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Abstract 

In recent years many different deep neural networks were developed, but due to a large number of layers 

in deep networks, their training requires a long time and a large number of datasets. Today is popular to 

use trained deep neural networks for various tasks, even for simple ones in which such deep networks are 

not required. The well-known deep networks such as YoloV3, SSD, etc. are intended for tracking and 

monitoring various objects, therefore their weights are heavy and the overall accuracy for a specific task 

is low. Eye-tracking tasks need to detect only one object - an iris in a given area. Therefore, it is logical to 

use a neural network only for this task. But the problem is the lack of suitable datasets for training the 

model. In the manuscript, we presented a dataset that is suitable for training custom models of 

convolutional neural networks for eye-tracking tasks. Using data set data, each user can independently 

pre-train the convolutional neural network models for eye-tracking tasks. This dataset contains annotated 

10,000 eye images in an extension of 416 by 416 pixels. The table with annotation information shows the 

coordinates and radius of the eye for each image. This manuscript can be considered as a guide for the 

preparation of datasets for eye-tracking devices. 

Program by python in Github:  https://github.com/Ildaron/5.eye_tracking_with_CNN 

Dataset in Kaggle: www.kaggle.com/ildaron/dataset-eyetracking 
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Data value 

We provided a fully labeled dataset with eye position in an image with a resolution of 416 by 416 pixels. 

The dataset can be used to develop the development of convolutional neural networks for the detection, 

segmentation, and classification of the position of the iris. Using data from a data set, each user can 

independently train a neural network using a small set of personal data to search for a specific (user) type 

of iris.  

1. Introduction 

Today Eye-tracking is used to support multimedia learning, help in browsing the web, and is widely used 

in real-time graphics systems, which is especially popular in video games. The main problem of modern 

Eye-tracking systems is their high price. Equipment with accuracy of 0.5 ° has prices from several 

thousand dollars. The most common distance eye-trackers use the corneal reflection method (CR). The 

eyes are exposed to direct invisible infrared (IR) light, which results in the reflection in the cornea. The 

physiology of this process is described in detail in the manuscript [1].  The next research that uses well-

known deep networks with trained weights [2,3]. 

The neural network model must have a high accuracy of iris recognition. The color of the eyes of each 

person is unique, as a result of which the neural network should focus on the characteristics that are not 

directly related to color since it is not possible to train the network for all possible colors. In this paper, a 

dataset is presented in the resolution of the allowing neural network to identify useful signs for 

recognizing the position of the pupil. The dataset is designed to search for signs between the iris and 

sclera. 

Figure 1 shows the process of selecting an image extension to create a dataset. 
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Fig.1. Examples of images with different resolutions: a - 416x416 pixels, b - 200x200 pixels, c - 100x100 

pixels, d - 50x50 pixels, e - 25x25 pixels, f - 10x10 pixels 

Visually, it is difficult to notice the difference between an image with a resolution of 416 by 416 pixels 

and 50 by 50 pixels. But this dataset is designed to determine the following features, Fig. 2. 

  

Fig.2. Features for a neural network 

As a result, to more accurately determine the boundary between the iris and sclera we decided to use an 

image with a resolution of 416x416 pixels. 

To see how this image will look between the layers, we created an ultraprecise neural network and saved 

various variants of images between the layers, Fig. 3. 

 

Fig. 3. Neural Convolution Network Diagram 

To see how this image will look between the layers, we created the next convolutional neural network, 

Fig. 3. 
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Fig. 4. Visualization of the input image on different layers of the neural network model 

Visual analysis of the images shows that already on the 4th layer of the convolutional neural network, we 

can get the necessary signs to determine the position of the eye. Therefore, a dataset with sufficient eye 
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area expansion is needed. Consistent with the overview of Eye-tracking, Datasets by Winkler, S., et al. [4], 

and an analysis of the available datasets, we considered the following sources: 

-  Columbia  Gaze  Data  Set.  The data set consists of  5,880  images of  56  people over varying gaze 

direction and head poses.   For each subject,   there are   5   head poses and   21   gaze directions per head 

pose(http://www.cs.columbia.edu/CAVE/databases/columbia gaze/). Rajeev, R. et al. used this dataset to 

train the neural networks [5]; 

- Openeds facebook dataset. Semantic segmentation data set collected with 152 participants of 12,759 

images with annotations at a resolution of 400×640. Challenge participation deadline: September 15, 

2019. But Dataset is still available on request (https://research.fb.com/programs/openeds-challenge/). 

Aayushy, C. et al. used this dataset for research [6]; 

- MPIIGaze dataset. This data set consists of images taken in everyday conditions using the laptop’s built-

in webcams, in which 15 people participate. MPIIGaze dataset that contains 213,659 images [7]; 

- Kaggle dataset. Competitions are held periodically, participation in which open access to the dataset. 

For example the next dataset https://www.kaggle.com/c/gl-eye-tracking; 

To create our dataset, we selected the following face image collection 

(https://www.kaggle.com/4quant/eye-gaze) implemented for research by Shrivastava. A., et al. [8]. 

Initially, the images, image resolution of 1280 by 720 pixels, presented in the dataset are as follows, fig. 5. 

 

Fig. 5. Example from the image collection 

To determine the eye area in the images, we used the dlib library. The landmark detection algorithm 

proposed by dlib is an implementation of the Regression Tree Ensemble (ERT), introduced in 2014 by 

Casemi and Sullivan. This method uses a simple and quick function to directly estimate the location of a 

landmark. These estimated positions are subsequently refined using an iterative process performed by a 

cascade of regressors. Regressors make a new estimate from the previous one, trying to reduce the error 

of alignment of the estimated points at each iteration. At the first stage, the dlib.get_frontal_face_detector 

() function determines the face contour. Next, using the dlib.shape_predictor command 

("shape_predictor_68_face_landmarks.dat") we define facial features. Where 

shape_predictor_68_face_landmarks.dat is a trained model for 68 landmarks. We only take points 36 to 

41 and add 20 millimeters each point to expand the range, and then using the OpenCV ROI we limit the 

area with the eye in the video stream, fig. 6. 

  

aю. 
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Fig.6. a - face detection, b – new image with points 36 to 41, c – expand new image with points 36 to 41 

This operation gives us an image with pixels 77 by 55 pixels, we increase by 416 and 416 pixels, as a 

result, we get the following image, Fig. 7. 

   

                                                                    a                                          b        

Fig. 7. Images from the dataset: a - before converted, b - after converted 

Next, the most time-consuming part of the research, finding the iris on the processed images were 

realized. Taking into account that the eye area was selected using the dlib library, specifically for this set 

of images, we studied in detail the ratio of the pupil size to the size of the eye area, which ultimately 

amounted to 14%. Next, we wrote the program that, by enumerating various values of the threshold 

function - THRESH_BINARY, selected an image in which the iris would have a size of 14% relative to 

the image with the eye area. This code is presented in GitHub in the file 1.Convert_the_eye_Thershold.py. 

The algorithm for obtaining the dataset is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

Receive image with eye 

Dlib library restrict the eye field 

Iris position calculation 

Saving new images and center and radius 

coordinates 
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Fig.8. Algorithm for obtaining the dataset 

The implementation of this algorithm for image acquisition, for clarity, is presented in the images, fig.8 
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Fig.8. The process of obtaining images for dataset: a – initial image, b – eye filed, c –after filters, d – iris 

mask, e – final image with circle around iris 

Figure 9 shows the data storage format for the iris position. 

 

Fig.9. format for the iris position 

Conclusion and discussion 

As a result, 10,000 images were obtained with the coordinates of the center of the pupil and the radius. 

For annotating images, a set of images with a resolution of 1280 by 720 pixels was used. To convert the 

images, the dlib library allocated the eye region with a resolution of 77 by 55 pixels, later the OpenCV 

library increased the resolution to a scale of 416 by 416 pixels. After we created the program with an 

experimentally obtained equation that allows identifying the iris in the image. This dataset is intended for 

pre-training models of convolutional neural networks for the eye-tracking tasks. 

This dataset was tested on its own model of the convolutional neural network for training the initial layers 

of the neural network model. To train the last layers, a personal dataset of 1000 photos was used. As a 

result, the tracking error was three degrees. Given that the tracking was carried out on a web camera is a 

good result. 

 

The author certifies that he has NO affiliations with or involvement in any organization or entity with any 

financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, 

employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-

licensing arrangements), or non-financial interest (such as personal or professional relationships, 

affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2020                   doi:10.20944/preprints202012.0047.v1

https://doi.org/10.20944/preprints202012.0047.v1


References 

1. Hari, S. (2012). Human Eye Tracking and Related Issues: A Review. International Journal of Scientific 

and Research Publications, 2, Issue 9, 1-9, ISSN 2250-3153 

2. Wibirama, S., Nugroho, H., & Hamamoto, K. (2017). Evaluating 3D gaze tracking in virtual space: A 

computer graphics approach. Entertainment Computing, 21, 11-17 

3. Skodras, E., Kanas, V., & Fakotakis, N. (2015). On visual gaze tracking based on a single low cost 

camera. Signal Processing: Image Communication, 36, 29-42 

4. Winkler, S., Subramanian, R. (2013). Overview of Eye tracking Datasets. Conference: Quality of 

Multimedia Experience (QoMEX), DOI: 10.1109/QoMEX.2013.6603239 

5. Rajeev, R., & Shalini, D. (2018). Light-weight head pose invariant gaze tracking , IEEE Conference on 

Computer Vision and Pattern Recognition Workshop, arXiv:1804.08572 [cs.CV] 

6. Rayushy, C., & Rakshit, K. (2019). Ritnet: Real-time semantic segmentation of the eye for gaze 

tracking, arXiv:1910.00694v1  [cs.CV] 

7. Xucong, Z., Yusuke, S., & Mario, F. (2015). Appearance-based gaze estimation in the wild. Computer 

Vision and Pattern Recognition, 23,456–459. doi:10.1016/j.procs.2016.07.013 

8. Shrivastava, A., Pfister, T., Tuzel, O., & Susskind, J. (2016). Learning from Simulated and 

Unsupervised Images through Adversarial Training. Conference: Quality of Multimedia Experience 

(QoMEX), 2013 Fifth International Workshop on,  arXiv:1612.07828v1 [cs.CV] 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 December 2020                   doi:10.20944/preprints202012.0047.v1

https://doi.org/10.20944/preprints202012.0047.v1

