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Abstract

Molecular modeling is widely utilized in subjects including but not limited to physics,

chemistry, biology, materials science and engineering. Impressive progress has been

made in development of theories, algorithms and software packages. To divide and

conquer, and to cache intermediate results have been long standing principles in de-

velopment of algorithms. Not surprisingly, Most of important methodological advance-

ments in more than half century of molecule modeling are various implementations of

these two fundamental principles. In the mainstream classical computational molecu-

lar science based on force fields parameterization by coarse graining, tremendous efforts

have been invested on two lines of algorithm development. The first is coarse graining,

which is to represent multiple basic particles in higher resolution modeling as a single

larger and softer particle in lower resolution counterpart, with resulting force fields of

partial transferability at the expense of some information loss. The second is enhanced

sampling, which realizes “dividing and conquering” and/or “caching” in configurational

space with focus either on reaction coordinates and collective variables as in metady-

namics and related algorithms, or on the transition matrix and state discretization as
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in Markov state models. For this line of algorithms, spatial resolution is maintained but

no transferability is available. Deep learning has been utilized to realize more efficient

and accurate ways of “dividing and conquering” and “caching” along these two lines of

algorithmic research. We proposed and demonstrated the local free energy landscape

approach, a new framework for classical computational molecular science and a third

class of algorithm that facilitates molecular modeling through partially transferable in

resolution “caching” of distributions for local clusters of molecular degrees of freedom.

Differences, connections and potential interactions among these three algorithmic di-

rections are discussed, with the hope to stimulate development of more elegant, efficient

and reliable formulations and algorithms for “dividing and conquering” and “caching”

in complex molecular systems.

Impact of molecular modeling in scientific research

Impact of molecular modeling in scientific research is clearly embodied by the number of

publications. Results of a Web of Science (www.webofknowledge.com) search with vari-

ous relevant key words is listed in Table 1. However, despite widespread applications, we

remain far from accurately predicting and designing molecular systems in general. Further

methodological development is highly desired to tap its full potential. Historically, molecular

modeling has been approached from a physical or application point of view, and numerous

excellent reviews are available in this regard.1–8 From an algorithmic perspective, “dividing

and conquering” (DC) and “caching” intermediate results that need to be computed repet-

itively are two fundamental principles in development of many important algorithms (e.g.

dynamic programming9). In this review, I provide a brief discussion of important method-

ological development in molecular modeling as specific applications of these two principles.

The content will be organized as the following. Part I describes fundamental challenges in

molecular modeling; Part II summarizes application of these two fundamental algorithmic

principles in two lines of methodological research, coarse graining (CG)10–15 and enhanced
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sampling (ES);16–19 Part III covers how machine learning, particularly deep learning, fa-

cilitate DC and “caching” in CG and ES, part IV introduces local free energy landscape

(LFEL) approach, a new framework for computational molecular science based on partially

transferable in resolution “caching” of local sampling, and the first implementation of the

new framework by generalized solvation free energy (GSFE) theory20 is briefly discussed;

and part V discusses connections among these three lines of algorithmic development, their

specific advantages and prospective explorations. Due to the large body of literature and

limited space, we apologize to authors whose excellent work are not cited here.

Table 1: Number of publications from web of science search on Sep, the 8th, 2020

Key words Number of publications
Molecular dynamics simulation 241,748
Monte Carlo simulation 189,550
QM-MM (quantum mechanical - molecular mechanical) simulation 9907
Dissipative particle dynamics simulation 3693
Langevin dynamics simulation 3893
Molecular modeling 2,072,091
All of the above 2,243,182

Challenges in molecular modeling

Accurate description of molecular interactions

Molecular interactions may be accurately described with high level molecular orbital theories

(e.g. coupled cluster theory21) or sophisticated density functionals combined with large basis

sets.22 However, such quantum mechanically detailed computation is prohibitively expensive

for any realistic complex molecular systems. Molecular interactions are traditionally repre-

sented by explicit functions and pairwise approximations as exemplified by typical physics

3

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2021                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2021                   doi:10.20944/preprints202012.0081.v2

https://doi.org/10.20944/preprints202012.0081.v2


based atomistic molecular mechanical (MM) force fields (FF):23

U(~R) =
∑
bonds

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)2

+
∑

dihedral

Kχ(1 + cos(nχ− δ))

+
∑

impropers

Kimp(φ− φ0)
2

+
∑

nonbonded

(
εij

[(
Rminij
rij

)12

−
(
Rminij
rij

)6
])

+
qiqj
εrij

(1)

or knowledge based potential functions:24 These simple functions, while being amenable

to rapid computation and are physically sound grounded near local energy minima (e.g.

harmonic behavior of bonding, bending near equilibrium bond lengths and bend angles),

are problematic for anharmonic interactions, which are very common in many molecular

systems.25 It is well understood that properly parameterized Lennard-Jones potentials are

accurate only near the bottom of its potential well. Frustration are ubiquitous in biomolec-

ular systems and are likely fundamental driving force for conformational fluctuations.26 One

may imagine that a molecular system with all its comprising particles at their respective

“happy” energy minima positions would likely be a stable “dead” molecule, which may be a

good structural support but is likely not able to provide dynamic functional behavior.

Pairwise approximations are usually adopted for its computational convenience, both in

terms of dramatically reduced computational cost and tremendously smaller (when com-

pared with possible many body potentials) number of parameters that need to be fit in

FF parameterization. It is widely acknowledged that construction of traditional FF (e.g.

equation 1) is a laborious process. Development of polarizable27,28 and more complex FF

with larger parameter sets29 alleviate some shortcomings of earlier counterpart. Expansion

based treatments were incorporated to address anharmonicity.30 However, to tackle limi-

tation of explicit simple functional form and pairwise approximation for better description

of molecular interactions remain challenges to be met for molecular modeling community.
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Additionally, even atomistic simulations are prohibitively expensive for large biomolecular

complexes at long time scales (e.g. milliseconds and beyond).

Inherent low efficiency in sampling of configurational space

Complexity of molecular systems is rooted in their molecular interactions, which engenders

complex and non-linear correlations among molecular degrees of freedom (DOFs). Con-

sequently, effective number of DOFs are greatly reduced. Therefore, complex molecular

systems are confined to manifolds31 of much lower dimensionality with near zero measure in

corresponding nominal high dimensional space (NHDS), suggesting that brute force random

sampling is hopeless.

In stochastic trajectory generation by Monte Carlo (MC) simulations or candidate struc-

tural model proposal in protein structure prediction and refinement (or other similar scenar-

ios), new configuration proposal are carried out in NHDS, a lot of effort is inevitably wasted

due to sampling outside the actual manifold occupied by the target molecular system. Such

wasting may be avoided if we understood all correlations. However, understanding all cor-

relations implicates accurate description of global free energy landscape (FEL) and there

is no need to investigate it further! Due to preference of lower energy configurations by

typical importance sampling strategies (e.g. Metropolis MC), stochastic trajectories tend

to be trapped in local minima of FEL, this is especially true for complex molecular (e.g.

biomolecular) systems which have hierarchical rugged FEL with many local minima.32 In

trajectory generation by molecular dynamics (MD) simulations, configurational space is ex-

plored by laws of classical mechanics and no wasting due to random moves exists. However,

molecular systems may well drift away from their true manifolds due to insufficient accuracy

of FF. Similar to stochastic trajectory generation, it takes long simulations to map FEL

since molecular system tend to staying at any local minimum, achieve equilibrium among

many local minima is just as challenging as in the case of stochastic counterpart.
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DC and “caching” in traditional molecular modeling

To cope with fundamental difficulties in molecular modeling, two distinct lines of methodolog-

ical development (CG and ES) based on DC and “caching” strategies have been conducted

and tremendous progress has been made in understanding of molecular systems. A brief

summary is presented below:

Coarse graining, a partially transferable “caching” strategy

Atomistic FF parameterization is the most well established coarse graining with a strong

theoretical foundation, the Born-Oppenheimer approximation. Theoretically, MMFF are

potential of mean force (PMF) obtained by averaging over all possible electronic DOFs for

given atomic configurations. In practice, due to the fact that ab initio calculations are expen-

sive and may have significant error when level of theory (and/or basis set) is not sufficient,

reference data usually include results from both quantum mechanical (QM) calculations and

well-established experimental data.33,34 The DC strategy is utilized by selecting atomic clus-

ters of various size to facilitate generation of QM reference data. The essential information

learned from reference data is then permanently and approximately “cached” in FF param-

eters through the parameterization process. Due to the separation of time scales between

electronic and atomic motion, elimination of electronic DOFs is straight forward but comes

with the price of incapability in describing chemical reactions. To harvest benefits of both

quantum and atomistic simulations, a well-established DC strategy is to treat a small region

involved interested chemical reaction at QM detail and the surrounding with atomistic MD

simulation.35–40 This series of pioneering work was awarded Nobel prize in 2013.

The united atom model (UAM) is the next step in coarse graining,41 where hydrogen

atoms are merged into bonded heavy atoms. This is quite intuitive since hydrogens have

much smaller mass on the one hand, and are difficult to see by experimental detection tech-

niques utilizing electron diffraction (e.g. X-ray crystallography) on the other hand. For
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both polymeric and biomolecular systems, UAM remains to be expensive for many inter-

ested spatial and temporal scales. Therefore, further coarse graining in various forms have

been constructed. As a matter of fact, CG is usually used to denote modeling with particles

that representing multiple atoms in contrast to atomistic simulations, and the same con-

vention will be adopted in the remaining part of this review unless stated otherwise. Both

“Top-down” (that based on reproducing experimental data) and “bottom-up” ( that based

on reproducing certain properties of atomistic simulations) approaches are utilized.12 For

polymeric materials, beads are either utilized to represent monomers or defined on consid-

eration of persistent length,42 and dissipative particle dynamics (DPD) were proposed to

deal with complexities arise from much larger particles.43 For biomolecular systems, a wide

variety of coarse grained models have been developed.11,12,14,15 Another important subject of

CG methodology development is materials science.44,45 Earlier definition of CG particles are

rather ad hoc.11 More formulations with improved statistical mechanical rigor appeared later

on,13 with radial distribution function based inversion,42,46 entropy divergence47 and force

matching algorithm48,49 being outstanding examples of systematic development. Present CG

is essentially to realize the following mapping as disclosed by equation (4) in ref.13 :

exp [−βVCG(RCG)] ≡
∫
drδ(MR(r)−RCG)exp [−βV (r)] (2)

with r and R being coordinates in higher resolution and CG coordinates, MR(r) being the

map operator from r to R, V and VCG being potential energy of higher resolution and CG

representation respectively. Due to lack of time scale separation (see Fig. 1) for essentially all

CG mapping, strict realization of this equation/mapping is not rigorously possible. A naive

treatment of CG particles as basic units (with no internal degrees of freedom) would result

in wrong thermodynamics.13 Due to corresponding significant loss of information, it is not

possible to develop a definition of CG and corresponding FF parameterization for compre-

hensive reproduction of all atom description of corresponding molecular systems. Different
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coarse graining have distinct advantages and disadvantages, so choosing proper CG strategy

is highly dependent upon specific goal in mind. CG particles are usually isotropic larger

and softer particles with pairwise interactions, or simple convex anisotropic object (e.g. soft

spheroids) that may be treated analytically.15,50,51 Such simplifications provide both con-

venience of computation and certain deficiency for capturing physics of target molecular

systems. CG may be carried out iteratively to address increasingly larger spatial scales

by “caching” lower resolution CG distributions with ultra CG (UCG) FF.13,52–54 Pairwise

approximation and explicit simple function form remain to be limitations of interaction de-

scription for traditional CG FF. When compared with atomistic FF, pairwise approximation

deteriorate further due to lack of time scale separation (Fig. 1).

Another simple and powerful type of CG model for biomolecular systems is Gō model55,56

and elastic network models (ENM)57,58 or gaussian network models (GNM)59 with native

structure being defined as the equilibrium state, and with quadratic/harmonic interactions

between all residues within given cutoff. Only a few parameters (e.g. cutoff distance, spring

constant) are needed. Such models “caching” the experimental structures and are proved

to be useful in understanding major conformational transitions and slow dynamics of many

biomolecular systems.60,61

Enhanced sampling, a nontransferable in resolution DC and/or “caching”

strategy

Umbrella sampling (US)62 is probably the first combination of DC and “caching” strategy

for better sampling of molecular system along a given reaction coordinate (RC) (or order

parameter) s. DC strategy is first applied by dividing s into windows, information for each

window is then partially “cached” by corresponding bias potentials and local statistics. Later

on, adaptive US (AUS)63,64 and weighted histogram analysis method (WHAM)65 was devel-

oped to improve both efficiency and accuracy. MABR66,67 was developed to achieve error

bound analysis which is lack in WHAM. Further development including adaptive bias force
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(ABF)68 and metadynamics.69 Details of these methodologies were well explained by ex-

cellent reviews.70–73 The common trick to all of these algorithms (and their variants) is to

“cache” visited configurational space with bias potentials/force and local statistics, thus dra-

matically accelerate sampling of interested rare events. Denote CV as s(r) (r being physical

coordinates of atoms/particles in the target molecular system), equilibrium distribution and

free energy on the CV may be expressed as:18

p0(s) =

∫
drδ [s− s(r)] p0(r) = 〈δ [s− s(r)]〉 (3)

p0(r) =
e−βU(r)∫
dre−βU(r)

(4)

F (s) = − 1

β
log[p0(s)] (5)

F (s) = − 1

β
log[p(s)]− V (s) (6)

with p(s) being the sampled distribution in simulation with corresponding bias potential

V (s) for “caching” of visited configurational space.

The starting point of these “caching” algorithms is specification of reaction coordinates

(RC) or collective variables (CVs), which is a very challenging task for complex molecular

systems in most cases. Traditionally, principle component analysis (PCA)74 is the most

widely utilized and a robust way for disclosing DOFs associated with the largest variations.

To deal with ubiquitous nonlinear correlations, kernels are often used albeit with the difficulty

of choosing proper kernels.75 Additional methodologies, include multidimensional scaling

(MDS),76 isomap,77 locally linear embedding (LLE),78 diffusion map79,80 and sketch map81

have been developed to map out manifold for high dimensional data. However, each has

it own limitations. For example, LLE78 is sensitive to noise and therefore has difficulty

with molecular simulation trajectories which are quite noisy; Isomap77 requires relatively

homogeneously sampled manifold to be accurate. Both LLE and Isomap do not provide

explicit mapping between molecular coordinates and CVs; Diffusion and sketch maps are
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likely to be more suitable to analyze molecular simulation trajectories. Nonetheless, their

successful application for large and complex molecular systems remain to be tested. All of

above non-linear mapping algorithm are mainly suitable for manifold on a single scale. When

we are interested in finding paths for transitions among known metastable states, transition

path sampling (TPS)82,83 methodology maybe utilized to establish CV.

Apparently, RC and/or CV based ES is a different path for facilitate simulation of com-

plex molecular systems on longer time scales from coarse graining. One apparent plus side

is that these algorithms are “in resolution” as no systematic discarding of molecular DOFs

occur. With specification of RC and/or CVs, computational resource is directed toward the

presumably most interesting dynamics of the target molecular system, and RC and/or CV

maybe repetitively refined/updated to obtain mechanistic understanding of interested molec-

ular processes. However, the down side is that “cached” information on local configurational

space is not transferable to other similar molecular systems. While rigorous transferability

may not be easily established for any CG FF, practical utility of CG FF for molecular sys-

tems with similar composition and thermodynamic conditions have been quite common and

useful.15 Therefore, CG FF may be deemed as partially transferable.

An important recent development of DC strategy for enhanced sampling is Markov state

models (MSM),84–86 one great advantage of which is that no RC or CV is needed. Instead,

it extracts long-time dynamics from independent short trajectories distributed in configu-

rational space. Many important biomolecular functional processes have been characterized

with this great technique.87,88 The most fundamental assumption is that all states for a

target molecular system form an ergodic Markov chain:

π(t+ τ) = π(t)P (7)

with π(t) and π(t + τ) being a vector of probabilities for all states at time t and t + τ re-

spectively. P is the transition matrix with its element Pij being probability of the molecular
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system being found in state j after an implied lag time (τ) from the previous state i. Ap-

parently as t goes to infinity for an equilibrium molecular system, a stationary distribution

π will arise as defined below:

π = πP (8)

The advantage of not needing RC/CV does not come for free but with accompanying dif-

ficulties. Firstly, one has to distribute start point of trajectories to statistically important

and different part of configurational space, then select proper (usually hierarchical, with each

level of hierarchy corresponds to a specific lag time) partition of configurational space into

discrete states. This is the key step of DC strategy in MSM. No formal rule is available and

experience is important. In many cases some try and error is necessary. Secondly, within

each discrete state at a given level of hierarchy, equilibration is assumed to be achieved in-

stantly and this assumption causes systematic discretization error, which fortunately may

be controlled with proper partition and sufficiently long lag time.89 Apparently, metastable

states obtained from MSM analysis is molecular system specific and thus not transferable.

Another important class of enhanced sampling is to facilitate sampling with non-Boltzmann

distributions and restore property at targeted thermodynamic condition through proper

reweight.90 Most outstanding examples are Tsallis statistics,91,92 parallel tempering,93 replica

exchange molecular dynamics,94 Landau-Wang algorithm95 and integrated tempering sam-

pling (ITS).96,97 These algorithms are not direct applications of DC and “caching” strategies

and are not discussed here.

Machine learning improves “caching”

Toward ab initio accuracy of molecular simulation potentials

Fixed functional form and pairwise approximation of non-bonded interactions are two major

factors limiting the accuracy of molecular interaction description in both atomistic and CG
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FF. Neural network (NN) has capability of approximate arbitrary functions and therefore

has the potential to address these two issues. Not surprisingly, significant progress has been

made in this regard as summarized by recent excellent reviews.98–104 Cutoff and attention to

local interactions remains the DC strategy for development of machine learning potentials.

The major improvement over traditional FF is better “caching” that overcomes pairwise

approximation and fixed functional form limitations. NN FF naturally tackle both issues as

explicit functions are not necessary since NNs are universal approximatores. The significance

of many-body potentials105 and extent of pairwise contributions were analyzed.106,107 There

are also efforts to search for proper simple functional forms, which are expected to be more

accurate than present functional forms in traditional FF on the one hand, and alleviate

overfitting/generalization difficulty and reduce computational cost of complex NN FF on the

other hand,108,109 especially when training dataset is small. While most machine learning FF

are trained to predict energy,99,103 gradient-domain machine learning (GDML) approach110

directly learns from forces and realizes great savings of data generation.

Just as in the case of traditional FF, transferability and accuracy is always a tradeoff.

More transferability implicates less attention is paid to “cache” detailed differences among

different molecular systems, hence less accuracy. Exploration in this regard, however, re-

mains not as much as necessary.111–113 Unlike manual fitting of traditional FF, systematic

investigation of tradeoff strategy is potentially feasible for machine learning fitting,114 and

yet to be done for many interesting molecular systems. With expediency of NN training,

development of a NN FF hierarchy with increasing transferability/accuracy and decreasing

accuracy/transferability is likely to become a pleasing reality in the near future. Rapid fur-

ther development of machine learning potentials, particularly NN potentials, are expected.

However, significant challenges for NN potentials remain on better generalization capabil-

ity, description/treatment of long range interactions,115 wide range of transferability, faster

computation and proper characterization of their error bounds. Should significant progress

be made on these issues, it is promising we may have routine molecular simulations with
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both classical efficiency and ab initio accuracy in the near future.

Machine learning and coarse graining

As in the case of constructing atomic level potentials, machine learning has been applied

to address two outstanding pending issues in coarse graining, which are definition of CG

sites/particles and parameterization of corresponding interactions between/among these

sites/particles.

Traditional CG FF, suffers from both pairwise approximation and accuracy ceiling of

simple fixed functional forms which are easy to fit. By using more complex (but fixed func-

tional form) potentials with a machine learning fitting process, Chan et. al.116 developed

ML-BOP CG water model with great success. Deep neural network (DNN) was utilized to

facilitate parameterization of CG potentials when given radial distribution functions (RDF)

from atomistic simulations.117 CGnet demonstrated great success with simple model systems

(alanine dipeptide).118 DeePCG model was developed to overcome pair approximation and

fixed functional form and demonstrated with water.119 Using oxygen site to represent water

is rather intuitive. However, for more complex biomolecules such as proteins, possibility for

selection of CG site explodes. To improve over intuitive or manual try and error definition

of CG sites, a number of studies have been carried out120–123 to provide better and faster

options for choosing CG sites. However, no consensus strategy is available up to date and

more investigations are desired. The fundamental difficulty is that there is no sufficient

time scale separation between explicit CG DOFs and discarded implicit DOFs, regardless of

specific selection scheme being utilized. Intuitively, one would expect CG FF parameters

to be dependent upon definition of CG sites/particles. In this regard, auto-encoders were

utilized to construct a generative framework that accomplishes CG representation and pa-

rameterization in a unified way.124 The spirit of generative adversarial networks was utilized

to facilitate CG construction and parameterization, particularly with virtual site representa-

tion.125 It was found that description of off-target property by CG exhibit strong correlation
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with CG resolution, to which on-target property being much less sensitive.126 Such observa-

tion suggests that adjust CG for specific target properties might be a better strategy than

searching for a single best CG representation. Despite potentially more severe impact of

pairwise approximation for CG FF than in atomistic FF, quantitative analysis in this regard

remain to be done.

Machine learning in searching for RC/CVs and construction of MSM

To overcome difficulties of earlier nonlinear CV construction algorithms77–79,81 and reduce

reliance on human experience, auto-encoders, which is well-established for trainable (non-

linear) dimensionality reduction, are utilized in a few studies.127–130 Chen and Ferguson128

first utilized autoencoders to learn nonlinear CVs that are explicit and differentiable func-

tions of molecular coordinates, thus enabling direct utility in molecular simulations for more

effective exploration of configurational space. Further improvement127 was achieved through

circular network nodes and hierarchical network architectures to rank-order CVs. Wehmeyer

and Noé129 developed time-lagged auto-encoder to search for low dimensional embeddings

that capture slow dynamics. Ribeiro et. al.130 proposed the reweighted autoencoded varia-

tional Bayes to iteratively refine RC and demonstrated in computation of the binding free

energy profile for a hydrophobic ligand-substrate system. Building a MSM for any specific

molecular system requires tremendous experience and many steps in process are error prone.

To overcome these pitfalls, VAMPnet that based on variational approach for Markov process

was developed to realize the complete mapping steps from molecular trajectories to Markov

states.131

The local free energy landscape approach

Both CG and ES methodologies facilitate molecular simulation by effectively reducing lo-

cal sampling. In CG, it is realized through “caching” (integration) of distributions for
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faster/discarded DOFs with proper CG FF, and thus has the inevitable cost of losing res-

olution (information), accompanied by the desired attribute of (partial) transferability to

various extent. ES reduces lingering time of molecular systems in local minima through

“caching” visited local configurational space, which is usually defined by relevant DC strate-

gies, with biasing potentials. When compared with CG, there is no resolution loss. However,

“cached” manifold of configurational space is molecular process specific and thus not transfer-

able at all. In molecular modeling community, these two lines of methodologies are developed

quite independently. Nevertheless, one might want to ask why not have both advantages in

one method, that is to reduce repetitive local sampling without loss of resolution and with

“cached” results partially transferable. The local free energy landscape (LFEL) approach is

proposed with this intention in mind. Historically, parameterization of FF by coarse graining

has been the only viable framework due to two fundamental constraints. Firstly, in earlier

days of molecular modeling, typical computers have memory space of megabytes or less, ren-

der it impossible to accommodate millions or more parameters needed to fit complex LFEL;

Secondly, while both neural network and autodifferentiation were invented decades ago, the

computational molecular science community did not master these techniques for fitting large

number of parameters efficiently until recently. With these two constraints removed, pos-

sibility for alternative path arise to break monopoly of classical molecular modeling by FF

parameterization via coarse graining. Specifically, one may carry out direct fitting of LFEL

and all important information on local distributions of molecular DOFs obtained from ex-

pensive local sampling may be “cached”. This is in strong contrast to coarse graining based

parameterization, in which local distributions are substituted by averaging in relevant low di-

mensional space projection (e.g. pairwise distances). For a molecular system with N DOFs,

this LFEL approach may be expressed as:

P (r1, r2, · · · , rN) = P (R1, R2, · · · , RM)(M ≤ N) (9)
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Ri = (ri1 , ri2 , · · · , ril) (10)

P (R1, R2, · · · , RM)

=
M∏
i=1

P (Ri)
P (R1, R2, · · · , RM)∏M

i=1 P (Ri)
(11)

≈
M∏
i=1

P (Ri), and sampling all Rs with GCF (12)

G = −kBT lnP (r1, r2, · · · , rN)

= −kBT lnP (R1, R2, · · · , RM)

≈ −kBT
M∑
i

lnP (Ri), and sampling all Rs with GCF (13)

a N -DOF molecular system is reorganized into M overlapping regions (Equation 9), each

region has some number of DOFs (Equation 10). The key of LFEL approximate solution is

expressed in Equation 11, in which the first product term (addressed “local term(s)” here-

after) treat M regions as if they were independent, and all correlations among different

regions are incorporated by the fraction term, which is termed global correlation fraction

(GCF) and is extremely difficult, if ever possible, to be calculated directly. However, GCF

is a unnormalized probability distribution, when all molecular DOFs in local terms are sam-

pled according to GCF, then we do not need GCF explicitly anymore (Equation 12). GCF

represents two types of global correlations. The first type is mediated correlations among

different regions by the fact that they overlap, the second type is direct global correlations

among molecular DOFs in different regions caused by genuine long-range interactions (e.g.

electrostatic interactions). Satisfying the first type with sampling is trivial, and ensuring all

overlapping regions share the exact same state is sufficient. The second type of global corre-

lations need more involved treatment. These equations are apparently of general utility for
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any multiple-variable (high-dimensional) problem. In the specific case of a complex molec-

ular system, using one set of coordinates realizes this goal. The approximation in Equation

12 is made by ignoring the second type of global correlations. Free energy minimization of

a molecular system in thermodynamic equilibrium may be treated as maximization of joint

probability (eq. 13). For molecular systems (all biological systems) off equilibrium, the joint

distribution remains our focus despite free energy is not well defined anymore. A schematic

representation of the LFEL approach in contrast to FF framework is shown in (Fig.2). While

we only demonstrated GSFE implementation of LFEL at residue level for protein structural

refinement. LFEL approach may be utilized to “cache” local distributions at any spatial

scales. Just as there are many methodological developments in the mainstream FF frame-

work, there are certainly many possible ways to develop algorithms in the LFEL approach.

We explored a first step toward this direction through a neural network implementation of

the generalized solvation free energy (GSFE) theory.20 In GSFE theory, each comprising unit

in a complex molecular system is solvated by its neighboring units. Therefore, each unit is

both a solute itself and a comprising solvent unit of its solvent units. Let (xi, yi) = Ri denote

a region i defined by a solute xi and its solvent yi, a molecular system of N units has N

overlapping regions. Each local term may be further expanded:

P (Ri) = P (xi, yi)

= P (xi|yi)P (yi) (14)

Both terms may be learned from either experimental or computational datasets, as long

as they are sufficiently representative and reliable. The first term in Equation 14 is the

likelihood term when xi is the given, it quantifies the extent of match between the solute xi

and its solvent yi. The second term is the local prior term, it quantifies the stability of the

solvent environment yi. Computation of the prior term is more difficult than the likelihood

term, but certainly learnable when sufficient data is available. A local maximum likelihood
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approximation of GSFE (LMLA-GSFE) is to simply ignore local prior terms.

A particular implementation of the LMLA-GSFE for protein structure refinement with

residues defined as comprising unit was conducted.132 In this scheme, GSFE is integrated

with autodifferentiation and coordinate transformation to construct a computational graph

for free energy optimization. With fully trainable LFEL derived from backbone and Cβ

atom coordinates of selected experimental structures, we achieved superb efficiency and

competitive accuracy when compared with state of the art atomistic protein refinement

refinement methodologies. With our newly developed pipeline, refinement of typical protein

structure decoys (within 300 amino acids) takes a few seconds on a single CPU core, in

contrast to a few hours by typical efficient sampling/minimization based algorithms (e.g.

FastRelax133) and thousands of hours for MD based refinement.134 In the latest CASP14

refinement contest (predictioncenter.org/casp14/index.cgi), our method ranked the the first

for the 13 targets with start GDT-TS score larger than 60. We expect incorporation of

complete heavy atom information and local prior terms to further improve this method in

the future. GSFE theory in particular and the LFEL approach in general, are certainly

extendable to modeling of other soft matter molecular systems.

More on connections among CG, ES and LFEL approach

All of these algorithms have a common goal of accelerating computation of a joint distribution

for a given molecular system at some target resolution, albeit from distinct perspectives. The

fundamental underpinning is the fact that molecular correlations among its various DOFs

limit a molecular system to a manifold of significantly lower dimension. Both ES and CG in

the FF framework and the LFEL approach are distinct strategies to “cache” manifolds from

either configurational space (Fig. 3) or physical space perspective (Fig. 4).

Both MSM and RC/CV based ES are designed to first describe local parts of the ap-

proximate manifold in the configurational space formed by all molecular DOFs of the target
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molecular system. Information for such local configurational space is partially “cached” ei-

ther as bias potentials or transition counts, which are further processed to map FEL and

dynamics of interested molecular processes. Computational process (or educated guess) for

establishment of RC/CVs is essentially “caching” results from sampling/guessing local parts

of the configurational as approximate relevant manifold(Fig. 3B). Subsequent sampling along

RC/CV is hoped to disclose our interested molecular processes (e.g. biomolecular confor-

mational transitions, substrate binding/release in catalysis). Involved molecular DOFs for

RC/CVs are not necessarily spatially adjacent on the one hand, and may be different for

different molecular processes of the same molecular system. Apparently, RC/CVs are molec-

ular process specific and not transferable, even among different molecular process of the same

molecular system. Nonetheless, the methodology for searching CVs may be applied to many

different molecular processes/systems.

In contrast, both CG in the FF framework and the LFEL approach are motivated to

“cache” relevant information on the complete configurational distribution for local clusters

of molecular DOFs. Such local clusters are building blocks for many similar molecular

systems (e.g. AA clusters in protein molecular systems) and consequently have limited and

approximate transferability. In CG, strongly correlated local clusters of molecular DOFs are

represented as a single particle, complex many body correlations/interactions of CG particles

within selected cutoff distances are represented by simplified CG FF in a lower resolution

and longer range correlations/interactions are incorporated either through more coarser CG

models or by separate long-range interaction computation. In LMLA-GSFE implementation

of LFEL, all complex many body correlations within selected regions (i.e. each solute and its

specific solvent) are decomposed into two terms in Equation 14, local likelihoods and local

priors in the same resolution, with local priors and direct genuine long-range interactions

simply ignored, and LFEL being approximated by local likelihood terms. More and better

ways for implementing LFEL are expected in the future.

The first step of CG is to partition atoms/particles of high resolution representation into
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highly correlated local clusters that will be represented by corresponding single CG parti-

cles, and moderately correlated regions define cutoff for CG particles; The second step is to

select a site (usually one of the comprising high resolution particles) to represent the corre-

sponding highly correlated cluster; The third step is to select functional forms to describe

molecular interactions among newly defined CG particles, and parameters are optimized by

selected loss functions (e.g. differences of average force in force matching48,49) in the whole

configurational space of molecular systems and hopefully to be transferable to some extent.

One may imagine that both best clustering and optimal representation sites of clusters may

vary with different functional forms used to describe CG particle interactions and in different

part of configurational space. Neural network based CG potentials do not have limitation of

fixed functional form and pairwise approximations. However, the need to partition molec-

ular systems into transferable clusters and to specify representation site/particle remain.

For all different forms of CG, the fundamental essence is to “cache” many body potential of

mean force (PMF) in simplified CG FF at a lower resolution. In contrast, LFEL approach

is to first using a DC strategy to divide molecular systems into local regions, then directly

“cache” many body PMF (or LFEL) of such local regions in the original resolution. The

advantage of CG is a simpler resulting physical model, but is inflexible due to fixed cluster-

ing and representation on the one hand, and lost resolution/information on the other hand.

Properly implemented LFEL while has selected spatial regions comprising many molecular

DOFs, composition of such regions are fully dynamic. For example, in GSFE implementa-

tion of LFEL, a region is defined by a solute unit and all of its solvent units, and comprising

units for the solvent is dynamically updated in each iteration of free energy optimization.

Additionally, no loss of resolution is involved for LFEL approach. Hence all difficulty and un-

certainty associated with partition and site selection, which apparently limit transferability,

disappears. Correspondingly, the extent of transferability of a LFEL model is in principle at

least no worse than CG. Differences of CG and specific implementation of LFEL by GSFE

theory is schematically illustrated in Fig. 4.
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These strategies may be combined to facilitate molecular modeling. For example, one

might first utilize deep learning based near quantum accuracy many body FF to perform

atomistic simulations for protein molecular systems, and then extracting local distributions

properly with some form of LFEL, which may potentially be utilized to analyze protein

molecular systems with near-quantum accuracy and at regular amino-acid based CG speed!

Similarly, one may extract and “cache” large body of information from residue level CG

simulations with proper LFEL implementation, which may be utilized to achieve ultra CG

(UCG) efficiency with residue resolution. Application of CV and MSM based ES algorithm

for CG models is straight forward. Combination of LFEL with CV or MSM based ES is

more subtle and yet to be investigated.

Conclusions and prospect

The application of “dividing and conquering” and “caching” principle in development of

molecular modeling algorithms is briefed. Historically, coarse graining and enhanced sam-

pling have been two independent lines of methodological development in the mainstream

FF framework. While they share the common goal of reducing local sampling, the formula-

tions are completely different with distinct (dis)advantages. Coarse graining obtains partial

transferable FF but loses resolution, enhanced sampling retains resolution but results are not

transferable. The LFEL approach suggests a third strategy to directly approximate global

joint distribution by superposition of LFEL, which may be learned from available dataset

of either experimental or computational origin. Through integration of coordinate transfor-

mation, autodifferentiation and neural network implementation of GSFE, our recent work

of protein structure refinement demonstrated that simultaneous realization of transferable

in-resolution “caching” of local sampling is not only feasible, but also extremely efficient due

to replacement of local sampling by differentiation. It is hoped that this perspective stim-

ulates further development of “dividing and conquering” strategies for complex molecular
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systems through more elegant, efficient and accurate ways of “caching” potentially repetitive

computations in molecular modeling at various spatial and temporal scales. With diverse

molecular systems (e.g. nanomaterials, biomolecular systems), specialization of methodology

is essential to take advantage of distinct constraints.
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Figure 1: Schematic illustration of time scale separation issue in CG. A) and B) show two
situations with Cα distances between two amino acids GLU and ALA being R, but with
GLU have different conformations. If Cα atoms were defined as CG site, then these two
relative conformation with distinct interactions would be treated as the same. In A) and
B), CG site distance in both A) and B) are R, but many other pairs of atoms have distinct
distances as exemplified by r1 and r2. Such treatment would only be true if for any small
amount of displacement of Cα, side chains accomplished many rotations and thus may be
accurately represented by averaging (i.e. with good time scale separation). This issue is
apparently not limited to the specific definition of Cα being CG site, but rather general for
essentially all CG development.
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Figure 2: Schematic illustration of the LFEL approach in contrast to present mainstream
FF framework. FF parameterization is the foundation for present classical computational
molecular science. Training of neural network for “caching” LFEL is the foundation for
LFEL approach, the source data can be either of experimental or computational origin.
In FF framework, simulation (with or without ES) is driven by FF, in LFEL approach,
propagation of molecular systems to minimize free energy (or maximize joint probability)
is driven by compromise among many LFELs. Expensive repetitive local sampling in FF
framework is substituted by differentiation w.r.t. LFELs.
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Figure 3: Schematic illustration of essential features for enhanced sampling by Metadynamics
and MSM. A) The “S” shape grey line represents the unknown manifold in the configura-
tional space (represented by the square) of a molecular system. B) Small circles connected
by blue arrows represent computed (guessed) RC/CVs for the molecular system, which is
utilized to conduct Metadynamics simulations. C) The FEL of the molecular system along
the computed/selected RC/CV in B). D) “Caching” of the LFEL by bias potentials (gaus-
sians represented by blue bell shaped lines) accumulated in the course of Metadynamics
simulations. E) Distribution of the molecular system to the whole configurational space at
the start of a MSM simulation, small circles represent initial start points for short MSM
trajectories. F) Sampling results of short MSM trajectories fall mainly near the manifold,
distinct “states” are represented by different colors. G) Establishment of transition matrix
by transition counts between “states” obtained from short trajectories.
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Figure 4: Schematic illustration of difference between CG and GSFE implementation of
LFEL using protein as an example. A) Target molecular systems in physical space. Due
to the goal of constructing partially transferable models and/or force fields, usually many
different but similar molecular systems are considered. B) Selection of local atom/particle
clusters to be represented as one particle in CG model. C) Selection of CG sites. D) Compar-
ison between atomistic (or higher resolution) simulation results and CG (lower resolution)
results. E) Adjust of CG FF parameter according to comparison from D). F)Definition of
solvent region for each solute unit. G) Feature extraction for each solute. H) “Caching” of
LFEL with neural network by training with prepared data sets.
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