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Abstract: Multiagent technologies give a new way to study and control complex systems. Local1

interactions between agents often lead to group synchronization also known as clusterization, which2

usually is a more rapid process in comparison with relatively slow changes in external environment.3

Usually, the goal of system control is defined by the behaviour of a system on long time intervals.4

When these time intervals are much longer than the time of cluster formation, clusters may be5

considered as new variables in a “slow” time model. We call such variables “mesoscopic” to6

emphasize their scale laying between the level of the whole system (macroscopic scale) and the level7

of individual agents (microscopic scale). Thus, it allows us to reduce significantly the dimensionality8

of a system by omitting considerations of each separated agent, so that we may hope to reduce the9

required amount of control inputs. Thus, we are often able to consider a system as a collection of10

“flowing” (morphing) clusters emerged form behaviour of a huge amount of individual agents. In this11

paper, we contrast such approach to the one where a system is considered as a network of elementary12

agents. We develop a mathematical framework for analysis of cluster flows in multiagent networks13

and use it to analyze the Kuramoto model as an attracting example of a complex networked system.14

In this model, a clusterization leads to sparse representation of dynamic trajectories in the whole15

quantized state space. With that in mind, compressive sensing allows to restore the trajectories in a16

high-dimensional discrete state space based on significantly lower amount of randomized integral17

mesoscopic observations. We propose a corresponding algorithm of quantized dynamic trajectory18

compression. It could allow us to efficiently transmit the state space data to a data center for further19

control synthesis. The theoretical results are illustrated for a simulated multiagent network with20

multiple clusters.21

Keywords: cluster flows, mesoscopic observations, data compression22

1. Introduction23

It is common in a sociological (or physical) investigation to differ amid three primary societal24

(or system) levels: the micro-level, the meso-level, and the macro-level. In sociology, the analysis25

deals with a person in a social context or with a small people unit in a particular social setting. The26

consequences across a large population resulting in significant inner transmissions are a matter of27

the macro-level commonly associated with the so-named global level. In turn, a meso-level study is28

provided for groups lying in their size amid the micro and macro levels, and often explicitly invented29

to disclose relations between micro and macro levels. Following this general taxonomy, we can30

analogously consider the Information (Digital) Age (a famous appellation of the modern period) as31

the macro-level Industrial Revolution, expressed by quick transmission from the traditional industry32
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to the massive application of information technology. Thus, humanity reconsiders the old-fashioned33

machinery aiming for new manufacturing solutions for new, regularly arising problems. Modern34

technologies lead to difficult supplementary tasks in the “global balancing” in humans’ interactions35

and nature. Most people hardly comprehend their lifestyle undergo significantly modifying on the36

micro-level than the prior industrial standard of living. Modern discoveries in natural sciences, such37

as in high-energy physics or cosmology, are barely considered seriously by the majority. For instance,38

even though the quantum theory has proven itself essential in nanotechnology [1] [2] as well as particle39

accelerators in tumor treatment [3] [4], yet for many people, these fundamental achievements remain40

“abstract nonsense”. Consecutively, the scientific community facing a severe problem cannot often41

deliver further strict theoretical evaluation regarding new previously unknown phenomena. It takes42

place due to the knowing crisis of modern scientific look at the “picture of the world.” Aiming to43

handle this global difficulty, it seems reasonable to pay attention primarily to an appropriate theory44

based on a suitable mathematical model. Note that a real-world system often cannot be described45

sufficiently entirely with a partial model that raises a need to have one with the lowest potential bias.46

While discussing the model concept, it appears to be essential to mention such a notion as information.47

According to [5], data are inextricably presented as a reflection of a mutable object and can be described48

through other primaries notions such as “matter”, “structure,” or “system”. Information can be stored49

and transferred with a material carrier, giving a form further perceived. It is also worth noting such50

the data concept is dedicated (from a system) to be supplementary exploited. Generally speaking, it is51

a complex of ideas and representations of patterns discovered by a person in the real world. Thus, one52

may visualize a typical personal information process as follows:53

• Data gathering.54

• Data studying.55

• Data linkage to knowledge.56

Thus a model is nothing else as a way of information processing to knowledge. It is important to note57

that the human “perception” is an uninterrupted procedure of data accumulating with an “integration”58

needed to attain the required awareness.59

Now the question is whether we can decompose the information process further. In fact,60

psychology and cybernetics makes attempts to do so, however, the further it goes, the harder it61

is to track the relation between a complex cognitive system and its fundamental components.62

1.1. A New Approach To Compression63

We can uncover the common features and fundamental differences at the outset, comparing Data64

and Control Science with Physics. The central distinction between them is that Control Science studies65

systems with different complexity levels, commonly perceiving it as a scale. While physics deals in66

some extent with various systems in space and time, expressed in scales like “length”. For example,67

the galaxy is immense in its extent in space, and the brain is immense in the complexity of its inner68

performance. Being co-existing measures, these gradations are indeed tools uniting Physics with Data69

and Control Science in comprehending the world around us. Following the conventional view of70

the history of the Universe, we can suggest that the initial chaos of elementary particles strives to71

arrange (clusterize) into the molecular connectivity studied by chemistry. This structure led later to the72

origin (clusterization?) of life as a highly organized form of matter, studied by biology. The described73

clustering process is a subject of Control Science, which seemly can connect the natural Sciences74

studying each one the scale of complexity of the organization of matter from its own standpoint.75

It appears that “clustering” is closely related to such term “compression”. With the aim to76

understand compression, it is helpful to mention that that a human usually is not capable of77

accumulation every detail in the personal sensory perception (registered by each cone and rod)78

but only essential details. Such details could be considered as clusterization of low-level data from79

retina into high-level features. Moreover, the general tendency is to forget even these points mainly due80
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to the brain’s limited capabilities. So, the data is being distorted or lost, which leads to a deterioration81

in the quality of information recovery. In general, as it was discussed in [6], our mind quite often82

compresses data using induction or deduction, in order to simplify information regarding the world.83

This peculiarity of human perception is broadly exploited in computer systems. The famous84

Kotelnikov-Nyquist-Shannon sampling theorem [7] [8] dictates genaral rules of signal digitization,85

which allow to compress continuous signal flow into a discrete set of numbers without loss of86

information. However, this approach exhausts its limits over the years: it is exponentially harder87

to quantize signals when their dimensionality grows linearly, so that where a 1-D signal requires88

103 samples to be preserved, a corresponding 2-D signal would require 106 samples, not to mention89

signals of higher dimensionality, which are being routinely transmitted today. Thus, compression90

algorithms are incredebly relevant nowadays, since they allow to speed up information exchange at91

fixed bandwith: e.g. MP3 [9] [10] allows to get rid of unnecessary high sound frequencies in music,92

while JPEG [11] [12] reduce picture file size at the cost of coarsening high frequency components93

responsible for small details. In this way, a kind of compression is believed to occur in the flow of94

visual information (if we follow the most popular hypothesis) among the brain’s ventral and dorsal95

streams. However, such processes perform “on the fly” in the brain. On the other side, the computer96

can manipulate only preliminarly given data to be compressed.97

Mathematically, a real-time compression can be understood as selecting essential parts of the
surrounding big data containing the comprehensive information and then storing linear combinations
of these parts (possibly with random weights). In order to implement this idea, such method as
compressive sensing was proposed and discussed in [13] [14] [15]. In this paradigm, it is possible to
compress a signal gradually, as it is read or perceived by a sensing system, according to (1). Assume
that a signal f ∈ RN is s-sparse in some domain Ψ ∈ RN×N , namely f = Ψx, where x has at most s
(s� N) nonzero elements (thus being called an s-sparse vector). In our interpretation it means that in
some basis the comprehensive information is stored in only s units of data out of N. Then compressive
sensing can be described as:

y = ΦΨx = Ax, (1)

where Φ is an m× N(m� N) sampling matrix, A is the so-called measurement matrix and y ∈ Rm is98

called the measurement vector or vector of compressed observations. Since m � N, the estimation99

of x by given y drives infinitely many solutions. However, in case x is s-sparse, it becomes possible100

to reconstruct it without much loss of useful data with only m ∼ s log(N/s) variables required.101

According to [13–15], amid the solutions of (1) we prefer those maximizing the number of zero102

elements in x. While one would be interested in minimizing an `0 norm, as it provides the sparsest103

solution, this problem is NP-hard and a linear relaxation via the `1 norm provides a good compromise104

between sparsity and computations complexity [16] [13]. It is possible to compute `1-optimized105

solution in polynomial time using, for example, the interior-point method [17] [18]. Optimization106

with the `1 metric for the task of pattern recognition was first discussed in [19]. An optimal sparse107

`1-stabilizing controller for a non-minimum phase system (a solution for the task of `1-optimization in108

an infinite-dimensional space) was proposed in [20].109

While design of Φ is in general complicated, some randomized choices of Φ are possible according
to the restricted isometry property (RIP) and minimization of incoherence [5]. It was shown that only
m = 2cs(log N)2 c > 0 measurements are sufficient to reconstruct x. In a special case when the
elements aij of A are identically independently distributed with respect to the normal distribution

aij ∼ N
(

0,
1
m

)
,

then m = c1s log(N/s) measurements are sufficient. On practice, it is known that m ≈ 4s110

measurements are often enough for the initial sparse data to be effectively reconstructed.111
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1.2. Multiagent Systems112

Studied in Data and Control Science, the complexity levels in the matter’s configuration lead113

to the emergence of the “complex system” notion. It is important to note that the complexity is114

not ascribed to the system comprehended as a static object but, to a greater extent, to the dynamic115

processes occurring within the system. They are the primary purpose of our research. A lack of116

computing power and limitations of the cognition methods encourage many severe difficulties in such117

research. In this regard, an approach intended to study a particular complex process resorts to various118

generalizations simplifying the considered task. For a long time, systems consisting of many almost119

identical parts with obscure chaotic interaction have been only statistically described. It appears to be120

impossible to describe the system’s overall behavior using just macroscopic statistical characteristics121

of its composite elements. This approach can merely explain a minimal class of the perceived effects.122

While many complex systems properties may significantly disagree with relatively simple states of123

equilibrium or chaos, the statistical approaches deal with actually averaged or integrated subsystems.124

This circumstance can lead to the omission of important details if, for example, the system forms a125

pattern or structure of clusters.126

The above-described manifestation of the whole system properties not inherent to its separate127

elements is called emergence [21] [22] [23]. Indeed, any non-comprehended characteristic of a structure128

can be considered emergent. For example, if a person cannot understand why a car moves, then moving129

is understood as an emergent behavior of the system-the car. However, this process is undoubtedly130

well apprehended from an engineering standpoint of the smooth operations in the engine, transmission,131

and control system. Thus, emergence may turn out to be a common subjective misunderstanding, and132

it is quite another matter if the system’s behavior is a mystery beyond the capacity of any scientist.133

Say, consciousness is an emergent behavior of the brain from a naturalist’s point of view. Up to134

date, there are no apparent means to explain the concept of consciousness itself resting upon just135

elements composing the brain. Moreover, even there is no way to check whether such a system is136

whatever cognizable with the help of somewhat arbitrarily powerful existing intelligence–or whether137

it is fundamentally, objectively unknowable. In the last case, the emergence is ostensive [22].138

Assuming that the surrounded systems are still subjectively emergent, we can critically appraise139

the statistical methods applied to study complex systems. As an alternative to the accepted statistical140

methodology, the current article suggests an agent-based approach designed to overcome this practice’s141

limitations. In the agent-oriented framework, a complex system (called a multiagent system) is142

considered as a network of simple autonomous units (called intelligent agents or simple agents),143

and the system of interacting agents [24] [25] [26]. The current study aims to develop a unified144

general theory connecting the macroscopic scale of the whole system and the individual components’145

microscopic scale. It aims to understand the reasons for “complexity” occurring in multiagent networks.146

An expected result of such an approach consists of constructing managing multiagent systems (MAS)147

without an in-depth investigation of the agents’ profound nature.148

The known belief–desire–intention model (BDI) of intelligent agents is a model of intelligent149

agents suggesting that each agent has a “convinced” achievable goal, including excitation of particular150

states, stabilization, or mutual synchronization. The latter of particular interest [27] [28] subject is151

frequently associated with the agents’ self-organization in a network. The idea behind this phenomenon152

lies in the behavior of agents within a MAS. I.e., agents can regulate their internal states by exchanging153

messages aiming to form a system structure on a macroscopic scale. It is worth noting that a system154

can start from an arbitrary initial state, and not all agents are required to interact with others. These155

structures may include persistent global states (for example, task distribution in load balancing for a156

computer network [29]) or synchronized oscillations (Kuramoto networks [30]).157

Since dynamic systems usually describe multiagent networks, the synchronization state signifies158

a convergence of dynamic trajectories to some unique synchronized one. This consequence is well159

studied in the case of linear systems [24] [31] [32]. However, the linear systems case corresponds to a160

particular instance of the nonlinear control rules, which have not yet been thoroughly studied.161
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A particular type of such procedures is cluster synchronization, essential in control tasks. The162

actual dynamics of complex, large-scale systems, such as groups of robots operating in a continuously163

changing environment, are often too complex to be controlled by conventional methods, including, for164

example, approximation by classical ODE models. However, sometimes some groups in a population165

synchronize in clusters. So, the same group agents are synchronized, while there is no coordination166

between agents from different clusters. Since these clusters can be deemed separate variables, it is167

possible to significantly reduce the control system inputs.168

Thus, we can now introduce three levels of complex multiagent systems: microscopic (the level of
individual agents), mesoscopic (the level of clusters), and macroscopic (the level of the system as a
whole). The following equation can write down the described relation

N � m� 1, (2)

where N is the number of agents and m is the number of clusters, which is supposed to be of the same169

order as the sparsity of the system.170

In this paper, we formalize the framework of multiagent networks aiming to apply compressive171

sensing for efficient observations of dynamic trajectories. For this purpose, we propose an algorithm,172

on the first step of which the trajectories are quantized, then compressed.173

1.3. The Kuramoto Model174

A straightforward yet versatile nonlinear model of coupled oscillators is proposed by Y.
Kuramoto [30] for their oscillatory dynamics. Given a network of N agents (by N = {1, ..., N}
here and further we denote a set of N agents) each having one degree of freedom often called a phase
of an oscillator, its dynamics is described by the following system of differential equations:

θ̇i(t) = wi +
N

∑
j=1

Kij sin
(
θj(t)− θi(t)

)
, (3)

where θi(t) is a phase of an agent i, Kij is a weighted adjacency matrix of the network and wi is an175

own (natural) frequency of an oscillator. According to [33], [34] and [35], agents approach the state of176

frequency (θ̇i = θ̇j ∀i, j ∈ N ) or phase (θi = θj ∀i, j ∈ N ) synchronization under certain conditions on177

wi and Kij.178

There are numerous extensions of this model, e.g. time-varying coupling constants (adjacency179

matrix Kij(t)) and frequencies wi(t) [36]. It is also known that the Kuramoto model with phase delays180

in the sine function [37] [38] was studied. Besides, this model has extraordinary multiplex [39] or181

quantum [40] variations. In [41], cluster synchronization under specific conditions was discussed.182

The model of Kuramoto appeared to be a successful tool for description of cortical activity in the183

human brain [39], being able to reveal three regimes of brain activity, corresponding to three states184

of the Kuramoto network: unsynchronized, highly synchronized and cluster synchronizatio. This185

model also found its application in robotics: in [42] authors discuss the task of pattern formation on a186

circle using rules inspired by the model of Kuramoto, while [43] proposes an idea of an artificial brain187

for robots made of Kuramoto oscillators. Thus, the simplicity and usefullness of this model caught188

our attention, so that we have chosen it to demonstrate how compressive sensing can be applied to189

multiagent clustering.190

2. Cluster Flows191

Intending to investigating the Kuramoto model, we discuss at the beginning general multiagent
systems. Throughout, we consider non-isolated systems consisting of N agents, whose evolution is
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determined by their current state, their overall configuration, and the environment’s external influence.
The following system of differential equations characterizes the dynamics of the agents’ interaction:

ẋi(t) = fi(xi(t), ui(t), Ui(t), ηi(t)), (4)

where t is unidirectional time, xi(t) ∈ Rni is a state vector of an agent i ∈ N ; ui(t) is a microscopic192

control input describing local interactions between agents; Ui(t) is another (macro- or mesoscopic)193

control input simultaneously affecting large groups of agents; ηi(t) ∈ Rmi is an uncertain vector, which194

adds stochastic disturbances to the model. Despite ui(t) and Ui(t) can be included in the state vector195

of a system, it is essential to separate them from the state vectors for two reasons: in the context of196

information models, it is necessary to distinguish both the local process of communication (ui(t)) and197

external effects (Ui(t)) usually caused by a macroscopic agent with an actuator, allowing to influence198

the whole system; more than that, it allows to clarify the model itself. The state vector xi(t) may also199

have a continuous index, so that it becomes a field x(t, a), where a is a continuous set of numbers. This200

could allow to reduce summation to integration in some cases.201

As it widely accepted, the topology of an agents’ network is presented by means of a directed202

interaction graph: G(t) = (N , E(t)), where N is an agent vertex set, and E(t) is the set of directed203

arcs. Introduce Ni(t) ⊆ N as a (time-dependent) neighborhood of an agent i consisting of a set of204

in-neighbors of this agent. We denote the in-degree of a vertex i (i ∈ E ) by d(i) = ∑N
l=1 ail , where aij205

are the elements of an adjacency matrix A of G (the sum of the weights of the corresponding arcs).206

Likewise, the in-degree of a vertex i excluding j (i, j ∈ E ) is dj(i) = ∑N
l=1,l 6=j ail . A strongly connected207

graph is said to be if there exists a “path” between all pairs of vertices.208

Our next purpose is to introduce two agents outputs, one intending to their communication, and209

another evaluating the synchronization between agents. For this purpose, we associate with each210

agent i its output function gi:211

Definition 1. A function gi(xi(t), ηi(t)) is called an output of an agent i if g : Rni ×Rmi 7→ Rl , where l does212

not depend on i.213

Since the state vectors of agents may be of different dimensionality, we want to define two outputs:214

one for communication and one for measurement of synchronization between agents.215

Let yj(t) = gj(xj(t), ηj(t)) j ∈ Ni(t) be a communication output of an agent j from the
neighborhood of i, used for communications. By “coupling” between agents, we assume that the
dynamics of i (at time t) is affected by the outputs yj(t) of the agents j from the neighborhood. In
practice, these outputs can be transmitted from j to i or shown by the agent j and then recognized by i.
Mathematically, the transmission rules are usually outlined in ui (see (4)):

ui(t) = fi

(
{yj(t)}j∈Ni(t)

)
, (5)

where fi(·) is a function of the outputs yj(t) j ∈ Ni(t). The equation (5) is also referred to as a coupling216

protocol in a sense it provides control rules for i based on all outputs j received by i. Thus, we present217

the following definition of a multiagent network:218

Definition 2. The triple consisting of 1) family of agents (see (4)); 2) interaction graph G and 3) coupling219

protocol defined as in equation (5) is called a multiagent network.220

Henceforth, we denote a multiagent network by the letter N , corresponding to the set of agents221

of such network.222

Let zi(t) = hi(xi(t), ηi(t)) be an output of i, which is introduced for measurement of223

synchronization.224
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Definition 3. Let ∆ij(t∗) =
∥∥zi(t∗)− zj(t∗)

∥∥ stand for the deviation between outputs zi and zj at time t∗,225

where ‖·‖ is a corresponding norm. Then:226

1. agents i and j are (output) synchronized, or reach (output) consensus at time t∗ if ∆ij(t∗) = 0; similarly,227

agents i and j are asymptotically (output) synchronized if ∆ij(∞) = limt∗→∞∆ij(t∗) = 0;228

2. agents i and j are (output) ε-synchronized, or reach (output) ε-consensus at time t∗ if ∆ij(t∗) ≤ ε;229

similarly, agents i and j are asymptotically (output) ε-synchronized if ∆ij(∞) = limt∗→∞∆ij(t∗) ≤ ε;230

Summarizing the above, cluster synchronization of microscopic agents may lead to231

mesoscopic-scale patterns recognizable by a macroscopic sensor. However, there is no need to restrict232

those patterns to be static, since the most interesting cases appear when patterns evolve and change in233

time. Such alterations may be caused either by external impacts, or as a result of critical changes inside234

the system.235

Definition 4. A family of subsetsM(t) =
{
Mα(t) :Mα(t) ⊆ N ∀t ≥ 0 ∀α ∈ 1, M(t)

}M(t)
α=1 of N is told236

to be a time-dependent partition over N (in this work, time-dependent partition is also called just “partition” for237

the sake of simplicity) at time t if the following conditions are respected:238

1. @Mα(t) ∈ M(t) :Mα(t) = ∅;239

2.
⋃K(t)

α=1Mα(t) = N ∀t ≥ 0;240

3. Mα(t) ∩Mβ(t) = ∅ α 6= β.241

With that in mind, we also propose an additional definition for a specific case of cluster242

synchronization.243

Definition 5. A multiagent network with a partitionM(t∗) over N is (output) (ε, δ)-synchronized, or reach244

(output) (ε, δ)-consensus at time t∗ for some δ ≥ ε ≥ 0 if245

1. ∆ij(t∗) ≤ ε i, j ∈ Mα(t∗)Mα(t∗) ∈ M(t∗) and246

2. ∆ij(t∗) > δ i ∈ Mα(t∗) j ∈ Mβ(t∗)Mα(t∗),Mβ(t∗) ∈ M(t∗) α 6= β.247

A (0, 0)-synchronization is henceforth referred to as cluster synchronization. We also say that theM(t∗) is a248

clustering over N .249

Each cluster in a system with M(t) clusters can also has a set xα, α ∈ 1, M(t) of cluster integrals:250

such an approach is usually used for dimensionality reduction in physical models.251

3. Compressive Sensing within the Kuramoto Model252

The Kuramoto oscillator system with mesoscopic control function has been studied in paper [44]253

resting upon the canonical representation (4) and the proposed earlier definition of a multiagent254

network. As was demonstrated, such a system can undertake cluster synchronization under255

certain conditions (see, Theorem 2). An appropriate simulation was also provided to illustrate this256

circumstance. We exploit these results in the subsequent consideration of compressive sensing.257

3.1. Clusterization and Mesoscopic Control of the Kuramoto model258

Following the definition of a multiagent network, we introduce the connectivity graph between259

oscillator agent G = (N , E) and suggest for simplicity that this graph is time-independent. The260

corresponding adjacency matrix is denoted by Υ, an element Υij of this matrix taking just values 0 and261

1. The value 0 may be interpreted as “the agent j can not communicate to i (j /∈ Ni)”, while the value 1262

means “signals from the agent j reach i (j ∈ Ni)”. The communication between agents is implemented263

by transmitting their outputs yi(t) (see (5)) coinciding in this situation with the phase θi(t).264
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LetM(t1) be a clustering of the system of oscillators at time t and let this clustering does not
change over the interval T = [t1,+∞), and t ∈ T. We introduce the following local and mesoscopic
control functions:

ui(t) = wi + ρ ∑
j∈Ni

Υij sin
(
θj(t)− θi(t)

)
,

Ui(t) = µiFα(t, xα),
(6)

were ρ > 0 is a constant, wi – the own (natural) oscillator frequency Fα(·) – a mesoscopic function265

taking the same value for all elements in each clusterMα, µi is the sensitivity of agent i to the control266

function Fα(·). An additional argument Fα(·) is xα(t) containing integral characteristics of a cluster α.267

It could be, for example, the position of the cluster centroid. Note that in systems with a large number268

of agents in a cluster, its integral characteristics are weakly dependent on the state of individual agents.269

Looking at the classical Kuramoto model (3), we can see that its right side is similar to the
expression of a protocol in (6). In fact, we consider the right-hand side of (3) entirely as a protocol
corresponding to various adjacency matrix. For example, in the classical model (3), it is a weighted
adjacency matrix K containing arbitrary real numerical values. We simplify the model by considering
a binary adjacency matrix Υ multiplied by ρ. Thus, the Kuramoto model in the canonical multiagent
representation with the addition of the meso-control function (i ∈ Mα) is:

θ̇i(t) = µiFα(t, xα(t)) + wi + ρ ∑
j∈Ni(t)

Υij sin
(
θj(t)− θi(t)

)
. (7)

Assume that the system has established a state of a cluster (ε, δ) synchronization. However,270

dynamics of some agents in the clusterMα under the control of F (·) can become “destructive” for the271

whole cluster in case the values of their sensitivity highly differ from those among the rest. Besides, a272

significant difference in the values of wi can also lead to undesirable effects, up to the chaotic behavior273

of the system. The following Theorem, which is also presented in [44], formalizes such scenarios by274

providing conditions for the model’s parameters sufficient for the (0, 0) cluster synchronization to275

remain.276

Theorem 1. Consider a multiagent network corresponding to (7). Let t ∈ T, output zi(t) = θ̇i(t) and277

∆ij(t) =
∣∣zi(t)− zj(t)

∣∣. Let also Fα does not depend on θi ∀i. The following conditions are sufficient for this278

network to be output (0, 0)-synchronized.279

1. In case i, j ∈ Mα,

∣∣wi − wj + (µi − µj)Fα

∣∣ ≤ ρCij

 ∑
l∈Ni(t)

Υil + ∑
l∈Nj(t)

Υjl

 , (8)

where Cij = 1 in case Υij = Υji = 0; otherwise,

Cij = max

{√
1− (Γi(j))2,

√
1− (Γj(i))2,

√
2

2

}
, (9)

where

Γi(j) =
−di(j) +

√
(di(j))2 + 8(Υij + Υji)2

4(Υij + Υji)
. (10)

2. For i ∈ Mα, j ∈ Mβ, α 6= β

|wi − wj + µiFα(t, xα)− µjFβ(t, xβ)| > 0. (11)

3. Graph G is strongly connected.280
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At the next step, we consider simulations of the dynamic trajectories together with the simulations281

of their mesoscopic observations based on compression sensing.282

3.2. Algorithm of Compressive Sensing Application for Mesoscale Observations283

Aiming to model observations of the multiagent system by a data center, we similarly quantize its284

dynamic trajectories as it is done in the classical signal processing theory. With that being said, we285

heuristically bound and discretize the state space of the multiagent network of oscillators. Since the286

desired one-dimensional outputs are {θ̇i(t)}i∈N , the corresponding dynamical trajectories lay on a287

coordinate plane with the horizontal axis being t and the vertical one being θ̇. We call the half-plane288

t > 0 the whole state space, and denote it as S. Next, we wish to extract the bounded region of S289

with corresponding infimum and supremum along θ̇ denoted as Θ̇min and Θ̇max; at the same time,290

corresponding infimum and supremum along t are tmin and tmax. Such a region is denoted R and is291

formally defined as R =
[
Θ̇min, Θ̇max

)
× [tmin, tmax) ⊂ S. Thus, for each t ∈ T = [tmin, tmax) a point292

of a trajectory θ̇i(t) belongs to
[
Θ̇min, Θ̇max

)
. The values of the infima and the suprema are such that293

all the trajectories {θ̇i(t)}i∈N are contained within B and are visually resolvable on a plot. We choose294

not to include the suprema in R for the sake of simplicity of the further notion.295

In our case discretization of R implies its splitting into cells (sampling):[
Θ̇min, Θ̇max

)
=
[
Θ̇min, Θ̇1

)
∪ ...∪

[
Θ̇p−1, Θ̇max

)
,

[tmin, tmax) = [tmin, t1) ∪ ...∪ [tq−1, tmax),
(12)

where the values p and q are determined by sampling steps ε = Θ̇i − Θ̇i−1 and τ = tj − tj−1. In turn,296

the values of ε and τ depend on the form of trajectories {θ̇i(t)}i∈N and are chosen empirically. For297

example, the time τ should be much smaller than that during which a dynamical process of interest298

occurs. Such processes may include intra-cluster disturbances or inter-cluster flows of agents (cluster299

flows). Concerning ε, its value should be such that trajectories of agents from the same cluster lay in a300

single cell or, at least, in closely located ones. As for the agents from different clusters, their trajectories301

should be separated by a significant number of cells. Finally, we introduce matrix B ∈ {0, 1}p×q with302

an element bi,j being 1 in case at least a single trajectory lays in the cell
[
Θ̇i−1, Θ̇i

)
× [tj−1, tj), otherwise303

this element equals 0.304

Thus, the columns of B are ready to be compressed according to (1). It is clear that by choosing305

lower values of ε and τ the dimensionality of B increases, leading to an increase of resolution and306

“readability” of the corresponding discrete trajectory portrait. What is more important, the sparsity of307

B would also increase, which could allow to apply compression more effectively, while preserving308

decent amount of details.309

4. Simulations310

Consider model (7) and its solutions on T = [0, 60]. Let N = 16, and topology of the graph
G be as on Figure 1. Let also ρ = 0.5 and natural frequencies {wi}i∈N be as follows: w1, ..., w4 =

{4.1, 4.2, 4.3, 4.4}, w5, ..., w8 = {8.1, ..., 8.4}, w9, ..., w12 = {12.1, ..., 12.4}, w13, ..., w16 = {16.1, ..., 16.4},
so that agents from one “square” (see Figure 1) satisfy the condition of equation (8), however, agents
from different squares does not. We obtain initial phases θi(0) from uniform distribution on S1.
Assuming that the synchronization output zi coincides with θ̇i, in abscence of any mesoscopic control
(Ui = 0) such a configuration leads to a clusteringM with four (ε, δ)-synchronized clusters for some ε

and δ such that ε� δ, as it was shown in [44]. However, in this work we focus on non-trivial “flowing”
cluster patterns, which we obtain by adding a sinusoidal control function Ui(t) being “turned on” at
t = 20 (when (ε, δ)-synchronization estabilish):

Ui = µiFα(t, xα(t)) = µi sin(2π fα(t− 20)),
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Figure 1. Topology of the graph developed for simulations

Figure 2. Trajectories of equation (7) with sinusoidal Ui and large differences between µi: the clusters
overlapped as ε became greater than δ

where fα are from uniform distribution on [0, 1]. The set of values {µi}i∈N is constructed as follows:311

{µ1, ..., µ4} = {µ5, ..., µ8} = {µ9, ..., µ12} = {µ13, ..., µ16} = {0.625, 1.25, 1.875, 2.5}. As it may be312

concluded from the equations (8) and (11), such values of agent’s sensibility may break cluster313

invariance, and they in fact do (see Figure 2).314

We denote the parameters for quantization of the state space:315

• Θ̇min = 0, Θ̇max = 20, ε = 0.02;316

• tmin = 20, tmax = 60, τ = 0.1.317

The corresponding 1000× 400 matrix B constructed according to the algorithm described above is318

shown on Figure 3.319

It turned out that 93% of B’s elements are zero, so that its columns has sparse representation320

in the standard basis. We choose to compress the columns of B, since they represent states of the321

considered systems observed during the time interval [ti−1, ti).322

The next step is to generate Φ, which is chosen to origin its elements from normal distribution323

N
(
0, 1

m
)

(according to [5]), where m is the number of measurements, which we choose as 2s. we324

choose s to be the average number of non-zero elements among the columns of B. As it will be325

shown on the image with reconstructed trajectories, the multiplier 2 is sufficient, despite in [5] it was326

equal to 4. This empirical decision can be justified by the fact that the dynamic trajectories have very327

sparse representation, unlike ordinary images. Thus, we provide decent compression for each column,328
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Figure 3. Matrix B represented as a binary histogram (white bins does have trajectories, while black
ones does not)

Figure 4. Decompressed matrix B represented as a binary histogram (white bins correspond to the
values higher than or equal to 7 · 10−3, while black ones represent values less than 7 · 10−3)
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Figure 5. The values of the first column of B

Figure 6. The values of the first column of B
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reducing its length from 1000 to 139. Such data reduction brings us closely from the level of individual329

agents to the mesoscopic scale of clusters. Decompressed matrix B is obtained as a collection of330

restored columns as `1-optimized vectors, numerically calculated with the interior-point method; it is331

shown on Figure 4. Despite the decompressed matrix appears to be noisy, the overall features of the332

trajectories are still perceptable, which could tell about close to lossless compression.333

It is also helpful to compare the first columns of B and B, which correspond to low values of334

Ui, thus four initial clusters can be easily distinguished. Figures 5 and 6 represent those columns335

before and after compression. It can be seen that the four clusters are visually recognizable even after336

reconstruction.337

5. Conclusion338

We proposed a mathematical framework for analysis of complex systems as multiagent networks.339

Besides, we proposed an algorithm of compressive sensing application for centralized observations340

of the agent trajectories, exploiting their sparsity in the discretized state space caused by clustering.341

We also shown how this algorithm can be applied to the Kuramoto model: the achieved degree of342

compression could make it possible to efficiently transmit compressed state space data to a data343

center, where it can be reconstructed without much loss of information for further mesoscopic control344

decisions. Furthermore, we plan to consider more in-depth study of compression in application to345

multiagent networks, which may bring us to the point of simple rules that link and explain all the346

scales complex systems operate on. We hope that our results would push further interest in researches347

regarding compressed observations of agent states for mesoscopic control.348
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