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Abstract: Tail-biting convolutional codes extend the classical zero-termination convolutional codes: Both
encoding schemes force the equality of start and end states, but under the tail-biting each state is a valid
termination. This paper proposes a machine-learning approach to improve the state-of-the-art decoding of
tail-biting codes, focusing on the widely employed short length regime as in the LTE standard. This standard
also includes a CRC code. First, we parameterize the circular Viterbi algorithm, a baseline decoder that exploits
the circular nature of the underlying trellis. An ensemble combines multiple such weighted decoders, each
decoder specializes in decoding words from a specific region of the channel words’ distribution. A region
corresponds to a subset of termination states; the ensemble covers the entire states space. A non-learnable
gating satisfies two goals: it filters easily decoded words and mitigates the overhead of executing multiple
weighted decoders. The CRC criterion is employed to choose only a subset of experts for decoding purpose.
Our method achieves FER improvement of up to 0.75dB over the CVA in the waterfall region for multiple code
lengths, adding negligible computational complexity compared to the circular Viterbi algorithm in high SNRs.

Keywords: Deep Learning; Error Correcting Codes; Viterbi, Machine Learning; Ensembles; Tail-Biting
Convolutional Codes.

1. Introduction

Wireless data traffic have grown exponentially over recent years with no foreseen saturation [1]. To keep
pace with connectivity requirements, one must carefully attend available resources with respect to three essential
measures: reliability, latency and complexity. As error correction codes (ECC) are well renowned as means to
boost reliability, the research of practical schemes is crucial to meet demands.

One family of ECC that have had great impact on wireless standards is the convolutional codes (CC).
Specifically, tail-biting convolutional codes (TBCC) [2] were incorporated in 4G Long-Term Evolution (LTE)
standard [3], and are also considered for 5G hybrid turbo/LDPC codes based frameworks [4].

The major practical difference between CC and TBCC lies in the termination constraint. Conventional CC
encoding appends zeros bits to impose zero states; TBCC encoding requires no additional bits, avoiding the rate
loss. Due to this rate-loss aversion, TBCC dominates classical CC in the short-length regime: They achieve
the minimum distance bound for a specified length block codes [5]. Our work focuses on improving decoding
performance of short length TBCC due to their significance.

Despite having great potential, the optimality of TBCC with respect to the reliability, latency and complexity
measures is not yet guaranteed. For example, TBCC suffer from increased complexity in the maximum-likelihood
decoding since the initial state is unknown. Under TBCC encoding the Viterbi algorithm (VA) [6] isn’t the
maximum-likelihood decoder (MLD); The MLD operates by running a VA per initial state, outputting the most
likely decoded codeword. Clearly, the complexity grows as the number of states.

To bridge the high complexity gap, several suboptimal and reduced-complexity decoders have been proposed.
Major works include the circular Viterbi algorithm (CVA) [7] and the wrap-around Viterbi algorithm (WAVA)
[8]. Both methods utilize the circular nature of the trellis: They apply VA iteratively on the sequence of repeated
log-likelihood ratios (LLR) values computed from the received channel word. The more repetitions employed,
the lower the error rate is, yet at a cost of additional latency. Short length codes require the additional repetitions,
as indicated in [7]: "it is very important that a sufficient number of symbol times be allowed for convergence. If
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the number is too small. . . the path chosen in this case will be circular but will not be the maximum likelihood
path".

Another common practice is to employ a list decoding scheme, for instance the list Viterbi algorithm (LVA),
along with cyclic redundancy check (CRC) code [9–11]. According to this scheme, a list of the most likely
decoded codewords, rather than a single codeword, is computed in the forward pass of the VA. The minimal path
metric codeword that satisfies the CRC criterion is output. Both the decrement in error rate and the increase in
complexity are proportional to the list size.

The additional repetitions and list size result in complexity overhead for short TBCC decoding. To mitigate
this overhead, one may take a novel approach, rooted in a data-driven field: The machine-learning (ML) based
decoding.

Still a growing field, ML based decoding attempts to bridge the gap between simple analytical models
and the non-linear observable reality. Contemporary literature is split between two different model choices:
model-free and model-based. Model-free works include [12–14], which leverage on state-of-the-art (SOTA)
neural architectures with high neuronal capacity (i.e. ones that are able to implement many functions). On
the other hand, under model-based approaches [15–18], a classical decoder is assigned learnable weights
and trained to minimize a surrogate loss function. This approach suffers from high inductive bias due to the
constrained architecture, leading to limited hypothesis space. Nonetheless, it generalizes better to longer codes
than the model-free approach: Empirical simulations show that unrealistic fraction of codewords from the entire
codebook has to be fed to the network to achieve even moderate performance (see Figure 7 in [12]). One notable
model-based method by Shlezinger et al. is the ViterbiNet [19]. This method compensates for non-linearity in
the channel with expectation-maximization clustering; An NN is utilized to approximate the marginal probability.
This method holds great potential for dealing with non-linear channels.

One recent innovation, referred to as the ensemble of decoders [20], combined the benefits of model-based
approach with the list decoding scheme. This ensemble is composed of learnable decoders, each one called
an expert. Each expert is responsible for decoding channel words that lie in a unique part of the input space.
A low-complexity gating function is employed to uniquely map each channel word to its respective decoder.
The main intuition behind this divide-and-conquer approach is that combination of multiple diverse members is
expected to perform better than all individual basic algorithms that compose the ensemble. The paper shows this
approach can achieve significant gains: Up to 1.25dB on the benchmark.

The main contributions of this paper are the innovation of the model-based weighted circular Viterbi
algorithm (WCVA) and it’s integration in the gated WCVAE, a designated ensemble of WCVA decoders,
accompanied by a gating decoder. We elaborate on the next major points:

1. WCVA - A parameterized CVA decoder, combining the optimality of the VA with a data-driven approach
in Section 3.1. Viterbi selections in the WCVA are based on the sums of weighted path metrics and the
relevant branch metrics. The magnitude of a weight reflect the contribution of the corresponding path or
branch to successful decoding of a noisy word.

2. Partition of the channel-words space - We exploit the domain knowledge regarding the TBCC problem
and partition the input space to different subsets of termination states in Section 3.3; Each expert specializes
on codewords that belong to a single subset.

3. Gating function - We reinforce the practical aspect of this scheme by introducing a low-complexity gating
that acts as a filter, reducing the number of calls to each expert. The gating maps noisy words to a subgroup
of experts based on the CRC checksum (see Section 3.4).

Simulations of the proposed method on LTE-TBCC appear in Section 4.

2. Background

2.1. Notation

Boldface upper-case and lower-case letters refer to matrices and vectors, respectively. Probability mass
functions and probability density functions are denoted with P(·). Subscripts refer to elements, with the ith
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Figure 1. System diagram

element of the vector x symbolized as xi, while superscripts in brackets, e.g. x(j), index the jth vector in a
sequence of vectors. A slice of a vector (xi, . . . , xj) is denoted by xi;j. At last, (·)T is for the transpose operation
and ‖·‖ is for the L1 norm.

2.2. Problem Formalization

Consider the block-wise transmission scenario of CC through the additive white Gaussian noise (AWGN)
channel, see Figure 1. Prior to transmission, the message word m ∈ {0, 1}Nm is encoded twice: By an
error-detection code and by an error-correction code. The CRC encodes m with systematic generator matrix
GCRC. We denote the detection codeword by u ∈ {0, 1}Nu and the codebook with U . Then, the CC encodes
u with generator matrix GCC. Its parity-check matrix is HCC. As a result, the codeword c is a bits sequence
c = (c(1), . . . , c(Nu)) with c(i) ∈ {0, 1}1/RCC where RCC denotes the rate of the CC. For brevity, we denote
V = 1/RCC; the length of the CC calculated as Nc = Nu ·V.

After encoding, the codeword c is BPSK-modulated (0→ 1, 1→ −1), and x is transmitted through the
channel with noise n ∼ N (0, σ2

n I). At the receiver, one decodes the LLR word ` rather than y. The LLR values
are approximated based on the bits i.i.d. assumption and Gaussian prior ` = 2

σ2
n
· y. The decoder is represented

by a function F (·) : RNc → {0, 1}Nu that outputs the estimated detection codeword û. Our end goal is to find u
that maximizes the a posteriori optimization problem:

û = arg max
u∈U

P(u|`). (1)

Note that we solve for u rather than m since bit flips in either the systematic information bits or in the CRC
bits are considered as errors.

2.3. Viterbi Decoding of CC

Naive solution of Eq. (1) is exponential in Nm. However, it can be simplified following Bayes:

arg max
u∈U

P(u|`) = arg max
u∈U

P(u)P(`|u) (2)

where P(`) is omitted, since this term is independent of u.
The time complexity of the solution to Eq. (2) is yet exponential, but may be further reduced to linear

dependency in the memory’s length by following the well known Viterbi algorithm (VA) [6]. We formulate
notation for this algorithm in the following paragraphs.

Denote the memory of the CC by ν and the state space by S = {0, . . . , 2ν − 1}. Convolutional codes can
be represented by multiple temporal transitions, each one is a function of two arguments: the input bit and the
current state. The trellis diagram is one convenient way to view these temporal relations, each trellis section is
called a stage. We refer to [21] for a comprehensive tutorial regarding CC.

Let the sequence of states be represented by s ∈ SNu+1. Following the properties of the CC, a 1-to-1
correspondence between the codeword u and the state sequence s exists:
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arg max
u∈U

P(u)P(`|u) = arg max
s∈SNu+1

P(s)P(`|s).

Plugging the Markov property into the previous equation leads to:

arg max
s∈SNu+1

P(s)P(`|s) =

arg max
s∈SNu+1

Nu

∏
i=1

P(si+1|si)P(`iV−V+1;iV |si+1, si) =

arg max
s∈SNu+1

Nu

∑
i=1

log(P(si+1|si) + log(P(`iV−V+1;iV |si+1, si))

where the last transition is due to the monotonic nature of the log function.
Next, denote the path metric λi = −log(P(si+1|si)) and the branch metric, representing the transition over

a trellis edge, as βi = −log(P(`iV−V+1;iV |si+1, si)). Then, substituting these values into the last equation:

arg max
s∈SNu+1

P(s)P(`|s) = arg min
s∈SNu+1

Nu

∑
i=1

λi + βi. (3)

Taking a dynamic programming approach, the Viterbi algorithm solves Eq. (3) efficiently:

λi(s) = min
s,∈S

λi−1(s,) + βi, s ∈ S (4)

starting from i = 2 up to i = Nu + 1, in an incremental fashion, with the initialization:

λ1(s) =

{
−λmax if s = s1

0 otherwise
(5)

and s1 = 0. The constant λmax is called the LLR clipping parameter.
To output the decoded codeword û, one has to perform the trace-back operation Π : RNc × S → U . This

operation takes the LLR word along with a termination state, and outputs the most likely decoded codeword:
Π(`, s,) = û. Specifically, it calculates the sequence of states ŝ that follows the minimal λi(s) values at each
stage, starting from sNu+1 = s, backwards. Then, the sequence ŝ is mapped to the corresponding estimated
codeword û. Under the classical zero-tail termination, û = Π(`, 0) is returned.

2.4. Circular Viterbi Decoding of TBCC

TBCC work under the assumption of equal start and end states. Their actual values are determined by the
last ν bits. As such, the MLD with a list of size 1 is the decoded u whose matching λNu+1(s′) value is minimal,
combining the decisions from multiple VA runs, one from each state s,.

As mentioned in Section 1, the complexity of this MLD grows exponentially in the memory’s length. The
CVA is a suboptimal decoder that exploits the circular nature of the TBCC trellis, executing VA for a specified
number of repetitions, where each new VA is initialized with the end metrics of the previous repetitions. The
CVA starts and ends its run at the zero state, being error prone near the zero tails.

Explicitly, the forward pass of the CVA follows Eq. (4) for i ∈ {2, . . . , I · Nu} with I denoting an odd
number of replications. The same initialization as in Eq. (5) is used. The bits of the middle replication are the
least errors-prone, being farthest from the zero tails, thus returned:

ûi = (Π(`, 0))i+b I
2c·Nu

for i ∈ {1, . . . , Nu}.
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3. A Data-Driven Approach to TBCC Decoding

This section describes our novel approach to decoding: Parameterization of the CVA decoder, and it’s
integration into an ensemble composed from specialized experts and a low-complexity gating.

3.1. Weighted Circular Viterbi Algorithm

Nachmani et al. [17] presented a weighted version of the classical Belief Propagation (BP) decoder [22].
This learnable decoder is the deep unfolding of the BP [23]. This weighted decoder outperforms the classical
unweighted one by training over channel words, adjusting the weights to compensate for short cycles that are
known to prevent convergence.

We follow the favorable model-based approach as well, parameterizing the branch metrics that correspond
to edges of the trellis. We add another degree of freedom for each edge, assigning weights to the path metrics
as well. Considering the complexity overhead, we only parameterize the middle replication. This formulation
unfolds the middle replication of the CVA as a Neural Network (NN):

λi(s) = min
s,∈S

wi,s, ,sλi−1(s,) + wi,ββi (6)

for
⌊

I
2

⌋
· Nu ≤ i ≤

⌈
I
2

⌉
· Nu.

Our goal is to calculate parameters {wi,s,s, , wi,β} that achieve termination states equal to the ground truth
start and end states. The exact equality criterion is non-differentiable, thus we minimize the multi-class cross
entropy loss, acting as a surrogate loss [24]:

L(s, λ) = − log σ(λl(sNu+1))

where λl(·) = λd I
2e·Nu

(·) stands for the last learnable layer, and σ being the softmax function:

σ(λl(s)) =
eλl(s)

∑
s,∈S

eλl(s, )

This specific choice encourages the equality of the end states in the mid-replication to their ground-truth values.
Note that the gradients back-propagate through the non-differentiable min criterion in Eq. (6) as in the maximum
pooling operation: They only affect the state that achieved the minimum metric.

One fallacy of this approach is the similar importance for all edges, contrary to the BP, where not all edges
are created equal (e.g. ones that participate in many short cycles). All edges are of the same importance as
derived from the problem’s symmetry: Due to the unknown initial state, each state is equally likely.

This indicates that training this architecture may leave the weights as they are, or at worst even lead to
divergence. To fully exploit the performance gained by the adjustment of the weights, one must first break the
symmetry. We alter the uniform prior over the termination states by assigning only a subset of the termination
states to a single decoder. We further elaborate on this proposition below.

3.2. Ensembles in Decoding

Ensembles [25,26] shine in data-driven applications: They exploit independence between the base models
to enhance accuracy. The expressive power of the ensemble surpasses that of a single model. Thus, whereas a
single model may fail to capture high-dimensional and non-linear relations in the dataset, a combination of such
models may succeed.

Nonetheless, ensembles also encompass computational complexity which is linear in the number of base
learners, being unrealistic for practical considerations. To reduce complexity, our previous work [20] suggests
to employ a low complexity gating-decoder. This decoder allows one to uniquely map each input word to a
single most fitting decoder, keeping the overall computation complexity low. We further elaborate on the gated
ensemble, referred to as gated WCVAE, in Section 3.3 and gating in Section 3.4.
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Figure 2. Training flowchart

3.3. Specialized-Experts Ensemble

The WCVAE is an ensemble comprised of WCVA experts, each one specialized on words from a specific
subset of termination states. We begin by discussing the forming of the experts in training, see Figure 2 for the
relevant flowchart.

Let the number of trainable WCVA decoders in the WCVAE be α, each decoder possessing I repetitions. To
form the experts, we first simulate many message words randomly, each message word is encoded and transmitted
through the channel. The initial state of a transmitted word u, known in training, is denoted by s1 as before.
Then, we add the tuple (`, u) to the dataset representing the subset of states that include state s1:

D(i) = {(`, u) :
2ν

α
· (i− 1) ≤ s1 ≤

2ν

α
· i− 1} (7)

with i ∈ {1, . . . , α}. Each dataset accumulates a high number of words by the above procedure.
All the WCVA decoders are trained as in the guidelines of Section 3.1, with one exception: The ith decoder

is trained with the corresponding D(i). Subsequently, α specialized experts are formed, each one specializes
on decoding words affiliated to a specific subset of termination states. Each codeword has equal probability to
appear, thus the distribution over the termination states is uniform. We further elaborate on the intuition to this
particular division of close-by states in Section 4.3.

3.4. Gating

One common practice is to separate TBCC decoding into an initial state estimation followed by decoding.
For example, Fedorenko et al. [27] run a soft-input soft-output (SISO) decoder prior to LVA decoding. This
prerun determines the most reliable starting state.

Similarly, our work presents a gating decoder which acts as a coarse state estimation. The gating is
composed of two parts: a single forward pass of the CVA and a multiple trace-backs phase. We only employ the
gating in the evaluation phase; Check Figure 3 for the complete flow.

First, a forward pass of a CVA is executed on the input word `, as in Eq. (4). Since all states are equiprobable,
the initialization is chosen as λ1(s) = 0, ∀s ∈ S instead of Eq. (5). After calculating λi(s) for every state and
stage, the trace-back Π(·) runs α times, each time starting from a different state. The starting states are spread
uniformly over S , with the decoded words given as:

ũ(i) = Π(`,
2ν

α
· (i− 1

2
)), 1 ≤ i ≤ α. (8)
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Figure 3. Evaluation flowchart

Recall that the trace-back is a cheap operation, compared to the forward pass [7]. Next, the value of the CRC
syndrome is calculated for each trace-back:

gi = ‖ũ(i)HT
CC‖ (9)

with gi = 0 indicating that no error has occurred (or is detectable). In case that a single gi is zero, the
corresponding decoded word ũ(i) is output. If more than one gi is zero, the decoded word is chosen randomly
among all candidates. Only if no i exists such that gi = 0, the word ` continues for additional decoding at the
ensemble.

Note that the computed value gi is correlative with the ascription of the word ` to the termination state
2ν

α · (i− 1
2 ). This indicates that a word of minimal value gi is most probable to decode by the ith decoder. If

multiple gi1 , . . . , gik share the same minimal value then decoders i1, . . . , ik decode the word, choosing the output
û(i) of minimal CRC value among the candidates.

4. Results

4.1. Performance and Complexity Comparisons

The WCVAE was simulated with CRC codes and TBCC that are in accordance with the LTE standard.
Note that while LTE employs QPSK modulation, we used BPSK for simplicity. A code of specific length is
denoted with (Nc, Nu, Nm), referring to the code’s length, detection codeword’s length and message’s length,
respectively. A summary of relevant code parameters appears in Table 1.

We compared both the gated WCVAE and the WCVAE to the next common baselines:

1. 3-repetitions CVA - a fixed-repetitions CVA [7].
2. List circular Viterbi algorithm (LCVA) - an LVA that runs CVA instead of a VA; All other details are as

explained in Section 1.
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(a) TBCC (87, 29, 13)

(b) TBCC (93, 31, 15)

Figure 4. FER and complexity plots for decoding LTE-TBCC

3. List gini VA (LGVA) - an LVA decoder with list of size α, that runs from a known ground-truth state; The
optimal decoded codeword is chosen by the CRC criterion. The FER of the gated and non-gated WCVAE
are lower bounded by this gini-empowered decoder.

All Monte Carlo experiments ran on a validation dataset composed of SNR values in the range of -2dB
to 2dB with a step of 1dB. Simulations at each point continued until at least 500 errors were accumulated.
The number of decoders was set to α = 8. Since words are drawn from the channels arbitrarily, the notion of
"epoch" which refers to the number of full transitions over the training dataset is ill defined: We instead provide
the number of training mini-batches. All decoders, i.e. the gating and the experts, were executed with I = 3
repetitions. The overall hyperparameters for the ensemble training are depicted in Table 2.

Figure 4 presents the results for the two different lengths: Both in error-rate and computational complexity
(measured in VA runs). The method achieves FER gains of up to 0.75dB and 0.625dB gain over the CVA in
the waterfall region, for the lengths 13 and 15, respectively. Our method also surpasses the LCVA by a small
margin. Considering the complexity of the scheme, the number of VA runs decreases as a function of the SNR
and converges with the 3-repetitions CVA in high SNR values. Since the trace-back has negligible complexity
compared to the forward pass of the VA [7], one may claim that the computational complexities at evaluation are
similar.
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Table 1. Code parameters

Symbol Definition Value

ν CC memory size 6

- CC polynomials (133, 171, 165)

RCC CC rate 1/3

- CRC length 16

Table 2. Hyper-parameters of the ensemble

Symbol Definition Value

α Ensemble size 8

I Repetitions per decoder 3

λmax LLR clipping 20

lr Learning rate 10−3

- Optimizer RMSPROP

- Loss Cross Entropy

- Training SNR range [dB] (−2)− 0

- Mini-batch size 450

- Number of mini-batches 50

4.2. Generalization to Longer Lengths

As mentioned in Section 1, one benefit of the model-based approach is the capability to easily generalize to
longer codes. This benefit should apply to our proposed method; To test this notion we trained and evaluated the
WCVAE on the same code but over two longer lengths. All other codes parameters and training hyperparameters
are exactly as in Tables 1 and 2.

Figure 5 depicts the performance over two longer codes. Notice that the gain is around the 0.6dB in FER,
similarly to the one on the two shorter codes. This empirically shows the generalization of the novel method to
longer lengths. The training process remains as simple as before, even as the length increases; There is no need
to enforce a curriculum based ramp-up method for convergence as in [14].

4.3. Training Analysis

We provide further insights to the benefits of training by studying the performance of the trained specialized
decoders versus their non-trained counterparts. We fixed the code to TBCC (87, 29, 13) and the SNR to
0dB. Figure 6 depicts the FER as function of the termination states, each subplot shows two decoders: The
classical CVA and the trained WCVA. The i

th
classical CVA had 3 repetitions, as before, and ran trace-back

from state 2ν

α · (i− 1). The trained WCVA is the i
th

decoder of the WCVAE, responsible for decoding states
{ 2ν

α · (i− 1), . . . , 2ν

α · i− 1}. It ran trace-back from the same state. At each point, codewords of the given state,
and only this state, were simulated until 250 accumulated errors.

One may observe that the CVA has peak performance at the trace-back state, yet at all other states it
performs poorly. On the other hand, the WCVA decoders manage a trade-off: They sacrifice performance over
the trace-back state, compensating for this loss by achieving lower error at other states. To conclude this part,
note the specialized decoders indeed specialize at decoding words with a termination state included in their
respective subset of termination states.

5. Discussion

This work follows the model-based approach and applies it for TBCC decoding, starting with the
parameterization of the common CVA decoder. Its parameterization relies on domain knowledge to effectively
exploit the decoder: A classical low-complexity CVA acts as a gating decoder, filtering easy to decode channel
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(a) TBCC (138, 46, 30) (b) TBCC (198, 66, 50)

Figure 5. Generalization to longer lengths

Figure 6. Training analysis. Legend: (•) CVA, (F) WCVA.

words and directing harder ones to fitting experts; Each expert is specialized in decoding words that belong to
a specific subset of termination states. This solution improves the overall performance, compared to a single
decoder, as well as reduces the complexity in a data-driven fashion.

Future directions are to extend the ensemble approach to more use cases, such as different codes and various
learnable decoders. For example, an ensemble tailored for polar codes, with a CRC-based gating, is one idea we
intend to explore. This scenario is indeed practical, as 5G standard incorporates polar codes accompanied by
CRC codes. Another direction is the theoretical study and analysis of the input space, e.g. the regions of the
pseudo-codewords [5] and tailbits errors [7]. This could direct the training of the learnable decoder to surpass
current results.

Supplementary Materials: An introduction video and python code are available at https://www.youtube.com/watch?v=
nrP61KiG8fE and https://github.com/tomerraviv95/TailBitingCC, respectively.
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