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Abstract 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a 

decline in cognitive function with neuronal damage. Although the precise pathobiology of AD 

is still elusive, accumulating evidences suggest that mitochondrial dysfunction is one of the 

underlying causes of AD. Mutations of mitochondrial or nuclear DNA that encode 

mitochondrial constituents may cause mitochondrial dysfunctions. In particular, dysfunction 

of electron transport chain complexes along with interactions of mitochondrial pathological 

proteins are associated with mitochondrial dysfunctions in AD. Mitochondrial dysfunction 

causes an imbalance in reactive oxygen species, leading to oxidative stress (OS) and vice-versa. 

Neuroinflammation is another potential contributory factor to induce mitochondrial 

dysfunction. Phytochemicals or other natural compounds have the potential to scavenge 

oxygen free radicals and enhance cellular antioxidant defense system, and thereby protect 

against OS-mediated cellular damage. Phytochemicals can also modulate other cellular 

processes, including autophagy and mitochondrial biogenesis. Pharmacological intervention 

through neuroprotective phytochemicals can, therefore, be a potential strategy to combat 

mitochondrial dysfunctions as well as AD. This review focuses on the role of phytochemicals 

to mitigate mitochondrial dysfunction in the therapy of AD pathogenesis. 

Keywords: Alzheimer’s disease; mitochondrial dysfunctions; phytochemicals; reactive 

oxygen species (ROS); autophagy. 
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1. Introduction 

Several evidences have been revealed that dysfunction of mitochondria leads to several 

neurodegenerative diseases, including Alzheimer's disease (AD) [1-3]. AD shows common 

symptoms like insanity and leads to morbid state and death in the aged peoples [4]. In both 

familial and sporadic patterns, AD is characterized by dual unique medical hallmarks: amyloid-

β (Aβ) peptide extracellular accumulation in the senile plaques and neurofibrillary tangles 

(NFTs) intracellular deposition formed through hyperphosphorylation of tau proteins [5,6]. 

These phenomena are accompanied by both pre- and postsynaptic and neuronal casualty [4,7], 

although AD pathogenesis is still questionable. Along with, multiple documentations prove the 

axonal transports (AT) alterations are the precise culprit to the development of 

neurodevelopmental disease like AD [8]. In fact, AD in mammalian has been noticed that 

involvement of atypical decomposition of several abnormal organelles like mitochondria, 

resulting degeneration of senile plaques along with abnormal neuronal expansion resulting 

decline neurites [9]. Phytochemicals or plants derived chemical compounds are usually used to 

define the compounds that are currently under research with unestablished health benefits [10]. 

Phytochemicals have been revealed to show multiple beneficial action in dysfunction of 

mitochondria [11], although there is not enough investigations have done yet for the clinical 

application.  

A wide range of literatures have been demonstrated that numerous bioactive phytochemicals 

and other organic compounds may improve treatment of AD [12]. It has been found that 

phytochemicals incuding polyphenolic compounds which have widely been existed in 

numerous plant origins reported to employ several essential properties such as anti-

inflammatory potential, DNA repairing, autophagy, and antioxidant activities [13]. In AD 

patients brains as well as transgenic AD mouse models, APP and Aβ have been found to present 

in mitochondrial membranes which interrupt mitochondrial electron transport system [14]. 

Potential therapeutic actions of these phytochemicals effects on antioxidant and anti-

inflammatory actvities via modulating Aβ toxicity. It has been revealed that mitochondrian 

dysfunction discharge excessive quantities of H2O2 which ultimately effect on irreversible 

cellular dysfunction and damage in the brain [15]. Aggregated Aβ peptides, H2O2 induced 

hydroxyl radical, and APP damaged mitochondria dysfunction in AD may restrain in addition 

to pharmacological approaches using phytochemicals which preserve mitochondrial dynamics 

[16]. Due to therapeutic capabilities, phytobioactive compounds have been progressively 
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deliberated as favorable beneficial agents for AD and age-related diseases [17]. Therefore, the 

current review is proposed to confer the major dysfunction of mitochondria in the pathogenesis 

of AD and discussing about how phytochemicals may mitigate this mitochondrion 

dysfunctions. 

2. Mitochondrial dysfunction in AD through ROS production 

Oxidative stress (OS) has been typified by the asymmetric occurrence between the reactive 

oxygen species (ROS) generation and the cellular antioxidant competence. OS stands for 

excess quantities of ROS production that incur damage to nucleic acids, small molecules like 

protein or lipids. OS can lead to neuronal, specifically neurodegenerative diseases and cellular 

ageing process [18]. Restrained ROS productions have their physiological roles particularly in 

controlling cellular redox equilibrium and the regulation of intracellular signal transduction 

[19,20]. ROS (collectively, H2O2, OH, and O2
.-) imply to be the causative factor in the defect 

of mitochondrial respiration and also in developing processes of the human brain that escort by 

augmented ROS generation as well necessarily contributes to dynamic changes in the brain in 

an active manner during Ad and ageing progression (Figure 1). 

The primary origins of ROS production in brain under functional circumstances as well as in 

pathological processes (e.g., neurological diseases) are deliberate to complex I and complex III 

of the respiratory chain. Complex I discharges superoxide (O2
.-) to the intermembrane space 

like matrix and complex III liberates O2
.- to both sides of the electron transport chain (ETC) or 

inner mitochondrial membrane. Hydrogen peroxide (H2O2) can be generated from O2
.- by the 

enzyme called superoxide dismutase and along with it can pass through by the inner 

membranes and can be the origin of extremely reactive hydroxyl radical (.OH). In physiological 

conditions, both the immensity of proton movements and the respiratory state of mitochondria 

produced H2O2 and O2
- from the electron transport chain (ETC) [21]. On the contradictory, 

complex IV also enhances the generation of ROS whereas, complex III and V generate a 

minimal amount of ROS [22]. Apart from these, physically distorted production and 

detoxification of ROS are critically involved in mitochondrial dysfunctions [23]. In the aging 

progression, a high amount of ROS is generated due to defective mitochondria; likewise, a 

decline in antioxidant enzyme activities ensued leading to increased ROS production [23,24]. 

Excess ROS production has adverse sequelae on the ETC; complexes I, III and IV appear to be 

the most affected, while complex II remains undisturbed [23,25]. 
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Figure 1: Mitochondrial dysfunction and oxidative stress in neuron leads to produce AD. Generally, 

ROS become produced via numerous actions such as ER stress, mitochondrial dysfunction, 

neuroinflammation, and excitotoxicity. Excessive ROS generation lead to cause oxidative stress (OS) 

which are responsible for mitochondrial dysfunction. OS prevent degradation of protein molecules and 

impair misfolded protein clearance which subsequently deposit protein aggregation leading to cause 

neuronal death and AD. 
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3. Mitochondrial deformity as an outcome of AD pathologic progression 

A large body of research has stated that metabolic alterations play a pivotal role in AD 

pathologic progression mediated by several pathogenic factors such as ROS, mitochondrial 

deformity, Aβ load, and so forth [26]. Extensive research has shown that ROS formation 

mediated by Aβ and calcium imbalance causes mitochondrial injuries (Figure 2), which are 

known as the secondary mitochondrial failure. Hippocampal expressions of mutant APP and 

Aβ in mouse HT22 cell lines induced impaired mitochondrial dynamics, alterations of 

mitochondrial structure as well as action in neurons [27]. Amyloid precursor proteins (APP) 

can overexpress in mitochondrial protein import channels of AD sensitive brain regions, 

leading to mitochondrial malfunction [28]. Alternatively, several studies evidenced that Aβ 

precisely disorganizes mitochondrial action and dynamics and hinders critical enzymatic 

functions. Lustbader et al. announced that Aβ-binding alcohol dehydrogenase (ABAD) directly 

interacts with Aβ and generates Aβ-linked apoptosis, mitochondrial toxicity and free-radical 

formation in neuronal cells [29]. Furthermore, voltage-dependent anion-selective channel 1 

protein (VDAC1) excessively expressed in AD-vulnerable brains, which combines with 

phosphorylated tau as well as Aβ to arrest mitochondrial intramembranous pores, accelerating 

mitochondrial impairment [30]. A distinct number of in vitro analysis proposed a connection 

among augmented A𝛽 levels, mitochondrial abnormal function and oxidative burden, 

collectively all facts leads to AD pathologic progression. Nevertheless, the originator of 

mitochondrial impaired dynamics in AD pathogenesis remains elusive. 

4. Phytochemicals prevent mitochondrial dysfunction and improve biogenesis 

It has been reported that several phytochemicals function to neutralize ROS and activate 

cellular antioxidant mechanisms. Phytochemicals also enhance mitochondrial biogenesis and 

protect neurons from toxic damage [31]. Additionally, phytochemicals can stimulate cell 

survival pathways by triggering many growth signaling. In this section, we discuss recently 

explored phytochemicals that have been shown to protect neurons from mitochondrial 

dysfunctions in AD by stimulating numerous signaling pathways. Molecular targets, 

experimental model, research outcomes, and molecular signaling system of these 

phytochemicals are summarized in Table 1. 
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Figure 2: Mitochondrial dysfunctions in AD pathogenesis. Aβ and Tau initiates to cause mitochondrial 

dysfunctions which can result in modulation of several factors. ROS was generated which cause lipid 

peroxidation and DNA damage to initiate apoptosis. Damage mitochondria stimulates to decrease 

mitochondrial membrane potential (ΔΨm) as a results of activation of mitochondrial permeability 

transition pores (mPTPs) which release cytochrome c and apoptosis inducing factor (AIF) and 

consequently initiates apoptosis pathway. Aβ and pTau cause to improve mitochondrial fission and 

mitophagy. 

Anthocyanins controlled mitochondrial fission/fusion pathways and prevented complex I APP 

Swedish K670N/M671L double mutation (APPswe) and stimulate mitochondrial dynamics 

[32]. Numerous phenolic compounds have been described to show neuroprotective actions 

against AD and other neurodegenerative disease models. Sulfuretin, a well-known flavonoid 

glycoside derived from Albizia julibrissin, has been protected primary hippocampal neuronal 

cells and SH-SY5Y neuroblastoma cells from Aβ-mediated neurotoxicity [33]. Polyphenol 

resveratrol, derived from grapes and black barriers, protected HT22 and PC12 cells against Aβ 

toxicity through activating PI3K/Akt/Nrf2 pathway [34]. In addition, resveratrol prevented cell 

death and repressed ROS production induced by Aβ toxicity via enhancing PI3K/Akt 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2020                   doi:10.20944/preprints202012.0059.v1

https://doi.org/10.20944/preprints202012.0059.v1


8 
 

phosphorylation, SOD, HO-1, as well as GSH protein levels, and Nrf2 nuclear translocation 

[35]. Quercetin, a hydroxytryrosol derived from olives, prompted mitochondrial biogenesis and 

enhances muscle mtDNA in adult men [36]. Tea polyphenols (TPs) mitigate OS in H2O2-

induced human neuroblastoma SH-SY5Y cells via Keap1-Nrf2 signaling initiation and 

decreased H2O2-mediated cell death as well as ROS and H2O2 levels to protect mitochondrial 

dysfunction [37]. Liquiritigenin prompted mitochondrial fusion as well as prevented 

mitochondrial cytotoxicity in addition to fragmentation prompted through Aβ in SK-N-MC 

cells [38]. Besides, EGCG and resveratrol have been found to increase Sirt-1 as well as AMPK 

and increase mitochondrial biogenesis through PGC-1α, thereby protected neuronal cells [39]. 

Conversely, kaempferol, resveratrol luteolin, wogonin, quercetin, theaflavins, EGCG, 

curcumin, and baicalein opened the mPTP which activated apoptosis pathway in cancer cells 

via Bcl-2 and Bcl-xL inhibition along with oligomerization of Bax induction in addition to 

downregulate NF-κB signaling [40]. Curcumin protected mitochondrial apoptosis by 

mitigating autophagic pathway via mediating PI3K/Akt/mTOR pathway in 

ischemia/reperfusion-induced rat model [41]. 

Table 1: Different phytochemicals mitigating mitochondrial dysfunctions in AD pathology. 

Phytochemic

als 

Experiment

al model 

Pathobiology Research 

outcomes 

Molecular 

signaling 

References 

Anthocyanins APP Swedish 

K670N/M671

L double 

mutation 

(APPswe) 

Mitochondrial 

dysfunction and 

oxidative stress 

Ameliorate 

mitochondrial 

dysfunction 

Increased NADH 

levels 

[32] 

Resveratrol Aβ-induced 

cytotoxicity in 

PC12 cells 

Oxidative stress Neuroprotection

, Reduction of 

memory 

impairment 

Reduced ROS, 

Induced SOD, 

PI3K, Akt 

[42] 

Tea 

polyphenols 

SH-SY5Y 

cells 

Oxidative stress Neuroprotection Keap1-Nrf2 

signaling initiation 

[37] 

Sulfuretin Aβ 

neurotoxicity 

in primary 

Oxidative stress Neuroprotection Activate Nrf2/HO-

1 and PI3K/Akt 

[33] 
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hippocampal 

neurons and 

SH-SY5Y 

cells  

Genistein Transgenic 

APP/PS1 rat 

model of 

sporadic AD 

Impairment of 

cognition, 

Increased β-

amyloid and 

hyperphosphor

ylated tau 

protein 

Improved 

learning and 

memory 

recognition, 

Inhibition of 

apoptosis and 

antioxidant 

functions 

PPARγ-mediated 

increased release of 

ApoE, 

Autophagy 

activation and 

reduction in protein 

aggregates. 

[43,44] 

Liquiritigenin Aβ-induced 

SK-N-MC 

cells 

Mitochondrial 

fragmentation 

Inhibited 

mitochondrial 

fragmentation 

and cytotoxicity 

Mediated by Mfn1, 

Mfn2, and Opa1 

signaling 

[38] 

Kaempferol Porcine 

embryos 

Oxidative stress Prevented 

mitochondrial 

membrane 

potential and 

ROS generation. 

Induced autophagy [45] 

Curcumin Sprague 

Dawley male 

rats 

Cerebral 

Ischemia 

Neuroprotection Autophagy and 

PI3K/Akt/mTOR 

pathway 

[41] 

Epigallocatech

in-3-gallate 

(EGCG) 

Rat primary 

cortical neuron 

Pathological tau 

species 

Enhanced tau 

degradation in 

an Nrf2-

dependent 

manner 

Increase 

autophagy, tau 

clearance   

[46] 

Quercetin H2O2-induced 

neurotoxicity 

in Sprague-

Dawley rat  

Oxidative stress  Neuroprotection Increased Aβ 

clearance 

[47] 
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Phytochemical intervention of molecular signaling pathways related to mitochondrial 

dysfunctions in AD 

Accumulated evidences have indicated that a large number of phytochemicals are capable of 

showing numerous benefits against mitochondrial dysfunctions in AD pathogenesis through 

modulating molecular signaling pathways. Several polyphenols promote mitochondrial 

functions and biogenesis particularly by regulating ETC activity, redox state modulation, and 

apoptosis inhibition. Phenolic acids can scavenge peroxynitrite, superoxide and hydroxyl 

radical, terminate radical chain reactions, and upregulate several protective genes that encode 

for extracellular signal-related kinase 1/2 (ERK1/2), heat shock protein 70, and heme 

oxygenase-1 (HO-1) [11]. Several in vivo and in vitro studies have revealed that curcumin can 

prevent mitochondrial dysfunctions in AD by scavenging hydroxyl radical, hydrogen peroxide, 

and peroxynitrite and attenuating lipid peroxidation [48]. Flavonoids exhibited antioxidant 

activity and protected neurons through modulation of cellular signaling pathways in addition 

to the induction of several gene expression [49]. Flavonoids can also increase ROS-eliminating 

enzymes such as catalase, SOD, and glutathione reductase through the activation of 

Keap1/Nrf2/ARE-mediated signaling pathway [50]. Polyphenols such as catechin, apigenin, 

luteolin, kaempferol, curcumin, and quercetin were shown to inhibit ROS-generating xanthine 

oxidase (XO), NADPH oxidase (NOX), and MAO [51,52]. 

Flavonoids have been displayed to employ neuronal effects through several lipid kinase and 

protein kinase signaling, for instance, the protein kinase C, MAPK tyrosine kinase, PI3K/Akt 

signaling pathways and NF-κB pathway [53]. The stimulatory or inhibitory properties of these 

pathways can significantly modulate gene expression by altering the phosphorylation state as 

well as affect neuronal property and function of target molecules. As a result, this might cause 

synaptic protein synthesis, morphological variations, and plasticity involved in 

neurodegenerative processes in AD. A serine/threonine kinases signaling known as MAPK, 

mitogen-activated kinases, regulate numerous cellular functions through extracellular signal 

transduction pathway into intracellular downstream signal [54]. Flavonoids have selectively 

interacted with MAPK kinases, including ERK, MEK1 and MEK2 signaling, resulting in the 

activation of downstream cAMP response element binding protein (CREB) [55]. These results 

might lead to alterations in memory function and synaptic plasticity via upregulation of 

neuroprotective pathways in AD.  
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Blueberry supplementation rich in anthocyanins and flavonols increased memory performance 

in rats via CREB activation and promoting pro- and mature BDNF levels in hippocampus [56]. 

In another study, 12 weeks of blueberry supplementation activated Akt phosphorylation, 

mTOR downstream activation, and enhanced activity-regulated cytoskeletal-associated protein 

(Arc/Arg3.1) expression in hippocampus of aged animals [56]. This might promote 

morphology and spine density in neuronal cells and thereby enhance learning and memory 

function. Besides, treatment of green tea catechins ameliorated memory impairments and 

promoted spatial learning function through diminishing oligomers of Aβ (1-42) in senescence-

accelerated mouse via augmenting PKA/CREB pathway in hippocampus [57]. Furthermore, 

EGCG encouraged ERK and PI3K-mediated phosphorylation of CREB as well as stimulated 

GluR2 levels and modulated synaptogenesis, neurotransmission activity, and plasticity in 

cortical neurons [58]. Also, flavonoids modulate PI3K via direct interactions with its ATP 

binding site [59]. Hesperetin has been revealed as an activator of Akt/PKB pathways in cortical 

neurons. In contrast, quercetin inhibited prosurvival of Akt/PKB pathways through preventing 

the activity of PI3K [60].  

Flavonoids have been shown beneficial effects through preventing certain activities of 

CDK5/p25 and GSK-3β that contribute to hyperphosphorylation of Tau and neurofibrillary 

tangles accumulation in AD pathogenesis [55]. Indirubins have been found to prevent 

CDK5/p25 and GSK-3β and inhibit abnormal phosphorylation of tau in AD pathogenesis [61]. 

Likewise, GSK-3β activity was inhibited by flavonoid morin [62]. Morin can prevent GSK-

3β-mediated phosphorylation of tau in vitro, decrease Aβ induced phosphorylation of tau and 

protect against Aβ cytotoxicity of human SH-SY5Y neuroblastoma cells [62]. Furthermore, 

morin has been found to reduce hyperphosphorylation of tau in 3xTg-AD mice hippocampal 

neurons [62]. Luteolin reduced soluble Aβ, interrupted PS1-APP association, and diminished 

GSK-3 activity in AD mouse model of Tg2576 and rescued cognitive impairments [63].  

Phytochemicals inhibit AD specific protein aggregation  

Neuropathological characteristics of AD involves accumulation of amyloid-β plaques and 

neurofibrillary tangles and neuronal loss in limbic neocortical brain regions [64]. Pathobiology 

of AD encompasses oxidative stress, mitochondrial dysfunction, neuroinflammation, apoptosis, 

reduced neurotrophic factors and neurogenesis, loss of cholinergic system, autophagy 

dysfunction, and glutamatergic excitotoxicity [65,66]. Various phytochemicals, anti-

inflammatory medications, and antioxidants have been found to prevent amyloidogenic 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2020                   doi:10.20944/preprints202012.0059.v1

https://doi.org/10.20944/preprints202012.0059.v1


12 
 

monomer synthesis, fibrillar aggregates, and oligomeric formation [67]. Phytochemicals also 

stimulated nontoxic aggregate formation and proteolytic system activation to ameliorate 

neuronal mitochondrial dysfunction triggered by Aβ [68]. It has been well-known that 

amyloidogenic Aβ 40-42 are produced via consecutive APP cleavage through β-secretase 

(BACE1) as well as γ-secretase enzymes [69]. Tannic acid, genistein, ferulic acid, nobiletin, 

galangin, sinensetin, and tangeretin were shown to inhibit β-secretase in addition to increasing 

behavioral enhancement in AD animal models [11]. Also, resveratrol, EGCG, icariin, quercetin, 

luteolin, 7,8-dihydroxyflavine, rutin, and curcumin decreased β-secretase expression and 

protected neurons [70]. Furthermore, curcumin, oleuropein, genistein, and EGCG promoted 

APP cleavage through α-secretase, producing nontoxic N-terminal soluble APPα product and 

C-terminal α fragment [71]. Phytochemicals promoted α-secretase or prevent β-secretase 

activity and inhibit fibril and toxic oligomer production [60]. Curcumin as well as other 

polyphenolic compounds have been changed to mature Aβ aggregation which make nontoxic 

molecules as well.  

Many phytochemicals have been found to inhibit mTOR signaling, thereby inducing autophagy 

pathway [6,72]. Polyphenols have also been revealed to inhibit oligomer synthesis and 

formation in addition to prevent tau hyperphosphorylation and aggregation reduction in vitro 

and in vivo [73]. Soluble Aβ oligomers along with profibrillar species are produced via the 

action of rosmarinic acid, myricetin, and curcumin which reduced the toxic oligomers as well 

as fibrils [74,75]. Aβ aggregation was inhibited by honokiol, myricetin, and luteolin when 

bound to the hydrophobic site of the amyloid pentamer [76]. Numerous phytochemicals 

intervening AD pathogenesis are indicated in Figure 3. Another potential benefit of 

phytochemicals in AD may include their potential role in tau phosphorylation. Tau oligomer is 

a toxic form and causes synaptic dysfunction in AD. Several findings have raveled that 

hyperphosphorylation of tau can be inhibited via the treatment of caffeic acid, altenusin, EGCG, 

curcumin, and resveratrol [77,78]. Moreover, EGCG inhibited formation of tau aggregate into 

toxic oligomers [79]. Also, emodin and daunorubicin repressed tau aggregation and dissolved 

paired helical filaments in vitro [80]. In another study, epicatechin-5-gallate and myrecetin 

were shown to hinder heparin-mediated tau formation and EGCG administration in AD 

transgenic mice model leads to control sarkosyl-soluble tau isoforms phosphorylation [81,82]. 
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Figure 3: Phytochemicals modulate AD pathogenesis. Phytochemicals stimulate α-secretase or may 

hinder β-secretase activity which inhibits toxic oligomer production. Polyphenols and other compounds 

modify Aβ aggregates and turn into nontoxic oligomers. Some phytochemicals inactivate mTOR and 

initiate autophagy pathway. Polyphenols and other compounds prevent tau hyperphosphorylation and 

convert tau aggregates to nontoxic aggregates. 

5. Therapeutic applications of phytochemicals in mitochondrial dysfunctions in AD 

Many studies reported that antioxidants and mitochondria-targeting agents such as vitamin C, 

vitamin E, carnitine and alpha-lipoic acid show an effective therapeutic potential in AD [83]. 

The coenzyme Q10, piracetam, simvastatin, curcumin, ginkgo biloba, piracetam and the 

omega-3 polyunsaturated fatty acids also show effective therapeutic potential [84]. An 

effective therapeutic strategy can be developed against AD by targeting the mitochondrial 

proteins. By using these strategies, various types of mitochondria-targeted antioxidants have 

been manufactured. The alteration of mitochondrial movement shows a negative impact on 

mitochondrial function, thereby contributing critically to the pathogenesis of AD [85]. 

Consequently, approaches to modify the defective mitochondrial movement and transportation 

may constitute an effective therapeutic innovation for the treatment of AD. Therapeutics that 

possess its role to decrease the activation of the mitochondrial fission proteins such as Drp1, 

pTau and Aβ can rescue the neurons from the toxic distresses of those agents and their 
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interconnection. A diversity of phytochemicals available in numerous plant sources have been 

described for various pharmacological properties, including neuroprotection [86,87], apoptosis 

induction [88-95], autophagy activation [72,96-98], antioxidant [99] and anti-inflammatory 

action [100], and DNA repairing function [13]. Due to these capabilities, phytochemicals are 

progressively considered as a favorable therapeutic candidate for AD therapy [10] (Figure 4). 

 

 

Figure 4: Emergeing potential therapeutic targets of phytochemicals in mitochondrial 

dysfunctions and AD pathogenesis. Abnormal amyloid precursor protein (APP) was 

proteolyticlly cleaved by β‐ as well as γ‐secretase which make to store accumulation of 

extracellular amyloid‐β (Aβ). Deficient clearance of Aβ, or Aβ production increased 

aggregation which consequences accumulation of diversity of Aβ assemblies. Accumulation 

of Aβ directly interrelated with mitochondrian as well as ROS generation with different 

intracellular pathways. These oxidative stress reactions cause neuronal impairment of synapses 

and dendrites function with multifactorial mechanisms in addition to cause neurological 

degeneration and synaptic function dysregulation in the brain regions which has been 

implicated in learning as well as memory impairment in AD. Additionally, Aβ aggregation has 

been degradated by autophagy mechanism through stimulatory action of phytochemicals. 
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The therapeutic possibilities of curcumin were considered in various aging-related pathological 

disorders, including type 2 diabetes, ocular diseases cancer, atherosclerosis, osteoporosis, 

rheumatoid arthritis, chronic kidney disorders, hypertension, cardiovascular, and 

neurodegenerative disorders [101]. The neuroprotective action of curcumin in AD has been 

well-known. Curcumin was revealed to protect Aβ-mediated mitochondrial dysfunction and 

synaptic toxicities in SH-SY5Y human neuroblastoma cells [102]. However, the effects of 

curcumin in placebo-controlled, double-blinded clinical trial with AD patients were moderately 

inadequate [103]. Low solubility might be a potential cause. Recently, several preclinical 

investigations claimed anti-AD potential of quercetin [104]. Treatment with quercetin 

exhibited improvement of mitochondrial dysfunction through returning mitochondrial 

membrane potential which led to reduce ROS production in addition to restore ATP synthesis 

[105]. Meanwhile, this treatment furthermore initiated significant enhancement of AMPK 

expression, decreased scattered senile plaques formation as well as abandoned learning and 

memory impairment [105]. More recently, in triple transgenic AD mouse model, the long-term 

oral administration of quercetin led to reduced tauopathy, astrogliosis, microgliosis, and β-

amyloidosis in amygdale and hippocampus which improved cognitive functional retrieval and 

performance on learning and spatial memory function [106,107]. Different phytochemicals and 

other chemicals used in mitochondrial-targeted AD treatments in preclinical and clinical 

studies have been listed in Table 2. 

Genistein, a soy isoflavonoid, was shown to have a potential therapeutic implication in many 

aging-related mitochondrial dysfunctions in pathological conditions, including 

neuroinflammation, oxidative stress, and aggregation of Aβ in AD. This therapeutic 

possibilities of genistein were due to its ability to improve function impairments induced by 

Aβ aggregates in mitochondrial dysfunctions [108]. However, genistein pretreatment in a 

primary astrocyte culture prevented Aβ-mediated pro-inflammatory mediators’ production 

[109]. Recently, in streptozotocin-induced rat model, a higher dose of genistein 

(150 mg/kg/day) was revealed to activate autophagy in AD sporadic form [44]. Additionally, 

genistein treatment resulted in completely degrade tau hyperphosphorylation and Aβ proteins 

in the brain of mitochondrial dysfunctions. Currently, it has been innovated the designs in 

nanocomposites with genistein-loaded which has confirmed to develop the oral delivery system 

in addition to overcome the toxic effects isoflavonoid [110].  
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Table 2: Phytochemicals and other chemicals used in mitochondrial-targeted therapies in AD 

models in preclinical and clinical studies 

Phytochemical/ 

Drug candidate 

AD model 

 

Mitochondrial effect 

 

References 

Melatonin HEK293-APPswe AD 

model 

Increase mitochondrial biogenesis 

and mitochondrial membrane 

potential, Decrease APP processing 

[111] 

Coenzyme Q10 TgP301S mice, 

M17 cell line treated 

with Aβ1-42 peptide, 

HUVEC cell line Aβ25-

35 peptide-treated 

Decrease ROS, 

Reduce accumulation of Aβ  

peptide, mtΔΨ protection, 

Promote ETC 

[112,113] 

Astaxanthin Mouse hippocampal 

neurons treated by Aβ1-

42 oligomers 

Reduction of mitochondrial  

H2O2 production 

[114] 

Resveratrol APP/PSEN1 mice Activation of mitophagy, 

Reduce ROS accumulation 

[115] 

Pioglitazone APP/PSEN1 mice Reduce Aβ1-42 level, 

Restore mitochondrial function 

[116] 

Dimebon Mild-to-moderate AD 

patients 

Improve cognition and memory 

function 

[117] 

Oxaloacetate 

(OAA) 

AD cultured cells and 

mice  

Activate mitochondrial biogenesis [118] 

2-deoxyglucose Adult rats treated with 

Aβ peptides 

Increase mitochondrial biogenesis, 

Reduction of mitochondrial stress 

[119] 

Curcumin APP/PSEN1 mice, 

APP751SL mice 

ROS reduction, 

Increase synaptic function 

[102] 

Epigallocatechin-3-

gallate (EGCG) 

APP/PSEN1 mice Restore mitochondria respiratory 

rates, Reduction of ROS and Aβ 

[120] 

Catalase MCAT/APP mice Reduce oxidative damage, Aβ, 

BACE1 activity, and APP 

processing 

[121] 

α-lipoic acid AD patients Increase cognition function, 

Protect Aβ toxicity 

[122] 
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N-Acetyl-cysteine 

(NAC) 

A double-blind AD 

patient 

Improved cognitive and  

behavioral functions 

[123] 

Quercetin APP/PSEN1 mice Improvement of ΔΨ, Prevent 

intrinsic apoptosis 

[47] 

G. biloba Older adults and AD 

patients 

Prevention of cognition and 

memory decline 

[124] 

SkQ1 OXYS rats ROS reduction, 

COX increase 

[125] 

SS31 APP mouse model 

(Tg2576) 

Decrease Aβ production and 

dysfunction, Stimulates 

mitochondrial biogenesis and  

[126] 

Ketones 3xTgAD) Mitochondrial functions and 

dynamics enhancement 

[127,128] 

Rapamycin Aβ treated PC12 cell 

line 

Increases mitophagy [129] 

Red ginseng (RG) 5XFAD mice Ameliorate Aβ deposition, Increase 

mitochondrial biogenesis 

[130] 

Thiosemicarbazones AD model of SK-N-MC 

neuroepithelioma cells 

Inhibit Aβ deposition, Reduce ROS [131] 

Plant polyphenols have been shown to stimulate mitochondrial biogenesis as well as diminish 

mitochondrial dysfunction in AD [132]. Resveratrol was found to repress cAMP 

phosphodiesterases and augmented cAMP through cAMP/CaMK/AMPA activation pathway 

[133]. Additionally, mitochondrial dynamics, biogenesis, and function have been activated by 

resveratrol via the activation of AMPK, protein kinase C epsilon (PKCε), as well as improved 

NAD+ levels [134]. In contrast, EGCG encouraged biogenesis of mitochondrial function in Ad 

model with Down’s syndrome through the Sirt1/PGC-1α signaling pathway via the 

upregulation of TFAM and Nrf1 in addition to mtDNA content [135]. Several flavones such as 

wogonin, quercetin, and baicalein improved biogenesis of mitochondrial activities through 

improved Sirt1/AMPA/PGC-1α expression in vitro and in vivo [136]. Extra virgin olive oil 

contains oleuropein has augmented mtDNA, PGC-1α, complex II and IV expression, and 

controlled mitogenesis, mitochondrial biogenesis function in AD, diminishing oxidative stress 

[137]. Therefore, pharmacological intervention through polyphenols has been anticipated as a 

promising therapeutic approach for mitochondrial dysfunction-associated neurodegenerative 

disorders. 
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6. Concluding Remarks and Future Directions 

Although the prevalence of AD is growing tremendously, still there is no specific therapeutic 

strategy to cure, or even slow down or prevent AD [138]. Mitochondrial dysfunction is thought 

to play a crucial role in the pathogenesis of AD. However, the elusive mechanism of AD 

pathobiology further complicates treatment strategies. In this perspective, ongoing research is 

dedicated to underscoring the precise pathomechanism of AD as well as exploring the 

possibility of alternative treatment strategies. In light of current discussion, pharmacological 

intervention through natural products, particularly phytochemicals, is one of the promising 

strategies to combat AD-associated pathological factors, including mitochondrial dysfunction. 

Phytochemicals and other natural compounds can prevent mitochondrial dysfunction by 

regulating several signaling pathways, including those associated with cellular antioxidant 

defense, anti-inflammation, autophagy and other quality control systems, mitochondrial 

biogenesis, and cell survival system. Although several phytochemicals have shown promise 

against AD, they are still far from their clinical application. Since the therapeutic applications 

of many phytochemicals are limited by their poor pharmacokinetic properties, strategies like 

nanoparticle synthesis may potentially improve their drug-likeness. Moreover, clinical 

evidences are far smaller than preclinical data. Therefore, further human trials are necessary to 

translate the existing findings into clinical use. Understanding the advanced pathobiology of 

AD and the pharmacological mechanism of phytochemical-based therapy may offer an 

emerging novel neuroprotective approach for AD in the future. 
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