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Abstract: This paper describes the development of a laser-based people detection and obstacle1

avoidance algorithm for a differential-drive robot, which is used for transporting materials along a2

reference path in hospital domains. Detecting humans from laser data is an important functionality3

for the safety of navigation in the shared workspace with people. Nevertheless, traditional4

methods normally utilize machine learning techniques on hand-crafted geometrical features extracted5

from individual clusters. Moreover, the datasets used to train the models are usually small and6

need to manually label every laser scan, increasing the difficulty and cost of deploying people7

detection algorithms in new environments. To tackle these problems, (1) we propose a novel8

deep learning-based method, which uses the deep neural network in a sliding window fashion9

to effectively classify every single point of a laser scan. (2) To increase the speed of inference without10

losing performance, we use a jump distance clustering method to decrease the number of points11

needed to be evaluated. (3) To reduce the workload of labeling data, we also propose an approach12

to automatically annotate datasets collected in real scenarios. In general, the proposed approach13

runs in real-time, performs much better than traditional methods, and can be straightforwardly14

extended to 3D laser data. Secondly, conventional pure reactive obstacle avoidance algorithms15

can produce inefficient and oscillatory behaviors in dynamic environments, making pedestrians16

confused and possibly leading to dangerous reactions. To improve the legibility and naturalness17

of obstacle avoidance in human crowded environments, we introduce a sampling-based local path18

planner, similar to the method used in autonomous driving cars. The key idea is to avoid obstacles by19

switching lanes. We also adopt a simple rule to decrease the number of unnecessary deviations from20

the reference path. Experiments carried out in real-world environments confirmed the effectiveness21

of the proposed algorithms.22

Keywords: service robot; navigation; people detection; obstacle avoidance23

1. Introduction24

Due to the large volume of goods transported every day, modern hospitals have a great demand25

for logistics automation systems, to reduce the cost associated with manual deliveries, increase26

efficiency in material transport and improve service quality [1,2]. Nowadays, mobile robots have27

been considered to be one of the most feasible solutions for automation of transportation in hospitals,28

due to their flexibility and the need for minor modification in infrastructures compared to other29

systems, such as pneumatic tube systems and electric track vehicle systems [1,3]. Therefore, many30

research efforts have been devoted to designing a robot-based logistic system, and several delivery31

robots have been developed and tested in realistic scenarios over the past thirty years [4–8]. However,32

there are still various challenges that need to be considered when deploying autonomous robots in33

human-populated environments such as hospitals. In this work, we focus mainly on people detection34
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with laser scanners and obstacle avoidance in crowds of people because they are keys to the success of35

our application.36

People detection is an important functionality for robots that share workspaces with people as in37

a hospital environment. Laser range finders commonly mounted on mobile robots are an appropriate38

sensor for this task since they are less susceptible to ambient light and provide rapid and precise39

distance measurements over a wide field of view. However, the information contained in a single 2D40

range scan is considered not sufficient to reliably distinguish humans from other objects in cluttered41

environments. Thus, several approaches [9–12] adopt multi-layer or 3D laser scanners to improve the42

robustness of classification.43

Traditional approaches [13–17] for people detection with a single-layer laser scanner roughly44

consists of three steps: segmentation, feature extraction, and classification. Detection with multi-layer45

laser scanners are similar to the single-layer cases, except an additional fusion step which combines46

the hypothesis of different layers into the final detection [9,11,18,19] . Traditional approaches comes47

with several inherent drawbacks: 1) the jump distance threshold can lead to over-segmentation; 2)48

the hand-crafted features may be suboptimal; 3) the geometrical features are extracted only from49

individual segments; 4) body parts found in each layer are combined using a heuristic person shape50

model.51

Recently, Beyer et al. [20,21] first applied convolutional neural networks (CNNs) for object52

detection in 2D laser data, eliminating the need for feature engineering and enabling drastic53

improvements. To address the spatial density problem of laser data, they proposed a preprocessing54

stage, which cuts out and normalizes a fixed real-world extent window around each laser point by55

making use of the spatial information that a laser sensor provides.56

In this paper, we present a deep learning-based detector for detecting humans using laser range57

finders mounted on a mobile robot. This is done by assigning a label (person or non-person) to each58

laser point in a laser scan (as shown in the video). The key idea is to evaluate PointNet [22] in a sliding59

window fashion. To improve speed during inference, the laser scan is split into segments via jump60

distance clustering algorithm [14]. Then the circle (cylindrical) neighborhoods of centroids of each61

segment are inputted to PointNet for classification. Points from the same segments are considered62

belonging to the same category. By doing so, our detector runs in real-time and performs well in63

populated environments. Furthermore, we introduce an approach to automatically annotate datasets64

collected in real scenarios. As the input of the network is a point-cloud, the proposed method can also65

be adapted for detection from data produced by 3D lasers or multi-layer laser scanners.66

The points belonging to humans are published to the proxemic layer, which alters the local cost67

map [23] with a gaussian distribution around each of these points to increase the cost near people,68

leading to more comfortable and safe navigation by encouraging the robot to keep a social distance to69

surrounding humans [24]. The detection results can also be used to adapt the robot’s velocity according70

to its distance to people.71

The basic task of our transport robot is to deliver materials from the start position to the goal72

position along the global path generated by the global planner using an a priori roadmap. To73

accomplish this task, the robot requires to be able to follow the path while simultaneously avoid74

obstacles. However, it is still a very challenging problem to safely avoid obstacles in dynamic75

environments populated with people due to the unpredictable motion of humans. Many factors76

have an impact on the performance, such as human comfort, naturalness, as well as social rules [24].77

To ensure that the robot does not make humans feel uncomfortable or threatened, the avoidance78

algorithm must satisfy the following requirements of our application:79

• The behavior produced should be legible and predictable by humans, to improve navigation80

efficiency and avoid dangerous people reactions [25];81

• The maximum deviation from the reference path should be limited within some upper bound82

[26,27];83

• The trajectory generated by the local planner should lead to the target point.84
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Several researches have studied this task and proposed different algorithms, which are85

implemented in real robots [6,8,27]. Evans et al. [6] propose the BUG2 method which detects the86

boundary of obstacles and guide the robot around obstacles by following their boundary. Sagobissa87

and Zaccaria [27] introduce Roaming Trails to allow the robot to use Artificial Potential Fields (APFs)88

to avoid obstacles in a constrained (diamond-shaped) area around the global path, which reduce89

undesired behavior in crowded environments and guarantees the robot can never be trapped in90

deadlocks. However, the robot’s movement can be confused in dynamic environments and they don’t91

explicitly take account of human comfort. Takahashi [8] the repulsive potential function of APF with a92

time scale as a design parameter. However, it possibly gets in the trap of local minima.93

We adopt a state-space sampling-based path planner, which has been successfully applied in94

autonomous driving vehicles in road driving scenario [28–32]. The core idea is to laterally sample95

multiple path candidates around the reference path, and then select the best one by maximizing an96

objective function, which includes a measure of the proximity to the nearby obstacles, social norms97

(passing on the right side), and the deviation from the reference path. To ensure the robot to reach98

the target, all sampled paths are converged to the same endpoint as the original path. Unlike many99

reactive methods [33–36], which generate wavy trajectories, our method produces straight paths and100

the robot’s heading aligns with the reference path most of the time. Thus the robot’s behavior is easy101

to predict and its intention can be intuitively understood by nearby people. Besides, our method is102

easy to implement and takes little computation resources.103

2. Related Work104

A variety of research works have showed that service robots can perform navigation-related tasks105

in populated environments, such as guiding tourists in museums [37], leading the way for customers106

in shopping malls [38], and conveying various items in hospitals [4,39]. Apart from research robots,107

several commercial robots are developed and deployed in a few hospitals. Related works about each108

specific aspect of our system are described in the following subsections.109

2.1. People Detection in Laser Data110

Several previous works focus on people/leg detection from 2D laser data. The most primitive111

approaches detect human legs based on the size of clusters [40–42]. Mendes et al. [17] join small112

segments separated by a distance less than 50cm into one segment (legs) and introduce a voting scheme,113

which considers hypotheses over time to classify an object with high confidence. Fod Et al. [43] filter114

the range measurements to remove background and group adjacent foreground reading as blogs which115

are tracked via the Kalman Filter, the moving blobs are assumed as people. Zhao and Shibasaki. [44]116

use a similar method for detecting people with multiple single-row laser range scanners. Schulz et al.117

[45,46] detect objects as local minima in the distance profile of a range scan, the changes in consecutive118

scans are also considered to distinguish between static and moving objects. Cui et al. [47] identify legs119

as the local maxima in the accumulated distribution of successive laser frames which are subtracted by120

the background image.121

The performance of recognition can be improved by replacing the hand-tuned thresholds with122

machine learning techniques. Arras et al. [13] first utilize the AdaBoost algorithm to train a strong123

classifier from 14 real value features extracted from groups of neighboring beams. Spinello and124

Siegwart [16] propose a graph cutting method to alleviate the over-segmentation problem caused125

by the classic jump distance method. Weinrich et al. [14] develop a detector based on generic126

distance-invariant feature for people detection and the distinction of their walking aids. The methods127

mentioned above apply the AdaBoost classifier on hand-crafted features. Chung et al. [48] inductively128

derive the common attributes of legs from a large number of sample data and train support vector129

domain description (SVDD) [49] on 3 simple attributes to detect legs. Recently Beyer et al. [20,21]130

show how to apply CNNs on 2D range data to efficiently and effectively detect wheelchairs/walkers.131
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Several works take advantage of multi-layer laser sensors to improve classification performance132

and reduce false detections. Mozos et al. [9] introduce a method to combine the hypothesis in different133

layers. Gidel et al. [18] use Parzen methods to detect pedestrian positions of each laser plane, which134

are then sent to a decentralized fusion according to the 4 planes. Kim et al. [11] propose the adaptive135

breakpoint detector (ABD) segmentation method and 15 new features for 2.5D laser scanner, and136

employ the radial basis function additive kernel support vector machine technique for classification to137

reduce the computation time while maintaining the performance.138

Recently, several works concentrate on deep learning methods for point cloud understanding139

tasks. Qi et al. introduce an efficient type of neural network named PointNet [22] which directly140

consumes unorder point sets and obtains state-of-the-art performance. To achieve permutation141

invariance, PointNet uses a symmetric aggregate function on the pointwise features generated by a142

shared Multi-Layer Perceptron (MLP). PointNet has strong representation ability but does not capture143

local structures. To recognize fine-grained patterns, PointNet++ [50] adopts a hierarchical architecture144

that applies PointNet recursively on a nested partitioning of the input point set. Several researches145

employ PointNet to encode points in grid cells and integrate 2D or 3D CNNs for object detection146

[51,52]. However, these methods are too intricate and not effective for our tasks.147

2.2. Local Obstacle Avoidance148

Obstacle avoidance or local path planning has been studied in a large number of works. The149

most common approaches refer to pure reactive ones which calculate the heading direction or velocity150

command based only on local sensory information [14,33,53,54]. For example, the Vector Field151

Histogram (VFH) [53] method models the local world with a two-dimensional Cartesian histogram152

grid, which is reduced to a one-dimension polar histogram containing the polar obstacle density in153

that direction, then selects the histogram sectors with a low polar obstacle density as the steering154

direction. The Curvature-Velocity Method (CVM) method [54] takes account of robot limitations155

and environment constraints, it formulates the problem as one of constrained optimization in the156

velocity space. However, pure reactive methods mentioned above have several drawbacks in dynamic157

environments: (1) they are local methods and potentially lead the robot to bad situations; (2) they158

can produce undesired behavior in dynamic environments; (3) the trajectories generated in complex159

situations are hard to predict and may conflict with the social rules followed by humans.160

Several extensions has been developed to address the situations that are problematic for pure161

reactive methods [34,35,38,55]. VFH* [34] combines VFH with A* search algorithm for look-ahead162

verification. Ratering and Gini [55] propose a hybrid artificial potential field combining a global163

discontinuous potential field and local continuous potential field to alleviate the local minima problem.164

The Forbidden Velocity Map [35] generalize the Dynamic Window Approach (DWA) to consider165

moving obstacles.166

Human comfort is considered in many literatures [24]. Hall [56] first introduced the idea of the167

personal space called proxemics (the invisible bubble of space around people) that people like to keep168

between themselves. The personal space is modeled as a cost function which is used for human-aware169

navigation [57–59]. Shi et al. [60] develop human-aware velocity constraints as a function of the170

distance of the robot from a human. Kruse et al. [24] experimentally examine how humans deal with171

pass crossing and provide a context-dependent social cost for legible robot navigation.172

State-space sampling-based methods are often used in highly constrained environments,173

compared to control space sampling-based method, they explicitly take both kinodynamic and174

environmental constraints into account, leading to an efficient sampling scheme. Thrun et al. [28]175

draw candidate path from a 2D space of maneuvers, i.e. lateral offset and changing rate. Howard and176

Ferguson [29] present a model-based trajectory generation approach for state-space sampling. Werling177

et al. [14] propose a method to sampling trajectories utilizing optimal-control strategies within the178

Frenet-Frame.179
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3. System Overview180
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Figure 1. The prototype of our differential-drive transfer robot.

3.1. Robot Design181

Figure 1 shows the prototype differential drive robot with a width of 50cm, a length of 70cm182

and a height of 1.2cm. The robot weighs about 50kg and has a maximum load of about 100kg. When183

the robot is fully charged, it can run continuously for 5 hours. The maximum slope angle that the184

robot can climb is about 10○ when fully loaded. To improve the safety of navigation and the quality185

of localization, the robot is equipped with two Hokuyo UTM-30LX laser range scanners, each laser186

scanner operates at a frequency of 40Hz, has a field of view 270○ and a maximum detection range of187

30m. The data of the two laser range scanners are merged to cover a field of view 360○. The robot is188

also equipped with a touch screen to allow an operator to interact with it.189

Laser Range 
Finder

People 
Detection

Local Cost 
Map

Global 
Planner

Topological 
Map

Local 
Planner

Path 
Tracking

Figure 2. Overview of the main components of the software system. In this paper, we mainly focus on
the laser-based people detector and the local path planner.
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3.2. System Architecture190

The software architecture is shown in Figure 2. All modules are implemented on the Robot191

Operating System (ROS) [61], which provides a set of tools that help users build robot applications,192

such as the Adaptive Monte-Carlo Localization (AMCL) [62], and the layered cost map [23]. The basic193

task of the robot is to transport materials from the start location to the goal locale. More specifically,194

when an operator enters the goal position, the global planner is called to search a global path from195

the start position to the destination with the topological graph. Then the robot navigates to the goal196

location along the global path while avoiding the static or dynamic obstacles using the local path197

planner. To improve the safety of navigation, the robot continuously detects people from laser data198

with the people detection module. The points detected as belonging to people are integrated into199

the local cost map for use by the local path planner. In this paper, we mainly concentrate on two200

components: the people detector and the local path planner. The purpose of this paper is to improve201

the safety and legibility of navigation in human-populated environment.202

3.3. Maps203

Both grid-based and topological maps are utilized to model the multi-floor indoor environment.204

Grid maps are built via a simultaneous localization and mapping algorithm (SLAM) [63] using the205

data collected from each floor of a building. Grid maps are used for localization since they provide206

accurate information about environments. Topological maps are used for path planning since they207

provide nature interfaces for human instructions and permit fast planning in large-scale environments.208

Topological maps are created manually based on the grid maps using a graphical tool. Nodes of graphs209

represent distinct places, such as doors, intersections, or elevators. Topological graphs of multiple210

floors are connected together according to elevator names to generate a complete topological graph for211

use by the global path planner.212

4. People Detection213

The observation of a laser scanner consists of a sequence of beams O = {b1, . . . , bN}. Each beam bi214

corresponds to a tuple (ρi, li), where φi is the angle of the beam, ρi is the length of the beam. The polar215

coordinates are converted to Cartesian coordinates S = {x1, . . . , xN}, xi = (xi, yi), where xi = ρi cos(φi)216

and yi = ρisin(φi). Goal of our approach is to calculate the labels of all points of a laser scan.217

shared
Kx1024K

x2

MLP(64,128,1024)

Global feature

1024
MLP(1024,256,1)

Class scores

K
x2

T-Net

Laser scanRadius 
neighborhood

PointNet

A proposal point

Figure 3. The neighborhoods of a set of proposal points are inputted to the PointNet to predict their
scores.
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4.1. Preprocessing218

Since laser data have strong variations in point density, which naturally decrease quadratically219

with distance, the voxel-grid filter is employed to down-sample the points in high-density regions.220

The filter divides the 2D space into a regular grid of cells of a given resolution and projects laser points221

onto the grid, then it randomly selects only one point from each non-empty grid cell. Furthermore, the222

laser points which are 10 meters away from the robot’s center are filtered out, since these points are223

too sparse to be used to reliably detect people.224

4.2. Inputs225

The input of the network is the resampled neighborhood of a proposal point, as shown in226

Figure 2. More specifically, for each proposal position pi, we use a kD-tree to find all its neighbor227

points Ni within the radius r. which are then centered around the current query point: p(j)i − pi for228

p(j)i ∈ Ni. To take advantage of the parallel computing of a GPU, all neighborhoods are uniformly229

resampled to a predefined size K. In other words, if a neighborhood contains too many points, it is230

uniformly resampled to the size K. Conversely, if a sample contains too few points, zero paddings are231

applied. Note that the inputs are inherently translation-invariant due to the use of relative coordinates.232

Additionally, to increase the robustness against rotations, we augment the dataset with random rotation233

within [0, 2π) during training.234

4.3. Network235

The network architecture is illustrated in Figure 3. To be robust against rotation transformations,236

a mini-PointNet takes the input and regresses to a 2× 2 matrix, which is multiplied by the input for 2D237

transformation. Unlike the original network, the input is only transformed in the X-Y plane. A shared238

MLP(64, 128, 1024) is utilized to project the transformed points into a high dimensional feature space.239

After that, a max-pooling operation is applied to aggregate the individual point features into the global240

feature, which are further processed by a fully connected neural network with the size 512, 256, 1. A241

dropout layer with a keeping ratio 0.7 is applied on the last fully connected layer. We use the ReLU242

activation function followed by batch normalization in each fully connected layer except the last one.243

The output layer uses the sigmoid function to produce the probability of the class the input belongs to.244

The loss function is the binary cross-entropy loss.245

4.4. Inference246

To decrease the number of points needed to be classified during inference time, the jump distance247

clustering method is applied to split a laser scan into groups of beams. Only the point nearest to the248

centroid of a group is chosen to be evaluated, other points in the same cluster are assumed to belong to249

the same object. After clustering, the number of points needed to be classified is decreased and the250

inference speed can be accelerated to about 5X faster.251

The jump distance algorithm iterates over the range scan. If the difference of measurements252

of two adjacent beams ∣ρi − ρi−1∣ is over a certain threshold δ, a new group is initialized there. The253

output of this partitioning procedure is an angular ordered sequence of segments, S = {S1, S2, . . . , Ss}.254

The distance threshold is set to 0.1m here, which is good enough to split human legs apart from the255

background. An example grouping results of a laser scan is illustrated in Figure 4.256

4.5. Automated Dataset Annotation257

It is a challenging and time-consuming task to manually annotate all laser scans in a large dataset.258

In this section, we describe the methods for dataset collection and automatic labeling.259

There are two types of datasets needed to be collected: the dynamic datasets obtained by placing260

the robot in a place with significant pedestrian traffic (e.g., hallway), and the static datasets collected by261

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2020                   doi:10.20944/preprints202011.0711.v1

https://doi.org/10.20944/preprints202011.0711.v1


Version November 28, 2020 submitted to Sensors 8 of 24

Figure 4. The jump distance algorithm groups a laser scan into clusters with different colors. The
centers of each cluster are marked as☆.
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joy-sticking the robot in an environment devoid of people. All laser points in a static dataset collected262

from a moving robot are simply treated as static obstacles.263

Figure 5. The background map generated using a dynamic dataset. The yellow points which falls on
black grids are static points, the purple ones are dynamic points.

To calculate the labels of the laser points in a dynamic dataset recorded from a stationary robot,264

we calculate the background of the dataset and subtract it to get the points belonging to people, other265

points falling on the background image belong to static obstacles. The background is obtained using266

Alg. 1. First, each laser scan S is projected onto an occupancy-grid X using Alg. 2. The values of cells267

that contain any laser point are set to 1, otherwise, 0. (line 6 in Alg. 2). Then all projected grid maps268

X are summed up to obtain the total hit map H (line 7 in Alg. 1), of which each element represents269

the hit count of the corresponding cell. To get the static background, we calculate the mean hit ratio270

by dividing H by N, where N is the total number of laser scans. If a cell’s hit ratio is greater than a271

predefined threshold, its value is set to 1, indicating it is occupied by a stable obstacle. Otherwise, its272

value is set to 0, indicating it is probably free of obstacles or occupied by moving obstacles. Once the273

background is given, the label of a point can be easily obtained according to their projected indices (line274

17 in Alg. 1), an example background of a dataset is illustrated in Figure 5. After obtaining the labels275

of all scans, neighborhoods of each point are extracted with a kD-tree. Since the class distributions are276
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highly imbalanced in a dataset, we resample the negative examples to have the same size as positive277

examples.278

Algorithm 1 Automated Annotation of Laser Scans

Require: set of laser scans S
Ensure: set of labels of laser scans Y

1: function ANNOTATEDATASET(S)
2: H ← 0, X ← ∅, Y ← ∅

3: N ← Length(S)
4: for all S ∈ S do
5: X ← ProjectLaserScan(S)
6: Insert X into X
7: H ← H +X ▷ accumulate the hit count
8: end for
9: for all h ∈ H do

10: if h/N > threshold then
11: h ← 1 ▷ static cell
12: else
13: h ← 0 ▷ non-static cell
14: end if
15: end for
16: for all S ∈ S do
17: Calculate labels Y according to projected indices
18: Insert Y into Y
19: end for
20: return Y
21: end function

Algorithm 2 Projection of laser points to a grid map

Require: filtered laser points P ∈ R2n+
Ensure: grid map M

1: function PROJECTLASERSCAN(P)
2: M ← 0
3: r ← the grid map’s resolution
4: for all x, y ∈ P do
5: i, j ← ⌊x/r⌋, ⌊y/r⌋ ▷ projected index
6: Mj,i ← 1
7: end for
8: return M
9: end function

5. Obstacle Avoidance279

𝑠𝑖

𝑑𝑖

𝑐
Δ𝑑

Goal

Figure 6. Example candidate paths generated by the local path planner with different lateral offsets
and a longitudinal offset for clarity.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 November 2020                   doi:10.20944/preprints202011.0711.v1

https://doi.org/10.20944/preprints202011.0711.v1


Version November 28, 2020 submitted to Sensors 11 of 24

Table 1. Parameters of the local path planning algorithm

parameter meaning

li lateral offset
si longitudinal offset

lmax maximum lateral offset
smin minimum longitudinal offset
smax maximum longitudinal offset
∆l lateral sampling density
∆s longitudinal sampling density
sc longitudinal distance of convergence

dlookahead look-ahead distance

5.1. Generation of Candidate Paths280

The local path planner generates candidate paths by sampling laterally and longitudinally in the281

Frenet coordinate frame. Figure 6 shows a set of candidate paths with different lateral offsets and a282

single longitudinal offset. A candidate path is divided into three sections, the first section allows the283

robot to smoothly switch to the target lane, the second section of the path is parallel to the reference284

path, and the last section allows the robot to reach the desired goal position.285

The parameters of the local path planner are summarized in Table. 1. li refers to the latitudinal286

offset of each candidate path to the reference path, si refers to the longitudinal offset at which a287

candidate path begins to be parallel to the reference path. The rate of change of a path is determined288

by li/si. Sampling in lateral and longitude dimensions allows the robot to choose paths with different289

steepness according to the size of obstacles and the distance from obstacles. For example, if the robot290

needs to bypass a nearby obstacle, it chooses a candidate path with a short longitudinal offset and a291

large lateral offset. The max deviation from the reference path is determined by lmax, which prevents292

the robot from entering into a configuration from which is difficult to come out. The smin and smax293

refers to the intervals of longitudinal sampling. The lateral sampling density ∆l is set to 0.05m, which294

is the same as the resolution of the cost map, and the longitudinal resolution ∆s is set to 0.1m. dlookahead295

refers to the maximum distance for evaluating the cost of a candidate path.296

5.2. Path Selection297

To find the best path to maneuver around obstacles, all the candidate paths that run over obstacles298

will be trimmed, the rest are evaluated by the following objective function J, which is the linearly299

weighted sum of three cost functions.300

J = w1 Jd +w2 Jt +w3 Jn

Jt = ∣arctan2(di, si)∣

Jn =

⎧⎪⎪
⎨
⎪⎪⎩

1 if di ≥ 0,

0 if di < 0.

(1)

Jd is the cost of approaching obstacles, which makes the robot tend to maintain a larger distance301

from surrounding obstacles. The local cost map is utilized to efficiently calculate this cost, each cell302

of the local cost map has a cost value that decays with the distance to nearest lethal obstacles. Jd is303

calculated as the maximum of the costs of cells that the footprint of the robot traverses along the path.304

Jt is the deviation cost, which prevents the robot from deviating too much from the reference path to305

avoid obstacles. The last term Jn is the social norm cost, which assigns higher costs to the paths on306

the left than those on the right side of the robot. This term encourages the robot to pass on the right,307

leading to socially compliant navigation. In summary, this objective function prefers paths that: (a)308

remain far from obstacles; (b) pass on the right side; (c) don’t deviate too much to bypass obstacles.309
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Wait

Swerve Follow

Figure 7. Behavior states of the local planner

5.3. Behavior States310

A heuristic rule, which has been widely used in many automated guided vehicles (AGVs), is311

applied here in order to reduce unnecessary avoidances and improve the efficiency of navigation in312

dynamic environments, shown in Figure 7. Surprisingly, the strategy is not to avoid at all. That is,313

when the robot encounters an obstacle, it stops, warns people, and waits for it to move away until314

a timeout event has been triggered. Experience tells that this simple approach has a good chance of315

success especially when the robot moves on the right side of a hallway. One possible reason is that316

humans have more mobility, flexibility, and a smaller footprint than robots, they tend to give way to317

the robot when they understand its intention. However, this simple rule can’t handle all exceptional318

situations, such as encountering a person who is inconvenient to give way, an emergency patient319

or an object left unattended, entering a narrow door or an elevator. In these cases, the robot has to320

switch to obstacle avoidance mode and take slight deviations from the prescribed path to maneuver321

around the obstacles. Moreover, the local path planner is only executed when needed, this also saves322

computational resources.323

5.4. Path Tracking324

To track the reference path, a Pure Pursuit controller is employed to produce motion commands325

sent to the robot wheels. It runs at a frequency of 20Hz, and is used in the forward simulation to avoid326

collisions. The controller constantly simulates a virtual robot moving forward for a certain distance,327

and checks whether the simulated trajectory is in collision with obstacles. If it is, the robot will stop328

and try to avoid the obstacle, otherwise, the robot will continue to travel along the path.329

Figure 8. Illustration of pure pursuit technique. The red curve indicates the global reference path and
the green line represents the one look ahead distance between the center of the differentially-drive
robot and the intermediate goal point. The purpose of this algorithm is to calculate the curvature of the
dotted circle.
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The pure pursuit controller is illustrated in Figure 8. The inputs of this algorithm are the reference
path and the current robot position. The pure pursuit controller calculates the curvature of the circle,
which connects the robot’s center and an intermediate goal point on the reference path ahead of the
vehicle by a look ahead distance L. The curvature of the circle is given by κ = 2 sin α/L. For a given
velocity v, the angular velocity is ω = 2v sin α/L. If the angular velocity exceeds the physical limit, it
will be truncated between [−ωmax, ωmax], then the velocity of the robot is reset to v = ω/κ. For smooth
following behavior, the look-ahead distance is often scaled with the robot’s current translational
velocity,

L =
v

vmax
(Lmax − Lmin) + Lmin

The velocity commands of the left and right wheels of a differential robot are given by330

vle f t = v − 2
B ω

vright = v + 2
B ω

where B is the length of the wheelbase, vle f t and vright is the velocity of left and right wheel331

respectively.332

If the angle between the target point and the robot heading direction is above a certain threshold,333

the deviation between the shortest straight-line path and the arc is large. In this case, the robot first334

rotates to align its heading with the virtual target point and then moves forward.335

Figure 9. Collecting dynamic dataset in a real-world environment

6. Experimental Evaluation336

6.1. Experiments on People Detection337

6.1.1. Dataset338

We recorded several sequences at several places (such as teaching buildings and canteens) of339

our school, an example scene is shown in Figure 9. The datasets are recorded with a smaller robot340

equipped with a Hokuyo laser range finder mounted at approximately 40cm above the ground plane.341

All records are stored as rosbags and contain about 600k raw laser scans. All dynamic datasets are342

annotated using Alg. 1 with threshold 0.2. We take several sequences as the test set, others are used as343

the training set. Note that the test set covers different areas from the training set, this can measure the344

generalization performance of different approaches to unseen cases.345
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Figure 10. Effect of the neighborhood size r on the performance.

6.1.2. Radius Size346

The radius of the neighborhood determines the size of the receptive field of the network.347

Experiments were conducted to study the relationship between the radius size and performance.348

In Figure 10, the results show that if the radius is too small, the neighborhoods don’t contain349

enough information for reliable detection, which decreases the accuracy. If the radius is too large, the350

neighborhoods contain much information of background objects, which makes the network prone to351

overfitting and decreases the ability of generalization to new cases. From the results of Figure 10, the352

radius between 1.2m and 2.2m is a suitable choice for distinguishing between background and people.353

6.1.3. Baselines354

We compare our proposed method to three baselines: the dilated convolutional neural network355

(CNN), the distance robust wheelchair/walker (DROW) detector, and PointNet.356

All experiments are conducted on a desktop computer with an Intel Core i9-9900K @3.6GHz357

CPU and a NVIDIA RTX2080Ti GPU. The Adam optimizer is used to minimize the cross-entropy358

loss function with a learning rate of 0.001 and a momentum of 0.98. All neural network detectors are359

trained for 20 epochs with a batch size of 256.360

We implemented a dilated CNN which consists of 8 convolutional layers with dilation factors361

1, 2, 4, 8, 4, 2, 1, 1. Its input is a binary occupancy grid centered on the robot with size 10m× 10m and362

resolution 0.1m, its output is a score map of the same size and its loss function is masked using its363

input. We modified the open source DROW (github.com/VisualComputingInstitute/DROW) detector364

for the semantic segmentation task by removing the voting and non-maximum suppression steps365

from the publicly available code. We train the PointNet (github.com/fxia22/pointnet.pytorch) on our366

dataset with the default parameters.367

6.1.4. Results368

The pixel accuracy and mean IoU score of different approaches are presented in Table 2, the369

precision-recall curves are shown in Figure 11. The results show that the CNN method overfits the370

training set and performs badly on the unseen dataset. Its computational cost is determined by the371

grid resolution of the input image. A large resolution results in loss of information and decreases the372
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Figure 11. The precision-recall curve of DROW, a dilated CNN and our method on the collected dataset.

Table 2. Comparison of performance of different approaches on the collected dataset

Method pAcc mIoU Legs No person
CNN 81.7 51.45 22.10 80.8

PointNet 90.3 45.2 0.0 90.4
DROW 91.7 85.1 85.3 84.9

Ours 91.8 85.8 85.8 85.7

performance. The PointNet detector seems to have a high score on overall accuracy, but it performs373

worst on detecting people. The reason is that most of the points in a laser scan are belong to static374

obstacles, so the global feature is dominated by the features of static points. The DROW detector375

has comparable performance to our method, both methods have similar precision-recall curve and376

achieves good performance on the test dataset. Since the dataset are balanced by resampling, both377

methods don’t suffer from the class imbalance problem.378

6.2. Experiments on Obstacle Avoidance379

To verify the performance of the proposed obstacle avoidance algorithm, several experiments are380

carried out with a real robot in the corridor in front of our laboratory (shown in the video). In all the381

experiments, the robot follows the same predefined path from the start position to the goal position.382

The maximum linear velocity of the robot is 1m/sec, the maximum lookahead distance of the local383

planner is 2.5m. The individual terms of the objective function are normalized between [−1, 1], the384

weights of each term are w1 = 1.0, w2 = 0.9, w3 = 0.5. The maximum waiting time before the local path385

planner is called to search for a feasible path is 2.0sec. Moreover, we conducted some experiments on386

the third floor of a building in Anhui Provincial Hospital.387

6.2.1. Case 1: Static Obstacles388

In the first experiment (Figure 12a, three static obstacles are placed in the corridor. The trajectory389

and the velocity of the robot are shown in Figure 12b,c. In this case, the robot stops in front of the390

first obstacle, waits for a while, rotates to the right, switches to the lane on the right side of the robot,391

follows this lane to the third obstacle, and then switches back to the reference lane. This experiment392

demonstrates that the local planner can drive the robot through static environments without colliding393

with obstacles.394

6.2.2. Case 2: Crossing Scenarios395

In the second experiment (Figure 13), there are two people walking along the corridor. One person396

suddenly appears from the blind spot and crosses the path of the robot at a right angle. Another person397
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(a) (b) (c)

(d) (e) (f)

(g)

(k)

(h)

(j) (l)

(i)

(a)

(b) (c)

Figure 12. (a) Case 1: the robot follows the reference path while avoiding three static obstacles. (b) The
trajectory of the robot. (c) The linear and angular velocity of the robot
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(a) (b) (c)

(d) (e) (f)

(a)
(h) (i)(g)

(b) (c)

Figure 13. (a) Case2: crossing scenarios. (b) The trajectory of the robot. (c) The linear and angular
velocity of the robot.
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comes from the opposite direction and obliquely crosses the path of the robot. In this situation, the398

robot stops and waits for the people to leave, and then continues to move straight. This is a reasonable399

behavior to stops and not to deviate from the straight path since the distance and time are the shortest.400

6.2.3. Case 3: Following a Person401

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(a)

(b) (c)

Figure 14. (a) Case3: a person walking in the front of the robot in the same lane. (b) The trajectory of
the robot. (c) The linear and angular velocity of the robot.

In the third experiment (Figure 14), a person walks in front of the robot at a lower speed. When402

the robot catches up with the person, it stops and waits. When the person leaves far enough away, the403

robot continues to follow the same lane. In this experiment, the persons deliberately do not give way404

to the robot, so the robot moves forward a little bit, stops, and then moves forward, as shown in Figure405

14c.406

6.3. Experimental Results in the Hospital407

We conducted several experiments in a building of the Anhui Provincial Hospital (2000 beds) to408

verify the performance of the proposed algorithm. This Hospital has large traffic of people and a large409

volume of materials to transport. According to statistics, more than 1.37 million intravenous infusions410

and 1.31 million specimens have been delivered manually in this hospital in 2018. The environment411

in this hospital is a challenge for robots because many of the places they pass through are crowded412

with people at some time, such as corridors and halls. Therefore, detection and safely avoiding people413

becomes crucial for our application.414
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(a) (b)

(c) (d)

Figure 15. Experiments in Anhui Provincial hospital. The robot need to safely navigate through
corridors and halls populated with humans.

Metric map

Topo map

Figure 16. The Occupancy grids map and the topological map of the third floor of the hospital. Grey
indicates the areas free of obstacles.
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In the experiments, the task of the robot is to transport drugs from the central pharmacy to the415

nurse station on the third floor. Figure 16 shows the grid map and the topological map of the second416

floor of a building of the hospital. Since the robot can’t control elevators and doors, we will help417

the robot press elevator buttons and open doors during the experiments. During several days of418

experiments in the hospital, we found that people who don’t carry heavy things often change paths to419

avoid the robot when they notice it, especially when it moves on the right side of the corridor. Figure420

15a,b shows such a situation that a worker who pulls a trailer intuitively give way to the robot ahead421

of time when he sees it. The algorithm does not produce wavy trajectories in all experiments, the422

behavior and the intention of the robot are easy to predict. Figure 15c shows that the people don’t feel423

threatened when they pass by the robot, since they already understand the robot’s trajectory. There are424

also several situations that the robot can’t handle. For example, if both people and the robot can’t go425

back and give way in narrow spaces, such as doors and elevators, then neither side can move forward.426

7. Conclusions427

This paper focuses on the development of two important components (i.e., people detection428

and obstacle avoidance) of a differential-drive robot for safe navigation in human-populated hospital429

environments.430

For people detection, we proposed to firstly classify each proposal point using the information431

of its local neighborhoods with PointNet, due to its invariance to the permutations of the input432

set. Secondly, in order to reduce the number of points to be evaluated during inference, we use433

jump distance clustering to split the laser scan into groups and select the centers of each group as434

proposal points. Since neural networks need a large dataset to train, we proposed an approach to435

automatically label dataset collected in actual environments. This method also reduces the cost of436

deploying laser-based people detection algorithms in new scenarios. Experimental results show that437

the proposed method achieves competitive performance on par or even better than the state-of-the-art438

approaches.439

For obstacle avoidance, we argued that the behavior of the robot generated by the algorithms in440

human-populated environments should be legible and consistent. Pure reactive approaches can not be441

directly deployed in dynamic environments, since they have several drawbacks as mentioned above.442

To tackle these problems, we proposed to avoid obstacles by switching lanes generated by laterally443

sampling along the reference path. One advantage of the proposed method is that the candidate paths444

are consistent with the reference path and guaranteed to reach the goal position. Another one is that445

the robot’s behaviors are more predictive to be intuitively understood by nearby pedestrians, thus446

reducing the comfortableness during an interaction. Moreover, we adopted a stop-wait-warn rule to447

reduce unnecessary deviations and improve the efficiency of navigating in dynamic environments. In448

more detail, we proposed a new objective function that takes account of the distance to obstacles, the449

deviation from the global path, and the social cost of passing on the right. Finally, experiments carried450

out in real-world environments confirm the effectiveness of the proposed method.451
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