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Abstract: This paper describes the development of a laser-based people detection and obstacle
avoidance algorithm for a differential-drive robot, which is used for transporting materials along a
reference path in hospital domains. Detecting humans from laser data is an important functionality
for the safety of navigation in the shared workspace with people. Nevertheless, traditional
methods normally utilize machine learning techniques on hand-crafted geometrical features extracted
from individual clusters. Moreover, the datasets used to train the models are usually small and
need to manually label every laser scan, increasing the difficulty and cost of deploying people
detection algorithms in new environments. To tackle these problems, (1) we propose a novel
deep learning-based method, which uses the deep neural network in a sliding window fashion
to effectively classify every single point of a laser scan. (2) To increase the speed of inference without
losing performance, we use a jump distance clustering method to decrease the number of points
needed to be evaluated. (3) To reduce the workload of labeling data, we also propose an approach
to automatically annotate datasets collected in real scenarios. In general, the proposed approach
runs in real-time, performs much better than traditional methods, and can be straightforwardly
extended to 3D laser data. Secondly, conventional pure reactive obstacle avoidance algorithms
can produce inefficient and oscillatory behaviors in dynamic environments, making pedestrians
confused and possibly leading to dangerous reactions. To improve the legibility and naturalness
of obstacle avoidance in human crowded environments, we introduce a sampling-based local path
planner, similar to the method used in autonomous driving cars. The key idea is to avoid obstacles by
switching lanes. We also adopt a simple rule to decrease the number of unnecessary deviations from
the reference path. Experiments carried out in real-world environments confirmed the effectiveness
of the proposed algorithms.

Keywords: service robot; navigation; people detection; obstacle avoidance

1. Introduction

Due to the large volume of goods transported every day, modern hospitals have a great demand
for logistics automation systems, to reduce the cost associated with manual deliveries, increase
efficiency in material transport and improve service quality [1,2]. Nowadays, mobile robots have
been considered to be one of the most feasible solutions for automation of transportation in hospitals,
due to their flexibility and the need for minor modification in infrastructures compared to other
systems, such as pneumatic tube systems and electric track vehicle systems [1,3]. Therefore, many
research efforts have been devoted to designing a robot-based logistic system, and several delivery
robots have been developed and tested in realistic scenarios over the past thirty years [4-8]. However,
there are still various challenges that need to be considered when deploying autonomous robots in
human-populated environments such as hospitals. In this work, we focus mainly on people detection
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with laser scanners and obstacle avoidance in crowds of people because they are keys to the success of
our application.

People detection is an important functionality for robots that share workspaces with people as in
a hospital environment. Laser range finders commonly mounted on mobile robots are an appropriate
sensor for this task since they are less susceptible to ambient light and provide rapid and precise
distance measurements over a wide field of view. However, the information contained in a single 2D
range scan is considered not sufficient to reliably distinguish humans from other objects in cluttered
environments. Thus, several approaches [9-12] adopt multi-layer or 3D laser scanners to improve the
robustness of classification.

Traditional approaches [13-17] for people detection with a single-layer laser scanner roughly
consists of three steps: segmentation, feature extraction, and classification. Detection with multi-layer
laser scanners are similar to the single-layer cases, except an additional fusion step which combines
the hypothesis of different layers into the final detection [9,11,18,19] . Traditional approaches comes
with several inherent drawbacks: 1) the jump distance threshold can lead to over-segmentation; 2)
the hand-crafted features may be suboptimal; 3) the geometrical features are extracted only from
individual segments; 4) body parts found in each layer are combined using a heuristic person shape
model.

Recently, Beyer et al. [20,21] first applied convolutional neural networks (CNNs) for object
detection in 2D laser data, eliminating the need for feature engineering and enabling drastic
improvements. To address the spatial density problem of laser data, they proposed a preprocessing
stage, which cuts out and normalizes a fixed real-world extent window around each laser point by
making use of the spatial information that a laser sensor provides.

In this paper, we present a deep learning-based detector for detecting humans using laser range
finders mounted on a mobile robot. This is done by assigning a label (person or non-person) to each
laser point in a laser scan (as shown in the video). The key idea is to evaluate PointNet [22] in a sliding
window fashion. To improve speed during inference, the laser scan is split into segments via jump
distance clustering algorithm [14]. Then the circle (cylindrical) neighborhoods of centroids of each
segment are inputted to PointNet for classification. Points from the same segments are considered
belonging to the same category. By doing so, our detector runs in real-time and performs well in
populated environments. Furthermore, we introduce an approach to automatically annotate datasets
collected in real scenarios. As the input of the network is a point-cloud, the proposed method can also
be adapted for detection from data produced by 3D lasers or multi-layer laser scanners.

The points belonging to humans are published to the proxemic layer, which alters the local cost
map [23] with a gaussian distribution around each of these points to increase the cost near people,
leading to more comfortable and safe navigation by encouraging the robot to keep a social distance to
surrounding humans [24]. The detection results can also be used to adapt the robot’s velocity according
to its distance to people.

The basic task of our transport robot is to deliver materials from the start position to the goal
position along the global path generated by the global planner using an a priori roadmap. To
accomplish this task, the robot requires to be able to follow the path while simultaneously avoid
obstacles. However, it is still a very challenging problem to safely avoid obstacles in dynamic
environments populated with people due to the unpredictable motion of humans. Many factors
have an impact on the performance, such as human comfort, naturalness, as well as social rules [24].
To ensure that the robot does not make humans feel uncomfortable or threatened, the avoidance
algorithm must satisfy the following requirements of our application:

* The behavior produced should be legible and predictable by humans, to improve navigation
efficiency and avoid dangerous people reactions [25];

* The maximum deviation from the reference path should be limited within some upper bound
[26,27];

* The trajectory generated by the local planner should lead to the target point.
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Several researches have studied this task and proposed different algorithms, which are
implemented in real robots [6,8,27]. Evans et al. [6] propose the BUG2 method which detects the
boundary of obstacles and guide the robot around obstacles by following their boundary. Sagobissa
and Zaccaria [27] introduce Roaming Trails to allow the robot to use Artificial Potential Fields (APFs)
to avoid obstacles in a constrained (diamond-shaped) area around the global path, which reduce
undesired behavior in crowded environments and guarantees the robot can never be trapped in
deadlocks. However, the robot’s movement can be confused in dynamic environments and they don’t
explicitly take account of human comfort. Takahashi [8] the repulsive potential function of APF with a
time scale as a design parameter. However, it possibly gets in the trap of local minima.

We adopt a state-space sampling-based path planner, which has been successfully applied in
autonomous driving vehicles in road driving scenario [28-32]. The core idea is to laterally sample
multiple path candidates around the reference path, and then select the best one by maximizing an
objective function, which includes a measure of the proximity to the nearby obstacles, social norms
(passing on the right side), and the deviation from the reference path. To ensure the robot to reach
the target, all sampled paths are converged to the same endpoint as the original path. Unlike many
reactive methods [33-36], which generate wavy trajectories, our method produces straight paths and
the robot’s heading aligns with the reference path most of the time. Thus the robot’s behavior is easy
to predict and its intention can be intuitively understood by nearby people. Besides, our method is
easy to implement and takes little computation resources.

2. Related Work

A variety of research works have showed that service robots can perform navigation-related tasks
in populated environments, such as guiding tourists in museums [37], leading the way for customers
in shopping malls [38], and conveying various items in hospitals [4,39]. Apart from research robots,
several commercial robots are developed and deployed in a few hospitals. Related works about each
specific aspect of our system are described in the following subsections.

2.1. People Detection in Laser Data

Several previous works focus on people/leg detection from 2D laser data. The most primitive
approaches detect human legs based on the size of clusters [40—42]. Mendes et al. [17] join small
segments separated by a distance less than 50cr into one segment (legs) and introduce a voting scheme,
which considers hypotheses over time to classify an object with high confidence. Fod Et al. [43] filter
the range measurements to remove background and group adjacent foreground reading as blogs which
are tracked via the Kalman Filter, the moving blobs are assumed as people. Zhao and Shibasaki. [44]
use a similar method for detecting people with multiple single-row laser range scanners. Schulz et al.
[45,46] detect objects as local minima in the distance profile of a range scan, the changes in consecutive
scans are also considered to distinguish between static and moving objects. Cui et al. [47] identify legs
as the local maxima in the accumulated distribution of successive laser frames which are subtracted by
the background image.

The performance of recognition can be improved by replacing the hand-tuned thresholds with
machine learning techniques. Arras et al. [13] first utilize the AdaBoost algorithm to train a strong
classifier from 14 real value features extracted from groups of neighboring beams. Spinello and
Siegwart [16] propose a graph cutting method to alleviate the over-segmentation problem caused
by the classic jump distance method. Weinrich et al. [14] develop a detector based on generic
distance-invariant feature for people detection and the distinction of their walking aids. The methods
mentioned above apply the AdaBoost classifier on hand-crafted features. Chung et al. [48] inductively
derive the common attributes of legs from a large number of sample data and train support vector
domain description (SVDD) [49] on 3 simple attributes to detect legs. Recently Beyer et al. [20,21]
show how to apply CNNs on 2D range data to efficiently and effectively detect wheelchairs/walkers.
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Several works take advantage of multi-layer laser sensors to improve classification performance
and reduce false detections. Mozos et al. [9] introduce a method to combine the hypothesis in different
layers. Gidel et al. [18] use Parzen methods to detect pedestrian positions of each laser plane, which
are then sent to a decentralized fusion according to the 4 planes. Kim et al. [11] propose the adaptive
breakpoint detector (ABD) segmentation method and 15 new features for 2.5D laser scanner, and
employ the radial basis function additive kernel support vector machine technique for classification to
reduce the computation time while maintaining the performance.

Recently, several works concentrate on deep learning methods for point cloud understanding
tasks. Qi et al. introduce an efficient type of neural network named PointNet [22] which directly
consumes unorder point sets and obtains state-of-the-art performance. To achieve permutation
invariance, PointNet uses a symmetric aggregate function on the pointwise features generated by a
shared Multi-Layer Perceptron (MLP). PointNet has strong representation ability but does not capture
local structures. To recognize fine-grained patterns, PointNet++ [50] adopts a hierarchical architecture
that applies PointNet recursively on a nested partitioning of the input point set. Several researches
employ PointNet to encode points in grid cells and integrate 2D or 3D CNNSs for object detection
[51,52]. However, these methods are too intricate and not effective for our tasks.

2.2. Local Obstacle Avoidance

Obstacle avoidance or local path planning has been studied in a large number of works. The
most common approaches refer to pure reactive ones which calculate the heading direction or velocity
command based only on local sensory information [14,33,53,54]. For example, the Vector Field
Histogram (VFH) [53] method models the local world with a two-dimensional Cartesian histogram
grid, which is reduced to a one-dimension polar histogram containing the polar obstacle density in
that direction, then selects the histogram sectors with a low polar obstacle density as the steering
direction. The Curvature-Velocity Method (CVM) method [54] takes account of robot limitations
and environment constraints, it formulates the problem as one of constrained optimization in the
velocity space. However, pure reactive methods mentioned above have several drawbacks in dynamic
environments: (1) they are local methods and potentially lead the robot to bad situations; (2) they
can produce undesired behavior in dynamic environments; (3) the trajectories generated in complex
situations are hard to predict and may conflict with the social rules followed by humans.

Several extensions has been developed to address the situations that are problematic for pure
reactive methods [34,35,38,55]. VFH* [34] combines VFH with A* search algorithm for look-ahead
verification. Ratering and Gini [55] propose a hybrid artificial potential field combining a global
discontinuous potential field and local continuous potential field to alleviate the local minima problem.
The Forbidden Velocity Map [35] generalize the Dynamic Window Approach (DWA) to consider
moving obstacles.

Human comfort is considered in many literatures [24]. Hall [56] first introduced the idea of the
personal space called proxemics (the invisible bubble of space around people) that people like to keep
between themselves. The personal space is modeled as a cost function which is used for human-aware
navigation [57-59]. Shi et al. [60] develop human-aware velocity constraints as a function of the
distance of the robot from a human. Kruse et al. [24] experimentally examine how humans deal with
pass crossing and provide a context-dependent social cost for legible robot navigation.

State-space sampling-based methods are often used in highly constrained environments,
compared to control space sampling-based method, they explicitly take both kinodynamic and
environmental constraints into account, leading to an efficient sampling scheme. Thrun et al. [28]
draw candidate path from a 2D space of maneuvers, i.e. lateral offset and changing rate. Howard and
Ferguson [29] present a model-based trajectory generation approach for state-space sampling. Werling
et al. [14] propose a method to sampling trajectories utilizing optimal-control strategies within the
Frenet-Frame.
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3. System Overview
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Figure 1. The prototype of our differential-drive transfer robot.

3.1. Robot Design

Figure 1 shows the prototype differential drive robot with a width of 50cm, a length of 70cm
and a height of 1.2cm. The robot weighs about 50kg and has a maximum load of about 100kg. When
the robot is fully charged, it can run continuously for 5 hours. The maximum slope angle that the
robot can climb is about 10° when fully loaded. To improve the safety of navigation and the quality
of localization, the robot is equipped with two Hokuyo UTM-30LX laser range scanners, each laser
scanner operates at a frequency of 40Hz, has a field of view 270° and a maximum detection range of
30m. The data of the two laser range scanners are merged to cover a field of view 360°. The robot is
also equipped with a touch screen to allow an operator to interact with it.

Laser Range Topological

Finder Map
! |
People Global
Detection Planner
| I
Loca Cost Loca
Map Planner
|
Path
Tracking

Figure 2. Overview of the main components of the software system. In this paper, we mainly focus on
the laser-based people detector and the local path planner.
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3.2. System Architecture

The software architecture is shown in Figure 2. All modules are implemented on the Robot
Operating System (ROS) [61], which provides a set of tools that help users build robot applications,
such as the Adaptive Monte-Carlo Localization (AMCL) [62], and the layered cost map [23]. The basic
task of the robot is to transport materials from the start location to the goal locale. More specifically,
when an operator enters the goal position, the global planner is called to search a global path from
the start position to the destination with the topological graph. Then the robot navigates to the goal
location along the global path while avoiding the static or dynamic obstacles using the local path
planner. To improve the safety of navigation, the robot continuously detects people from laser data
with the people detection module. The points detected as belonging to people are integrated into
the local cost map for use by the local path planner. In this paper, we mainly concentrate on two
components: the people detector and the local path planner. The purpose of this paper is to improve
the safety and legibility of navigation in human-populated environment.

3.3. Maps

Both grid-based and topological maps are utilized to model the multi-floor indoor environment.
Grid maps are built via a simultaneous localization and mapping algorithm (SLAM) [63] using the
data collected from each floor of a building. Grid maps are used for localization since they provide
accurate information about environments. Topological maps are used for path planning since they
provide nature interfaces for human instructions and permit fast planning in large-scale environments.
Topological maps are created manually based on the grid maps using a graphical tool. Nodes of graphs
represent distinct places, such as doors, intersections, or elevators. Topological graphs of multiple
floors are connected together according to elevator names to generate a complete topological graph for
use by the global path planner.

4. People Detection

The observation of a laser scanner consists of a sequence of beams O = {b, ..., bx}. Each beam b;
corresponds to a tuple (p;,1;), where ¢; is the angle of the beam, p; is the length of the beam. The polar
coordinates are converted to Cartesian coordinates S = {x1,...,xn}, x; = (x;,y;), where x; = p; cos(¢;)
and y; = p;sin(¢;). Goal of our approach is to calculate the labels of all points of a laser scan.
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Figure 3. The neighborhoods of a set of proposal points are inputted to the PointNet to predict their
scores.
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4.1. Preprocessing

Since laser data have strong variations in point density, which naturally decrease quadratically
with distance, the voxel-grid filter is employed to down-sample the points in high-density regions.
The filter divides the 2D space into a regular grid of cells of a given resolution and projects laser points
onto the grid, then it randomly selects only one point from each non-empty grid cell. Furthermore, the
laser points which are 10 meters away from the robot’s center are filtered out, since these points are
too sparse to be used to reliably detect people.

4.2. Inputs

The input of the network is the resampled neighborhood of a proposal point, as shown in
Figure 2. More specifically, for each proposal position p;, we use a kD-tree to find all its neighbor
points N; within the radius r. which are then centered around the current query point: pl.(] ) p; for
plg] ) N;. To take advantage of the parallel computing of a GPU, all neighborhoods are uniformly
resampled to a predefined size K. In other words, if a neighborhood contains too many points, it is
uniformly resampled to the size K. Conversely, if a sample contains too few points, zero paddings are
applied. Note that the inputs are inherently translation-invariant due to the use of relative coordinates.
Additionally, to increase the robustness against rotations, we augment the dataset with random rotation

within [0,277) during training.

4.3. Network

The network architecture is illustrated in Figure 3. To be robust against rotation transformations,
a mini-PointNet takes the input and regresses to a 2 x 2 matrix, which is multiplied by the input for 2D
transformation. Unlike the original network, the input is only transformed in the X-Y plane. A shared
MLP(64,128,1024) is utilized to project the transformed points into a high dimensional feature space.
After that, a max-pooling operation is applied to aggregate the individual point features into the global
feature, which are further processed by a fully connected neural network with the size 512,256,1. A
dropout layer with a keeping ratio 0.7 is applied on the last fully connected layer. We use the ReLU
activation function followed by batch normalization in each fully connected layer except the last one.
The output layer uses the sigmoid function to produce the probability of the class the input belongs to.
The loss function is the binary cross-entropy loss.

4.4. Inference

To decrease the number of points needed to be classified during inference time, the jump distance
clustering method is applied to split a laser scan into groups of beams. Only the point nearest to the
centroid of a group is chosen to be evaluated, other points in the same cluster are assumed to belong to
the same object. After clustering, the number of points needed to be classified is decreased and the
inference speed can be accelerated to about 5X faster.

The jump distance algorithm iterates over the range scan. If the difference of measurements
of two adjacent beams |p; — p;_1| is over a certain threshold ¢, a new group is initialized there. The
output of this partitioning procedure is an angular ordered sequence of segments, S = {S1,S,,...,Ss}.
The distance threshold is set to 0.1m here, which is good enough to split human legs apart from the
background. An example grouping results of a laser scan is illustrated in Figure 4.

4.5. Automated Dataset Annotation

It is a challenging and time-consuming task to manually annotate all laser scans in a large dataset.
In this section, we describe the methods for dataset collection and automatic labeling.

There are two types of datasets needed to be collected: the dynamic datasets obtained by placing
the robot in a place with significant pedestrian traffic (e.g., hallway), and the static datasets collected by
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Figure 4. The jump distance algorithm groups a laser scan into clusters with different colors. The
centers of each cluster are marked as .
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joy-sticking the robot in an environment devoid of people. All laser points in a static dataset collected
from a moving robot are simply treated as static obstacles.
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Figure 5. The background map generated using a dynamic dataset. The yellow points which falls on
black grids are static points, the purple ones are dynamic points.

To calculate the labels of the laser points in a dynamic dataset recorded from a stationary robot,
we calculate the background of the dataset and subtract it to get the points belonging to people, other
points falling on the background image belong to static obstacles. The background is obtained using
Alg. 1. First, each laser scan S is projected onto an occupancy-grid X using Alg. 2. The values of cells
that contain any laser point are set to 1, otherwise, 0. (line 6 in Alg. 2). Then all projected grid maps
X are summed up to obtain the total hit map H (line 7 in Alg. 1), of which each element represents
the hit count of the corresponding cell. To get the static background, we calculate the mean hit ratio
by dividing H by N, where N is the total number of laser scans. If a cell’s hit ratio is greater than a
predefined threshold, its value is set to 1, indicating it is occupied by a stable obstacle. Otherwise, its
value is set to 0, indicating it is probably free of obstacles or occupied by moving obstacles. Once the
background is given, the label of a point can be easily obtained according to their projected indices (line
17 in Alg. 1), an example background of a dataset is illustrated in Figure 5. After obtaining the labels
of all scans, neighborhoods of each point are extracted with a kD-tree. Since the class distributions are
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highly imbalanced in a dataset, we resample the negative examples to have the same size as positive
examples.

Algorithm 1 Automated Annotation of Laser Scans

Require: set of laser scans S

Ensure: set of labels of laser scans
1: function ANNOTATEDATASET(S)
2: H<«0,X«g Y«go

3: N « Length(S)
4: forall Se S do
5: X « ProjectLaserScan(S)
6: Insert X into X
7: H<+« H+X > accumulate the hit count
8: end for
9: forallh ¢ H do
10: if /N > threshold then
11: h<1 > static cell
12: else
13: h<0 > non-static cell
14: end if

15: end for
16: forall SeS do

17: Calculate labels Y according to projected indices
18: Insert Y into Y

19: end for

20: return )

21: end function

Algorithm 2 Projection of laser points to a grid map

Require: filtered laser points P € R2"
Ensure: grid map M
1: function PROJECTLASERSCAN(P)
2: M<0
3 r < the grid map’s resolution
4 forall x,y € P do
5 i,j<lx/r] ly/r] > projected index
6: M]',,' «~1
7 end for
8 return M
9: end function

5. Obstacle Avoidance

Si

Ad

Figure 6. Example candidate paths generated by the local path planner with different lateral offsets
and a longitudinal offset for clarity.
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Table 1. Parameters of the local path planning algorithm

parameter meaning

I; lateral offset
S longitudinal offset
Lnax maximum lateral offset
Simin minimum longitudinal offset
Smax maximum longitudinal offset
Al lateral sampling density
As longitudinal sampling density
Sc longitudinal distance of convergence

diookahead look-ahead distance

5.1. Generation of Candidate Paths

The local path planner generates candidate paths by sampling laterally and longitudinally in the
Frenet coordinate frame. Figure 6 shows a set of candidate paths with different lateral offsets and a
single longitudinal offset. A candidate path is divided into three sections, the first section allows the
robot to smoothly switch to the target lane, the second section of the path is parallel to the reference
path, and the last section allows the robot to reach the desired goal position.

The parameters of the local path planner are summarized in Table. 1. J; refers to the latitudinal
offset of each candidate path to the reference path, s; refers to the longitudinal offset at which a
candidate path begins to be parallel to the reference path. The rate of change of a path is determined
by I;/s;. Sampling in lateral and longitude dimensions allows the robot to choose paths with different
steepness according to the size of obstacles and the distance from obstacles. For example, if the robot
needs to bypass a nearby obstacle, it chooses a candidate path with a short longitudinal offset and a
large lateral offset. The max deviation from the reference path is determined by [y, which prevents
the robot from entering into a configuration from which is difficult to come out. The s,,;;, and syax
refers to the intervals of longitudinal sampling. The lateral sampling density Al is set to 0.05m, which
is the same as the resolution of the cost map, and the longitudinal resolution As is set to 0.1m. dj,oxanead
refers to the maximum distance for evaluating the cost of a candidate path.

5.2. Path Selection

To find the best path to maneuver around obstacles, all the candidate paths that run over obstacles
will be trimmed, the rest are evaluated by the following objective function J, which is the linearly
weighted sum of three cost functions.

J = wi]g+wa i + w3
Ji = larctan2(d;, s;)|

1 ifd; >0, v
Jn =

0 ifd; <0.

J1 is the cost of approaching obstacles, which makes the robot tend to maintain a larger distance
from surrounding obstacles. The local cost map is utilized to efficiently calculate this cost, each cell
of the local cost map has a cost value that decays with the distance to nearest lethal obstacles. J; is
calculated as the maximum of the costs of cells that the footprint of the robot traverses along the path.
J+ is the deviation cost, which prevents the robot from deviating too much from the reference path to
avoid obstacles. The last term J, is the social norm cost, which assigns higher costs to the paths on
the left than those on the right side of the robot. This term encourages the robot to pass on the right,
leading to socially compliant navigation. In summary, this objective function prefers paths that: (a)
remain far from obstacles; (b) pass on the right side; (c) don’t deviate too much to bypass obstacles.
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Figure 7. Behavior states of the local planner

5.3. Behavior States

A heuristic rule, which has been widely used in many automated guided vehicles (AGVs), is
applied here in order to reduce unnecessary avoidances and improve the efficiency of navigation in
dynamic environments, shown in Figure 7. Surprisingly, the strategy is not to avoid at all. That is,
when the robot encounters an obstacle, it stops, warns people, and waits for it to move away until
a timeout event has been triggered. Experience tells that this simple approach has a good chance of
success especially when the robot moves on the right side of a hallway. One possible reason is that
humans have more mobility, flexibility, and a smaller footprint than robots, they tend to give way to
the robot when they understand its intention. However, this simple rule can’t handle all exceptional
situations, such as encountering a person who is inconvenient to give way, an emergency patient
or an object left unattended, entering a narrow door or an elevator. In these cases, the robot has to
switch to obstacle avoidance mode and take slight deviations from the prescribed path to maneuver
around the obstacles. Moreover, the local path planner is only executed when needed, this also saves
computational resources.

5.4. Path Tracking

To track the reference path, a Pure Pursuit controller is employed to produce motion commands
sent to the robot wheels. It runs at a frequency of 20Hz, and is used in the forward simulation to avoid
collisions. The controller constantly simulates a virtual robot moving forward for a certain distance,
and checks whether the simulated trajectory is in collision with obstacles. If it is, the robot will stop
and try to avoid the obstacle, otherwise, the robot will continue to travel along the path.

Figure 8. Illustration of pure pursuit technique. The red curve indicates the global reference path and
the green line represents the one look ahead distance between the center of the differentially-drive
robot and the intermediate goal point. The purpose of this algorithm is to calculate the curvature of the
dotted circle.
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The pure pursuit controller is illustrated in Figure 8. The inputs of this algorithm are the reference
path and the current robot position. The pure pursuit controller calculates the curvature of the circle,
which connects the robot’s center and an intermediate goal point on the reference path ahead of the
vehicle by a look ahead distance L. The curvature of the circle is given by « = 2sina/L. For a given
velocity v, the angular velocity is w = 2vsina/L. If the angular velocity exceeds the physical limit, it
will be truncated between [-wyax, Wiax ], then the velocity of the robot is reset to v = w/x. For smooth
following behavior, the look-ahead distance is often scaled with the robot’s current translational

velocity,
v

L= (Lmax - Lmin) + Lmz’n

Umax

The velocity commands of the left and right wheels of a differential robot are given by

2
Uleft =0- E(,U

2
U?‘ight =0+ E(U

where B is the length of the wheelbase, vj,r; and v;g,; is the velocity of left and right wheel
respectively.

If the angle between the target point and the robot heading direction is above a certain threshold,
the deviation between the shortest straight-line path and the arc is large. In this case, the robot first
rotates to align its heading with the virtual target point and then moves forward.

Figure 9. Collecting dynamic dataset in a real-world environment

6. Experimental Evaluation
6.1. Experiments on People Detection

6.1.1. Dataset

We recorded several sequences at several places (such as teaching buildings and canteens) of
our school, an example scene is shown in Figure 9. The datasets are recorded with a smaller robot
equipped with a Hokuyo laser range finder mounted at approximately 40cm above the ground plane.
All records are stored as rosbags and contain about 600k raw laser scans. All dynamic datasets are
annotated using Alg. 1 with threshold 0.2. We take several sequences as the test set, others are used as
the training set. Note that the test set covers different areas from the training set, this can measure the
generalization performance of different approaches to unseen cases.
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Figure 10. Effect of the neighborhood size r on the performance.

6.1.2. Radius Size

The radius of the neighborhood determines the size of the receptive field of the network.
Experiments were conducted to study the relationship between the radius size and performance.
In Figure 10, the results show that if the radius is too small, the neighborhoods don’t contain
enough information for reliable detection, which decreases the accuracy. If the radius is too large, the
neighborhoods contain much information of background objects, which makes the network prone to
overfitting and decreases the ability of generalization to new cases. From the results of Figure 10, the
radius between 1.2m and 2.2m is a suitable choice for distinguishing between background and people.

6.1.3. Baselines

We compare our proposed method to three baselines: the dilated convolutional neural network
(CNN), the distance robust wheelchair/walker (DROW) detector, and PointNet.

All experiments are conducted on a desktop computer with an Intel Core i9-9900K @3.6GHz
CPU and a NVIDIA RTX2080Ti GPU. The Adam optimizer is used to minimize the cross-entropy
loss function with a learning rate of 0.001 and a momentum of 0.98. All neural network detectors are
trained for 20 epochs with a batch size of 256.

We implemented a dilated CNN which consists of 8 convolutional layers with dilation factors
1,2,4,8,4,2,1,1. Its input is a binary occupancy grid centered on the robot with size 10m x 10m and
resolution 0.1m, its output is a score map of the same size and its loss function is masked using its
input. We modified the open source DROW (github.com/VisualComputingInstitute/DROW) detector
for the semantic segmentation task by removing the voting and non-maximum suppression steps
from the publicly available code. We train the PointNet (github.com/fxia22/pointnet.pytorch) on our
dataset with the default parameters.

6.1.4. Results

The pixel accuracy and mean IoU score of different approaches are presented in Table 2, the
precision-recall curves are shown in Figure 11. The results show that the CNN method overfits the
training set and performs badly on the unseen dataset. Its computational cost is determined by the
grid resolution of the input image. A large resolution results in loss of information and decreases the
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Figure 11. The precision-recall curve of DROW), a dilated CNN and our method on the collected dataset.

Table 2. Comparison of performance of different approaches on the collected dataset

Method ‘ pAcc  mloU ‘ Legs No person
CNN 81.7 51.45 | 22.10 80.8

PointNet | 90.3 45.2 0.0 90.4
DROW 91.7 85.1 85.3 84.9
Ours 91.8 85.8 85.8 85.7

performance. The PointNet detector seems to have a high score on overall accuracy, but it performs
worst on detecting people. The reason is that most of the points in a laser scan are belong to static
obstacles, so the global feature is dominated by the features of static points. The DROW detector
has comparable performance to our method, both methods have similar precision-recall curve and
achieves good performance on the test dataset. Since the dataset are balanced by resampling, both
methods don’t suffer from the class imbalance problem.

6.2. Experiments on Obstacle Avoidance

To verify the performance of the proposed obstacle avoidance algorithm, several experiments are
carried out with a real robot in the corridor in front of our laboratory (shown in the video). In all the
experiments, the robot follows the same predefined path from the start position to the goal position.
The maximum linear velocity of the robot is 1m/sec, the maximum lookahead distance of the local
planner is 2.5m. The individual terms of the objective function are normalized between [-1,1], the
weights of each term are w; = 1.0, wp = 0.9, w3 = 0.5. The maximum waiting time before the local path
planner is called to search for a feasible path is 2.0sec. Moreover, we conducted some experiments on
the third floor of a building in Anhui Provincial Hospital.

6.2.1. Case 1: Static Obstacles

In the first experiment (Figure 12a, three static obstacles are placed in the corridor. The trajectory
and the velocity of the robot are shown in Figure 12b,c. In this case, the robot stops in front of the
first obstacle, waits for a while, rotates to the right, switches to the lane on the right side of the robot,
follows this lane to the third obstacle, and then switches back to the reference lane. This experiment
demonstrates that the local planner can drive the robot through static environments without colliding
with obstacles.

6.2.2. Case 2: Crossing Scenarios

In the second experiment (Figure 13), there are two people walking along the corridor. One person
suddenly appears from the blind spot and crosses the path of the robot at a right angle. Another person
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Figure 12. (a) Case 1: the robot follows the reference path while avoiding three static obstacles. (b) The

trajectory of the robot. (c) The linear and angular velocity of the robot
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Figure 13. (a) Case2: crossing scenarios. (b) The trajectory of the robot. (c) The linear and angular
velocity of the robot.
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comes from the opposite direction and obliquely crosses the path of the robot. In this situation, the
robot stops and waits for the people to leave, and then continues to move straight. This is a reasonable
behavior to stops and not to deviate from the straight path since the distance and time are the shortest.

6.2.3. Case 3: Following a Person

)
[ \

|
/
/

" /’/" /‘ // c/ //‘ J’/

“Time(s]

(©)

Figure 14. (a) Case3: a person walking in the front of the robot in the same lane. (b) The trajectory of
the robot. (c) The linear and angular velocity of the robot.

In the third experiment (Figure 14), a person walks in front of the robot at a lower speed. When
the robot catches up with the person, it stops and waits. When the person leaves far enough away, the
robot continues to follow the same lane. In this experiment, the persons deliberately do not give way
to the robot, so the robot moves forward a little bit, stops, and then moves forward, as shown in Figure
14c.

6.3. Experimental Results in the Hospital

We conducted several experiments in a building of the Anhui Provincial Hospital (2000 beds) to
verify the performance of the proposed algorithm. This Hospital has large traffic of people and a large
volume of materials to transport. According to statistics, more than 1.37 million intravenous infusions
and 1.31 million specimens have been delivered manually in this hospital in 2018. The environment
in this hospital is a challenge for robots because many of the places they pass through are crowded
with people at some time, such as corridors and halls. Therefore, detection and safely avoiding people
becomes crucial for our application.


https://doi.org/10.20944/preprints202011.0711.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 November 2020

d0i:10.20944/preprints202011.0711.v1

19 of 24

(b)

(d)

Figure 15. Experiments in Anhui Provincial hospital. The robot need to safely navigate through
corridors and halls populated with humans.
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Figure 16. The Occupancy grids map and the topological map of the third floor of the hospital. Grey
indicates the areas free of obstacles.
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In the experiments, the task of the robot is to transport drugs from the central pharmacy to the
nurse station on the third floor. Figure 16 shows the grid map and the topological map of the second
floor of a building of the hospital. Since the robot can’t control elevators and doors, we will help
the robot press elevator buttons and open doors during the experiments. During several days of
experiments in the hospital, we found that people who don’t carry heavy things often change paths to
avoid the robot when they notice it, especially when it moves on the right side of the corridor. Figure
15a,b shows such a situation that a worker who pulls a trailer intuitively give way to the robot ahead
of time when he sees it. The algorithm does not produce wavy trajectories in all experiments, the
behavior and the intention of the robot are easy to predict. Figure 15¢ shows that the people don't feel
threatened when they pass by the robot, since they already understand the robot’s trajectory. There are
also several situations that the robot can’t handle. For example, if both people and the robot can’t go
back and give way in narrow spaces, such as doors and elevators, then neither side can move forward.

7. Conclusions

This paper focuses on the development of two important components (i.e., people detection
and obstacle avoidance) of a differential-drive robot for safe navigation in human-populated hospital
environments.

For people detection, we proposed to firstly classify each proposal point using the information
of its local neighborhoods with PointNet, due to its invariance to the permutations of the input
set. Secondly, in order to reduce the number of points to be evaluated during inference, we use
jump distance clustering to split the laser scan into groups and select the centers of each group as
proposal points. Since neural networks need a large dataset to train, we proposed an approach to
automatically label dataset collected in actual environments. This method also reduces the cost of
deploying laser-based people detection algorithms in new scenarios. Experimental results show that
the proposed method achieves competitive performance on par or even better than the state-of-the-art
approaches.

For obstacle avoidance, we argued that the behavior of the robot generated by the algorithms in
human-populated environments should be legible and consistent. Pure reactive approaches can not be
directly deployed in dynamic environments, since they have several drawbacks as mentioned above.
To tackle these problems, we proposed to avoid obstacles by switching lanes generated by laterally
sampling along the reference path. One advantage of the proposed method is that the candidate paths
are consistent with the reference path and guaranteed to reach the goal position. Another one is that
the robot’s behaviors are more predictive to be intuitively understood by nearby pedestrians, thus
reducing the comfortableness during an interaction. Moreover, we adopted a stop-wait-warn rule to
reduce unnecessary deviations and improve the efficiency of navigating in dynamic environments. In
more detail, we proposed a new objective function that takes account of the distance to obstacles, the
deviation from the global path, and the social cost of passing on the right. Finally, experiments carried
out in real-world environments confirm the effectiveness of the proposed method.
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