hereafter) treat

M regions as if they were independent, and all correlations among different regions are in-

corporated by the fraction term, which is termed global correlation fraction (GCF) and is

extremely difficult, if ever possible, to be calculated directly. However, GCF is a unnormal-

ized probability distribution, when all molecular DOFs in local terms are (approximately)

sampled according to GCF, then we do not need GCF explicitly anymore (Equations 12 and

13). GCF represents two types of global correlations. The first type is mediated correlations

among different regions by the fact that they overlap, and relevant molecular DOFs in such
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overlapping space shared by different regions should have exact same state for all concerning

regions. The second type is direct global correlations among molecular DOFs in different

regions caused by genuine long-range interactions (e.g. electrostatic interactions). Satisfy-

ing the first type with sampling is trivial, and ensuring all overlapping regions share the

exact same state is sufficient (Equations 12 and 13). The second type of global correlations

need more involved treatment. These equations are apparently of general utility for any

multiple-variable (high-dimensional) problem. In the specific case of a complex molecular

system, using one set of coordinates realizes the mediated contribution of GCF. The ap-

proximation in Equation 12 is made by ignoring the second type of global correlations. Free

energy minimization of a molecular system in thermodynamic equilibrium may be treated as

maximization of joint probability (eq. 13). For molecular systems (or biological systems) off

equilibrium, the joint distribution remains our focus despite free energy is not well defined

anymore. A schematic representation of the LFEL approach in contrast to FF framework is

shown in (Fig.2). While we only demonstrated GSFE implementation of LFEL at residue

level for protein structural refinement. LFEL approach may be utilized to “cache” local dis-

tributions at any spatial scales. Just as there are many methodological developments in the

mainstream FF framework, there are certainly many possible ways to develop algorithms in

the LFEL approach. We explored a first step toward this direction through a neural network

implementation of the generalized solvation free energy (GSFE) theory.37 In GSFE theory,

each comprising unit in a complex molecular system is solvated by its neighboring units.

Therefore, each unit is both a solute itself and a comprising solvent unit of its solvent units.

Let (xi, yi) = Ri denote a region i defined by a solute xi and its solvent yi, a molecular

system of N units has N overlapping regions. Each local term may be further expanded:

P (Ri) = P (xi, yi)

= P (xi|yi)P (yi) (14)
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Both terms may be learned from either experimental or computational datasets, as long337

as they are sufficiently representative and reliable. The first term in Equation 14 is the338

likelihood term when xi is the given, it quantifies the extent of match between the solute xi339

and its solvent yi. The second term is the local prior term, it quantifies the stability of the340

solvent environment yi. Computation of the prior term is more difficult than the likelihood341

term, but certainly learnable when sufficient data is available. A local maximum likelihood342

approximation of GSFE (LMLA-GSFE) is to simply ignore local prior terms.343

A particular implementation of the LMLA-GSFE for protein structure refinement with344

residues defined as comprising unit was conducted.190 In this scheme, GSFE is integrated345

with autodifferentiation and coordinate transformation to construct a computational graph346

for free energy optimization. With fully trainable LFEL derived from backbone and Cβ347

atom coordinates of selected experimental protein structures, we achieved superb efficiency348

and competitive accuracy when compared with state of the art atomistic protein refinement349

refinement methodologies. With our newly developed pipeline, refinement of typical protein350

structure decoys (within 300 amino acids) takes a few seconds on a single CPU core, in351

contrast to a few hours by typical efficient sampling/minimization based algorithms (e.g.352

FastRelax191) and thousands of hours for MD based refinement.192 In the latest CASP14353

refinement contest (predictioncenter.org/casp14/index.cgi), our method ranked the the first354

for the 13 targets with start GDT-TS score larger than 60. We expect incorporation of355

complete heavy atom information and local prior terms to further improve this method in356

the future. GSFE theory in particular and the LFEL approach in general, are certainly357

extendable to modeling of other soft matter molecular systems.358

More on connections among CG, ES and LFEL approach359

All of these algorithms have a common goal of accelerating computation of a joint distribution360

for a given molecular system at some target resolution, albeit from distinct perspectives. The361
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fundamental underpinning is the fact that molecular correlations among its various DOFs362

limit a molecular system to a manifold of significantly lower dimension. Both ES and CG in363

the FF framework and the LFEL approach are distinct strategies to “cache” manifolds from364

either configurational space (Fig. 3) or physical space perspective (Fig. 4). Commonality365

and differences of these strategies are summarized in Table 2 and discussed below.366

Table 2: Commonality and difference among three types of algorithms

Algorithm Coarse graining Enhanced sampling LFEL approach
Resolution Lower In In

Transferable? Partial No Partial
Dividing space Physical Configurational Physical
Free energy unit Partially Specified Specified Arbitrary

Both MSM and RC/CV based ES are designed to first describe local parts of the ap-367

proximate manifold in the configurational space formed by all molecular DOFs of the target368

molecular system. Information for such local configurational space is partially “cached” ei-369

ther as bias potentials or transition counts, which are further processed to map FEL and370

dynamics of interested molecular processes. Computational process (or educated guess) for371

establishment of RC/CVs is essentially “caching” results from sampling/guessing local parts372

of the configurational as approximate relevant manifold(Fig. 3B). Subsequent sampling along373

RC/CV is hoped to disclose our interested molecular processes (e.g. biomolecular confor-374

mational transitions, substrate binding/release in catalysis). Involved molecular DOFs for375

RC/CVs are not necessarily spatially adjacent on the one hand, and may be different for376

different molecular processes of the same molecular system. Apparently, RC/CVs are molec-377

ular process specific and not transferable, even among different molecular process of the same378

molecular system. Nonetheless, the methodology for searching CVs may be applied to many379

different molecular processes/systems.380

In contrast, both CG in the FF framework and the LFEL approach are motivated to381

“cache” relevant information on the complete configurational distribution for local clusters of382

molecular DOFs. Such local clusters are building blocks for many similar molecular systems383
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(e.g. AAs in protein molecular systems) and consequently have limited and approximate384

transferability. In CG, strongly correlated local clusters of molecular DOFs are represented385

as a single particle, complex many body correlations/interactions of CG particles within386

selected cutoff distances are represented by simplified CG FF in a lower resolution and longer387

range correlations/interactions are incorporated either through more coarser CG models or388

by separate long-range interaction computation. In LMLA-GSFE implementation of LFEL,389

all complex many body correlations within selected regions (i.e. each solute and its specific390

solvent) are decomposed into two terms in Equation 14, local likelihoods and local priors391

in the same resolution, with local priors and direct genuine long-range interactions simply392

ignored, and LFEL being approximated by local likelihood terms. More and better ways for393

implementing LFEL are expected in the future.394

The first step of CG is to partition atoms/particles of high resolution representation into395

highly correlated local clusters that will be represented by corresponding single CG parti-396

cles, and moderately correlated regions define interaction cutoff for CG particles; The second397

step is to select a site (usually one of the comprising high resolution particles) to represent398

the corresponding highly correlated cluster; The third step is to select functional forms to399

describe molecular interactions among newly defined CG particles, and parameters are op-400

timized by selected loss functions (e.g. differences of average force in force matching89,90)401

based on sampling in the whole configurational space of molecular systems and hopefully402

to be transferable to some extent. One may imagine that both best clustering and optimal403

representation sites of clusters may vary with different functional forms used to describe CG404

particle interactions and in different part of configurational space. Neural network based405

CG potentials do not have limitation of fixed functional form and pairwise approximations.406

However, the need to partition molecular systems into transferable clusters and to specify407

representation site/particle remain. For all different forms of CG, the fundamental essence is408

to “cache” many body potential of mean force (PMF) in simplified CG FF at a lower resolu-409

tion. In contrast, LFEL approach is to first using a DC strategy to divide molecular systems410
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into local regions, then directly “cache” many body PMF (or LFEL) of such local regions411

in the original resolution. The cached complex local multivariate distributions in NN are412

subsequently utilized to construct FEL of target molecular system through dynamic puzzle413

assembly based on sampling with GCF as expressed in Equations 12 and 13. In language414

of statistical machine learning. Training of LFEL is the learning step, while construction of415

global FEL is the inference step. The advantage of CG is a simpler resulting physical model,416

but is inflexible due to fixed clustering and representation on the one hand, and lost resolu-417

tion/information on the other hand. Properly implemented LFEL while has selected spatial418

regions comprising many molecular DOFs, composition of such regions are fully dynamic.419

For example, in GSFE implementation of LFEL, a region is defined by a solute unit and420

all of its solvent units, and comprising units for the solvent is dynamically updated in each421

iteration of free energy optimization. Additionally, no loss of resolution is involved for LFEL422

approach. Hence all difficulties and uncertainties associated with molecular DOF partition,423

CG site selection and time scale separation, all of which apparently limit transferability of424

CG FF, disappear. Correspondingly, the extent of transferability of a LFEL model is in425

principle at least no worse than CG FF. Differences of CG and specific implementation of426

LFEL by GSFE theory is schematically illustrated in Fig. 4. The superior efficiency of LFEL427

approach comes with a price. The assembled global FEL has arbitrary unit for two reasons.428

Firstly, it is extremely difficult to obtain the partition function (normalization constant) for429

local regions directly during the training/caching stage, therefore we effectively obtain the430

LFEL up to an unknown constant. Secondly, for two different molecular systems, the number431

of local regions are usually different and so is the corresponding normalization constant.432

These three lines of algorithms may be combined to facilitate molecular modeling. For433

example, one might first utilize deep learning based near quantum accuracy many body FF434

to perform atomistic simulations for protein molecular systems, and then extracting local435

distributions properly with some form of LFEL, which may potentially be utilized to analyze436

protein molecular systems with near-quantum accuracy and at regular amino-acid based CG437
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or even much faster speed! Similarly, one may extract and “cache” large body of information438

from residue level CG simulations with proper LFEL implementation, which may be utilized439

to achieve ultra CG (UCG) efficiency with residue resolution. Application of CV and MSM440

based ES algorithm for CG models is straight forward. Combination of LFEL with CV or441

MSM based ES is more subtle and yet to be investigated.442

Conclusions and prospect443

The application of “dividing and conquering” and “caching” principle in development of444

molecular modeling algorithms is briefed. Historically, coarse graining and enhanced sam-445

pling have been two independent lines of methodological development in the mainstream446

FF framework. While they share the common goal of reducing local sampling, the formula-447

tions are completely different with distinct (dis)advantages. Coarse graining obtains partial448

transferable FF but loses resolution, enhanced sampling retains resolution but results are not449

transferable. The LFEL approach suggests a third strategy to directly approximate global450

joint distribution by superposition of LFEL, which may be learned from available dataset451

of either experimental or computational origin. Through integration of coordinate transfor-452

mation, autodifferentiation and neural network implementation of GSFE, our recent work453

of protein structure refinement demonstrated that simultaneous realization of transferable454

in-resolution “caching” of local sampling is not only feasible, but also highly efficient due455

to replacement of local sampling by differentiation. It is hoped that this review stimulates456

further development of better “dividing and conquering” strategies for complex molecular457

systems through more elegant, efficient and accurate ways of “caching” potentially repetitive458

computations in molecular modeling at various spatial and temporal scales. With diverse459

molecular systems (e.g. nanomaterials, biomolecular systems), specialization of methodology460

is essential to take advantage of distinct constraints and characteristics.461
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Figure 1: Schematic illustration of time scale separation issue in CG. A) and B) show two
situations with Cα distances between two amino acids GLU and ALA being R, but with
GLU have different conformations. If Cα atoms were defined as CG site, then these two
relative conformation with distinct interactions would be treated as the same. In A) and
B), CG site distance in both A) and B) are R, but many other pairs of atoms have distinct
distances as exemplified by r1 and r2. Such treatment would only be true if for any small
amount of displacement of Cα, side chains accomplished many rotations and thus may be
accurately represented by averaging (i.e. with good time scale separation). This issue is
apparently not limited to the specific definition of Cα being CG site, but rather general for
essentially all CG development.
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Figure 2: Schematic illustration of the LFEL approach in contrast to present mainstream
FF framework. FF parameterization is the foundation for present classical computational
molecular science. Training of neural network for “caching” LFEL is the foundation for
LFEL approach, the source data can be either of experimental or computational origin.
In FF framework, simulation (with or without ES) is driven by FF, in LFEL approach,
propagation of molecular systems to minimize free energy (or maximize joint probability)
is driven by compromise among many LFELs. Expensive repetitive local sampling in FF
framework is substituted by differentiation w.r.t. LFELs.
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Figure 3: Schematic illustration of essential features for enhanced sampling by Metadynamics
and MSM. A) The “S” shape grey line represents the unknown manifold in the configura-
tional space (represented by the square) of a molecular system. B) Small circles connected
by blue arrows represent computed (guessed) RC/CVs for the molecular system, which is
utilized to conduct Metadynamics simulations. C) The FEL of the molecular system along
the computed/selected RC/CV in B). D) “Caching” of the LFEL by bias potentials (gaus-
sians represented by blue bell shaped lines) accumulated in the course of Metadynamics
simulations. E) Distribution of the molecular system to the whole configurational space at
the start of a MSM simulation, small circles represent initial start points for short MSM
trajectories. F) Sampling results of short MSM trajectories fall mainly near the manifold,
distinct “states” are represented by different colors. G) Establishment of transition matrix
by transition counts between “states” obtained from short trajectories.
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Figure 4: Schematic illustration of difference between CG and GSFE implementation of
LFEL using protein as an example. A) Target molecular systems in physical space. Due
to the goal of constructing partially transferable models and/or force fields, usually many
different but similar molecular systems are considered. B) Selection of local atom/particle
clusters to be represented as one particle in CG model. C) Selection of CG sites. D) Compar-
ison between atomistic (or higher resolution) simulation results and CG (lower resolution)
results. E) Adjust of CG FF parameter according to comparison from D). F)Definition of
solvent region for each solute unit. G) Feature extraction for each solute. H) “Caching” of
LFEL with neural network by training with prepared data sets.
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