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Abstract

An exact spherically symmetric and magnetically charged black
hole solution in 4D Einstein−Gauss−Bonnet gravity coupled to non-
linear electrodynamics (NED) is obtained. The NED Lagrangian is
given by LNED = −F/(1 + 4

√
2βF), where F is the field invariant.

We study the thermodynamics calculating the Hawking temperature
and the heat capacity of the black hole. The phase transitions take
place when the Hawking temperature has an extremum and the heat
capacity is singular. We demonstrate that black holes are thermody-
namically stable in some range of event horizon radii where the heat
capacity is positive.

1 Introduction

The heterotic string theory at the low energy limit gives models of gravity
with higher order curvature terms in the action [1]. Therefore, it is interesting
to investigate a modified Einstein General Relativity (GR) including higher
order curvature terms. Probably, such deformed GR can describe gravity
in the strong gravity regime where quantum corrections are important. An
interesting modified GR with higher order curvature terms is the Lovelock
gravity in higher dimensions leading to the second order field equations. The
particular case of the Lovelock theory of gravity is the Gauss-Bonnet (GB)
gravity resulting to non-trivial dynamics. In four dimensions such theory
(4D EGB) includes the Einstein−Hilbert action and the GB term which is a
topological invariant and, as a result, it does not contribute to the gravita-
tional dynamics. But Glavan and Lin [2] shown that if the coupling constant
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α, which can be considered as the inverse of the string tension, is re-scaled
by α/(D − 4), in the limit D → 4, the theory yields a non-trivial dynamics
without singularities. This approach was also discussed in [3], [4]. The 4D
EGB theory, being a classical modified gravity, is free from the Ostrogradsky
instability and conserves the number of degrees of freedom. The static spher-
ically symmetric BH solution for the EGB gravity was obtained in [5] and the
GB term can be considered as a quantum correction to GR. It worth noting
that the BH solution gives a repulsive gravitational force at short distances.
Similar solution was obtained in the gravity theory with quantum corrections
[6]. Recently, the 4D EGB gravity theory attracted extensive attention (see,
for example, [7]- [17]). The BH solutions in the 4D EGB model coupled to
nonlinear electrodynamics (NED) were studied in [18]-[28].

In this paper, we obtain a BH solution in the 4D EGB model coupled
to a particular case of NED proposed in [29]. This model of NED is a
simple generalisation of linear Maxwell electrodynamics and allows us to get
formulas expressed through elementary functions.

The paper is organized as follows: In Sec. 2, we obtain spherically sym-
metric solutions in the 4D EGB model coupled to NED. Depending on the
model parameters, the metric function can have one (extreme) or two BH
horizons or no horizons corresponding to particle-like solution. In Sec. 3
we calculate the Hawking temperature and the heat capacity. It was shown
that the BHs are thermodynamically stable in some range of event horizon
radii. In Sec. 4 we calculated the BH shadow within our model. Section 5 is
devoted to a conclusion.

2 4D EGB model coupled with NED

The EGB gravity action in D-dimensions coupled to NED is given by

I =
∫
dDx
√
−g

[
1

16πG

(
R +

α

D − 4
LGB

)
+ LNED

]
, (1)

where α possesses the dimension of (length)2 and the particular NED La-
grangian, proposed in [29] 2, is given by

LNED = − F
1 + 4
√

2βF
, (2)

2For a convenience we substituted β in [29] by 2β.
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where the parameter β (β ≥ 0) has the dimension of (length)4, F = (1/4)FµνF
µν =

(B2 − E2)/2, Fµν = ∂µAν − ∂νAµ is the field tensor. The model of NED (2)
is of interest because of its simplicity. The GB Lagrangian reads

LGB = RµναβRµναβ − 4RµνRµν +R2. (3)

The variation of the action (1) with respect to the metric gives the field
equations

Rµν −
1

2
gµνR +

α

D − 4
Hµν = −8πGTµν , (4)

where

Hµν = 2
(
RRµν − 2RµαR

α
ν − 2RµανβR

αβ −RµαβγR
αβγ

ν

)
− 1

2
LGBgµν . (5)

The symmetrical stress-energy tensor of the NED (2) [29] is given by

Tµν = −
(4 + 3 4

√
2βF)F α

µ Fνα

4(1 + 4
√

2βF)2
− gµνLNED. (6)

The GR coupled with NED, having the Maxwell limit F → 0, does not admit
a static, spherically symmetric solution with a regular center and a nonzero
electric charge [?]. Thus, to have a regular solution as r → 0 we study a
magnetic BH. The magnetic energy density, found from Eq. (6), is

ρM = T t
t =

B2

2(β1/4
√
B + 1)

=
q2m

2r3(r +
√
qmβ1/4)

, (7)

where qm is a magnetic charge, F = q2m/(2r
4). The tt component of the field

equation (4), at the limit D → 4, gives

r(2αf(r)−r2−2α)f ′(r)−(r2+αf(r)−2α)f(r)+r2−α =
q2mrG

r +
√
qmβ1/4

. (8)

The static and spherically symmetric line element squared is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dϑ2 + sin2 ϑdφ2). (9)

The solution to Eq. (8) gives the metric function f(r).

f(r) = 1 +
r2

2α

1−

√√√√√1 +
8MαG

r3
+

4αq
3/2
m G

β1/4r3
ln

 r

r + 4

√
βq2m


 , (10)
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Introducing the dimension-less variable x = r/ 4

√
βq2m, Eq. (10) becomes

f(x) = 1 + cx2 − c
√
x4 + x

(
a+ b ln

(
x

x+ 1

))
, (11)

where the dimension-less parameters are

a =
8MαG

β3/4q
3/2
m

, b =
4αG

β
, c =

√
βqm
2α

, (12)

where 8MαG is the constant of integration and M is the BH mass. We has
chosen the sign minus in the front of the square root in Eqs. (10) and (11)
to have the stable BH (see [5]). The solution to Eq. (8) at β = 0, making
use of the limit β → 0 in Eq. (8) before the integration, becomes [7]

f(r) = 1 +
r2

2α

1−
√

1 +
8MαG

r3
− 4αq2mG

r4

 . (13)

It should be stressed that the limit r → 0 in Eq. (13) leads to the non-
physical complex value of the metric function f(r). At the same time, the
limit r → 0 in Eqs. (10) and (11) gives the necessary value f(0) = 1. The
plot of the function (11) is depicted in Fig. 1. Figure 1 shows that there can
be one extreme horizon or two horizons, or not horizons with particle-like
solution.

3 The BH thermodynamics

The Hawking temperature is given by

TH(r+) =
f ′(r+)

4π
, (14)

where r+ is the event horizon radius (f(r+) = 0). With the help of Eq. (11)

(x = r/ 4

√
βq2m) we find the Hawking temperature

TH(x+) =
c

4π 4

√
βq2m

2x+ −
4x3+ + a+ b ln(x+/(x+ + 1)) + b/(1 + x+)

2
√
x4+ + ax+ + bx+ ln(x+/(x+ + 1))

 .
(15)
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Figure 1: The plot of the function f(x) for a = c = 1.

The plot of the dimension-less function TH(x+) 4

√
βq2m is given in Fig. 2.

According to Fig. 2 the Hawking temperature is positive in some range of
the event of horizon radii x+. When the Hawking temperature is negative
the BH does not exist. Making use of equation f(x+) = 0 we obtain the BH
gravitational mass

M(x+) =
β3/4q3/2m

8αG

(
(1 + cx2+)2

c2x+
− x3+ − b ln

(
x+

x+ + 1

))
. (16)

The first law of BH thermodynamics is

dM(x+) = TH(x+)dS + φdq. (17)

Making use of Eq. (17) we find the entropy at the constant charge

S =
∫ dM(x+)

TH(x+)
=
∫ 1

TH(x+)

∂M(x+)

∂x+
dx+. (18)
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Figure 2: The plot of the function TH(x+) 4

√
βq2m at a = c = 1.

With the help of Eq. (18) one obtains the heat capacity

Cq(x+) = TH

(
∂S

∂TH

)
q

=
∂M(x+)

∂TH(x+)
=
∂M(x+)/∂x+
∂TH(x+)/∂x+

. (19)

From Eq. (16) we find

∂M(x+)

∂x+
=
β3/4q3/2m

8αG

(
2cx2+ − 1

c2x2+
− b

x+(1 + x+)

)
. (20)

∂TH(x+)

∂x+
=

c

4π 4

√
βq2m

(
2−

12x2+ + 2b/(x+(1 + x+))− bx+(1 + 2x+)/(x2+(1 + x+)2)

2
√
x4+ + ax+ + bx+ ln(x+/(x+ + 1))

+
(4x3+ + a+ b ln(x+/(x+ + 1)) + b/(1 + x+))2

4(x4+ + ax+ + bx+ ln(x+/(x+ + 1)))3/2

)
. (21)
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In accordance with Eq. (19) the heat capacity has a singularity if the Hawk-
ing temperature possesses an extremum, ∂TH(x+)/∂x+ = 0. Taking into
account Eqs. (19), (20) and (21) we plotted the heat capacity as a function
of the variable x+ in Fig. 3. According to Fig. 3 the BH is locally stable in

0.5 1 1.5 2 2.5 3
−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

x
+

C
α

 G
/(

β
 q

m2
)

 

 

b=0.1

b=2

b=5

Figure 3: The plot of the function Cq(x+)αG/(βq2m) at a = c = 1, b = 2.

some interval of the horizon radii where the heat capacity is positive. The
singularity in the heat capacity occurs in the radii where the Hawking tem-
perature possesses the extremum. In these points the second-order phase
transition takes place.

4 The black hole shadow

The spherically symmetric BH shadow represents a black circular disk which
is due to the gravitational lensing of light. The Event Horizon Telescope
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collaboration received the first image of the super-massive M87* BH located
in the center of the elliptical galaxy Messier 87 [31]. Firstly, the shadow of
a neutral Schwarzschild BH, described by the mass and the position of the
observer, was studied in [32]. Here, we investigate the BH shadow within
our model of 4D EGB coupled to NED (2). We will employ the Hamiltonian
approach for the description of the photon motion in the static spherically
symmetric space-time. We consider the photons moving in the equatorial
plane with ϑ = π/2. Making use of the Hamilton-Jacobi method for null
curves the photon motion is governed by the equation [33]

H =
1

2
gµνpµpν =

1

2

(
L2

r2
− E2

f(r)
+ f(r)p2r

)
= 0, (22)

where pµ are photon momenta, ṙ = ∂H/pr, E = −pt and L = pφ are the en-
ergy and angular momentum of the photon (constants of motion). Equation
(22) can be written as

V + ṙ2 = 0, V = f(r)

(
L2

r2
− E2

f(r)

)
. (23)

The circular orbit radius rp of the photon can be obtained by solving the
equation V (rp) = V ′(r)|r=rp = 0, where the prime denotes the derivative
with respect to the argument. Thus, we find

ξ ≡ L

E
=

rp√
f(rp)

, f ′(rp)rp − 2f(rp) = 0, (24)

where ξ is the impact parameter. We use the numerical method to solve Eq.
(22) for obtaining the radius of the photon sphere. The shadow radius rs of
the BH observed by a static observer in the position r0 is given by [33]

rs = rp

√√√√f(r0)

f(rp)
. (25)

For a distant observer, r0 → ∞, we can put f(r0) = 1 in Eq. (25) and the
impact parameter ς = rs. The event horizon radius is defined by the biggest
root of the equation f(rh) = 0. From Eq. (11) and f(rh) = 0 we obtain the
dependence of the parameters a and b on the horizon radii at c = 1

a =
1 + 2x2h − xhb ln(xh/(xh + 1))

xh
c = 1, (26)
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b =
1 + 2x2h − xha

xh ln(xh/(xh + 1))
c = 1, (27)

The plots of the functions (26) at b = 1, 2, 3 and (27) at a = 1, 2, 3 are
depicted in Fig. 4 and 5, respectively. Figure 4 shows that when the
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Figure 4: The plot of the function a(xh) at c = 1, b = 1, 5, 10.

parameter b increases, the event horizon (the biggest root of equation f(xh) =
0) decreases. According to Fig. 5 if the parameter a increases, the event
horizon increases.

The photon sphere radii (xp), the event horizon radii (xh), and the shadow
radii (xs) for some parameters a, b, and c, found from Eqs. (24) and (25),
are presented in Table 1 (in terms of dimensionless variables). In according
with Table 1, when increasing the parameter b at fixed a and c, the shadow
radius xs decreases.
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Figure 5: The plot of the function b(xh) at c = 1, a = 5, 6, 7.

5 Conclusion

The exact spherically symmetric and magnetically charged BH solution in
4D EGB gravity with NED, proposed in [29], was obtained. It was shown
that the BH can have two horizons or one extreme horizon, or not horizons
corresponding to particle-like solution, depending on the model parameters
(α, β, qm and M). At the limit r → 0 in the metric function has the
reasonable value f(0) = 1 while in the pure 4D EGB theory this limit gives
the non-physical value of f(0). The BH Hawking temperature and the heat
capacity were calculated. We demonstrated that the phase transitions occur
when the heat capacity has the singularity and the Hawking temperature
possesses an extremum. The BHs are thermodynamically stable in some
range of event horizon radii where the heat capacity is positive. We calculated
the BH shadow within our model for some model parameters.
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Table 1: The event horizon radii, photon sphere and shadow radii for a=5,
c=1

b 1.5 1.7 1.8 2 2.2 2.3 2.4 2.5 2.6

xh 1.93 1.87 1.84 1.77 1.69 1.65 1.61 1.56 1.51

xp 3.12 3.05 3.01 2.94 2.86 2.82 2.77 2.73 2.68

xs 5.78 5.70 5.65 5.56 5.47 5.42 5.37 5.32 5.26
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