

1 The Supplementary for “The data-driven pattern for healthy behaviors of car drivers based on daily
2 records of Traffic Count data from 2018 to 2019 near airports. The Functional Data Analysis”

3
4 Mohammad Fayaz¹, Alireza Abadi^{2,3*}, Soheila Khodakarim, Mohammadreza Hoseini⁵, Alireza Razzaghi⁶

5
6 ¹ PhD Student of Biostatistics, Department of Biostatistics, School of Allied Medical Sciences, Shahid
7 Beheshti University of Medical Sciences, Tehran, Iran.

8 ² Professor of Biostatistics, Department of Community Medicine, Faculty of medicine, Shahid Beheshti
9 University of Medical Sciences, Tehran, Iran.

10 ³ Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences,
11 Tehran, Iran.

12 ⁴ Associate Professor, School of Allied Medical Sciences, School of Public Health and Safety, Shahid
13 Beheshti University of Medical Sciences, Tehran, Iran

14 ⁵ Master Student of Transportation, Tehran North Branch, Islamic Azad University, Tehran, Iran

15 ⁶ Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

16

17

18

19 * Corresponding Author: Dr. Alireza Abadi (alirezaabadi@gmail.com)

20

21

22

23

24

Contents

10		
26	1 The logit of Driving Offences Probability	3
27	1.1 The Bayesian Function-on-Scalar Regression	3
28	1.1.1 Statistical Formula.....	3
29	1.1.2 The estimated regression coefficient plot	4
30	1.1.3 The estimated regression coefficient table	5
31	2 The Behavioral Factor	6
32	2.1 The average speed in airports.....	6
33	2.1.1 - The B-Spline with Smoothing Parameter	6
34	2.2 The Bayesian Function on Regression.....	7
35	2.2.1 The estimated regression coefficient plot	7
36	3 Type of Driving Offences.....	8
37	3.1 Speeding.....	8
38	3.1.1 The Descriptive Statistics	8
39	3.1.2 The estimated effects	10
40	3.2 Unsafe Distance	13
41	3.2.1 The Descriptive Statistics	13
42	3.2.2 The estimated effects	15
43	4 Comparisons between other countries airports.....	18
44	4.1 The plot	18
45	4.2 The Data resources	19
46	4.2.1 USA.....	19
47	4.2.2 UK.....	20
48	4.2.3 Ireland	21
49		
50		
51		
52		
53		
54		

55 1 The logit of Driving Offences Probability

56 1.1 The Bayesian Function-on-Scalar Regression

57 1.1.1 Statistical Formula

58 We use fully Bayesian Function-on-scalar regression for high dimensional data to assess the following
59 relationships:

60
$$Y_i(t) = \log\left(\frac{P(t)_{\text{offences occurs}}}{1 - P(t)_{\text{offences occurs}}}\right)_i = \sum_{k=1}^K f_k(t)\beta_{k,i} + \epsilon_i(t)$$

61 $\epsilon_i(t) \sim N(0, \sigma_\epsilon^2), \quad t \in [0, 23]$

62
$$\begin{aligned} \beta_{k,i} = \mu_k + & \text{Station}_i \times \alpha_{1,k} + \text{Direction}_i \times \alpha_{2,k} + \text{Weekend}_i \times \alpha_{3,k} + \\ & (\text{Station}_i \times \text{Direction}_i) \times \alpha_{4,k} + (\text{Station}_i \times \text{Weekend}_i) \times \alpha_{5,k} \\ & + (\text{Direction}_i \times \text{Weekend}_i) \times \alpha_{6,k} + (\text{Station}_i \times \text{Direction}_i \times \text{Weekend}_i) \times \alpha_{7,k} \\ & + \gamma_{k,i} \end{aligned}$$

63 $\mu_k \sim N(0, \sigma_{\mu_k}^2),$

64 $\alpha_{j,k} \sim N(0, \sigma_{\alpha_{j,k}}^2),$

65 $\gamma_{k,i} \sim N(0, \sigma_{\gamma_{k,i}}^2),$

66 The $f_k(t)$ are basis functions with $k \in [0, 23]$ number of basis for within-curve dependence of functional
67 data, and $\{\beta_{k,i}\}$ are coefficients for modeling the between-curve dependence. The priors for the
68 intercepts $\{\mu_k\}$, the regression coefficients $\{\alpha_{j,k}\}$ and the subject-specific errors $\{\gamma_{k,i}\}$ are Gaussian and
69 for observation error variance σ_ϵ^2 is Jeffrey. The shrinkage priors for the regression coefficients and the
70 MCMC sampling algorithm is used to estimate the regression coefficients. The variable selection is based
71 on the decouples shrinkage and selection (DSS). (32)

72

73

74

75

76

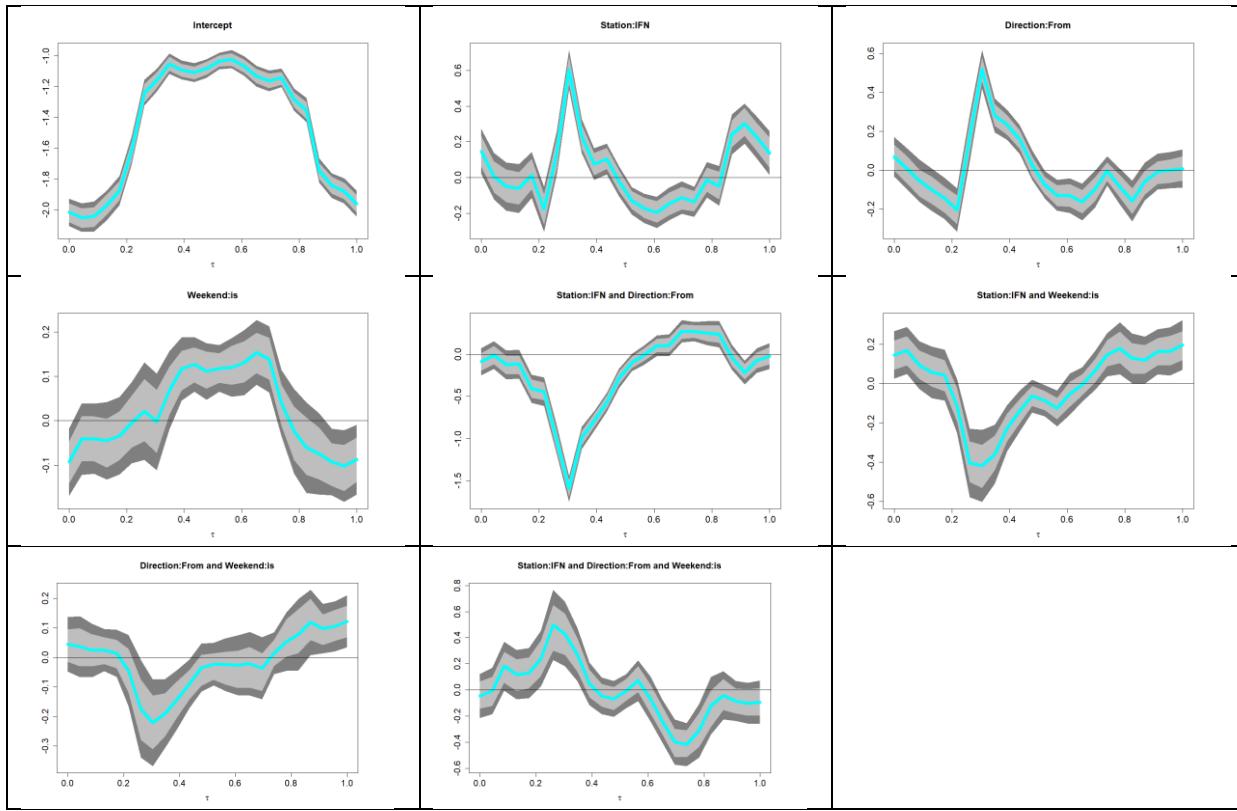
77

78

79

80

81


82

83

84

85 1.1.2 The estimated regression coefficient plot

86 The estimated regression coefficient functions are presented in the following figures:

87 Figure 1. Estimated regression coefficient function, 95% pointwise credible intervals (light gray), and 95%
88 simultaneous credible bands (dark gray). A horizontal line denotes zero change in the odds ratio.

89

90

91

92

93

94

95

96

97

98

99

100

1.1.1 1.1.3 The estimated regression coefficient table

1.1.2 The estimated coefficient of Bayesian Function on Scalar Regression is presented in the following table.

1.1.3 Table 1: The Estimated Coefficient of Bayesian, Mean (Standard Deviation)

	Intercept	b1	b2	b3	b4	b5	b6	b7
1	-7.3664 (0.107)	0.2006 (0.159)	-0.0515 (0.105)	0.0105 (0.05)	-1.0291 (0.177)	0.0415 (0.089)	-0.002 (0.041)	0.0376 (0.109)
2	0.28 (0.03)	0.2546 (0.054)	0.5096 (0.044)	0.2277 (0.059)	-2.035 (0.072)	-0.8866 (0.097)	-0.4481 (0.085)	0.696 (0.134)
3	-0.0626 (0.033)	-0.0216 (0.036)	-0.0299 (0.036)	0.1408 (0.052)	0.4291 (0.064)	0.0104 (0.041)	0.005 (0.03)	-0.5581 (0.104)
4	0.0883 (0.036)	-0.4047 (0.044)	-0.1178 (0.058)	0.3132 (0.052)	0.4921 (0.071)	-0.0084 (0.046)	-0.0566 (0.09)	-0.4205 (0.123)
5	-0.3533 (0.025)	0.7489 (0.033)	0.5144 (0.031)	-0.1159 (0.038)	-0.8017 (0.044)	-0.0435 (0.051)	0.0003 (0.023)	0.0847 (0.064)
6	-0.1296 (0.018)	0.0548 (0.025)	0.265 (0.026)	-0.0005 (0.019)	-0.0061 (0.03)	0.0011 (0.022)	-0.0965 (0.053)	-0.0515 (0.058)
7	-0.0282 (0.017)	0.0507 (0.026)	0.131 (0.024)	-0.0033 (0.015)	-0.199 (0.036)	-0.0207 (0.03)	-0.0007 (0.015)	0.0488 (0.046)
8	-0.0396 (0.016)	0.0516 (0.024)	0.06 (0.021)	-0.0262 (0.026)	-0.0052 (0.027)	0.157 (0.049)	-0.0021 (0.018)	-0.3596 (0.056)
9	-0.0107 (0.015)	0.0159 (0.021)	0.0575 (0.022)	-0.0197 (0.021)	-0.0485 (0.034)	0.0155 (0.029)	0.0009 (0.017)	-0.0449 (0.046)
10	-0.0287 (0.014)	0.0888 (0.021)	-0.0203 (0.018)	-0.0012 (0.013)	-0.0025 (0.025)	-0.0147 (0.024)	-0.0048 (0.016)	-0.0366 (0.038)
11	-0.009 (0.014)	0.0936 (0.02)	-0.0326 (0.02)	-0.0101 (0.015)	-0.0933 (0.032)	-0.0018 (0.018)	-0.001 (0.015)	0.0556 (0.042)
12	-0.0068 (0.01)	0.0002 (0.013)	0.0206 (0.017)	-0.0119 (0.016)	-0.0236 (0.025)	-0.0103 (0.022)	0.0063 (0.018)	0.085 (0.044)
13	-0.0163 (0.011)	0.0958 (0.016)	-0.0171 (0.016)	0.0267 (0.017)	-0.1197 (0.025)	0.0044 (0.017)	0.0086 (0.017)	0.0166 (0.027)
14	-0.021 (0.012)	0.0366 (0.018)	0.0049 (0.012)	-0.0034 (0.013)	-0.0029 (0.019)	0.0167 (0.024)	-0.0054 (0.015)	-0.0385 (0.036)
15	-0.007 (0.01)	0.0017 (0.011)	-0.0241 (0.015)	0.0108 (0.015)	0.0037 (0.016)	0.0147 (0.022)	-0.0055 (0.015)	0.0125 (0.027)
16	-0.0118 (0.01)	0.0336 (0.017)	0.0127 (0.015)	-0.0053 (0.012)	-0.0244 (0.023)	-0.0102 (0.018)	-0.0041 (0.014)	0.001 (0.024)
17	-0.0075 (0.01)	-0.0121 (0.014)	0.0453 (0.016)	0.0237 (0.019)	-0.0195 (0.022)	-0.0038 (0.017)	0.0145 (0.021)	0.0104 (0.026)
18	0.0194 (0.011)	-0.0426 (0.016)	0.0035 (0.012)	-0.0277 (0.017)	0.0368 (0.022)	-0.0134 (0.023)	-0.0038 (0.013)	0.0251 (0.03)
19	-0.0372 (0.015)	0.0426 (0.02)	0.0495 (0.02)	0.0286 (0.018)	-0.0534 (0.03)	0.0587 (0.03)	-0.0021 (0.014)	-0.1591 (0.035)
20	-0.007 (0.009)	-0.0053 (0.011)	0.012 (0.011)	0.0243 (0.015)	-0.0048 (0.015)	-0.0131 (0.019)	0.0001 (0.013)	-0.0348 (0.028)
21	-0.0002 (0.008)	0.0108 (0.012)	0.0182 (0.013)	0.0022 (0.01)	-0.0929 (0.021)	-0.0071 (0.014)	0.0123 (0.016)	0.0113 (0.022)
22	0.03 (0.01)	-0.0161 (0.014)	-0.053 (0.013)	-0.0055 (0.011)	0.0122 (0.017)	-0.0605 (0.024)	0.0027 (0.012)	0.1214 (0.031)
23	-0.0046 (0.01)	0.041 (0.013)	-0.0263 (0.013)	0.0029 (0.009)	0.0359 (0.022)	-0.0031 (0.012)	0.0007 (0.01)	-0.0018 (0.019)

1.1.4 ** b1= Station: IFN, b2= Direction: From, b3= Weekend: is, b4= Station: IFN and Direction: From, b5= Station: IFN and Weekend: is, b6= Direction: From and Weekend: is, b7= Station: IFN and Direction: From and Weekend:is

1.1.5

1.1.6

1.1.7

1.1.8

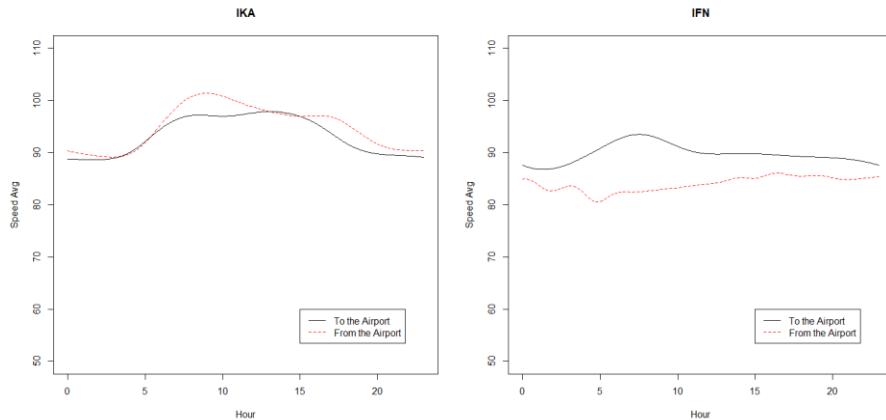
1.1.9

1.1.10

1.1.11

1.1.12

1.1.13


1.1.14

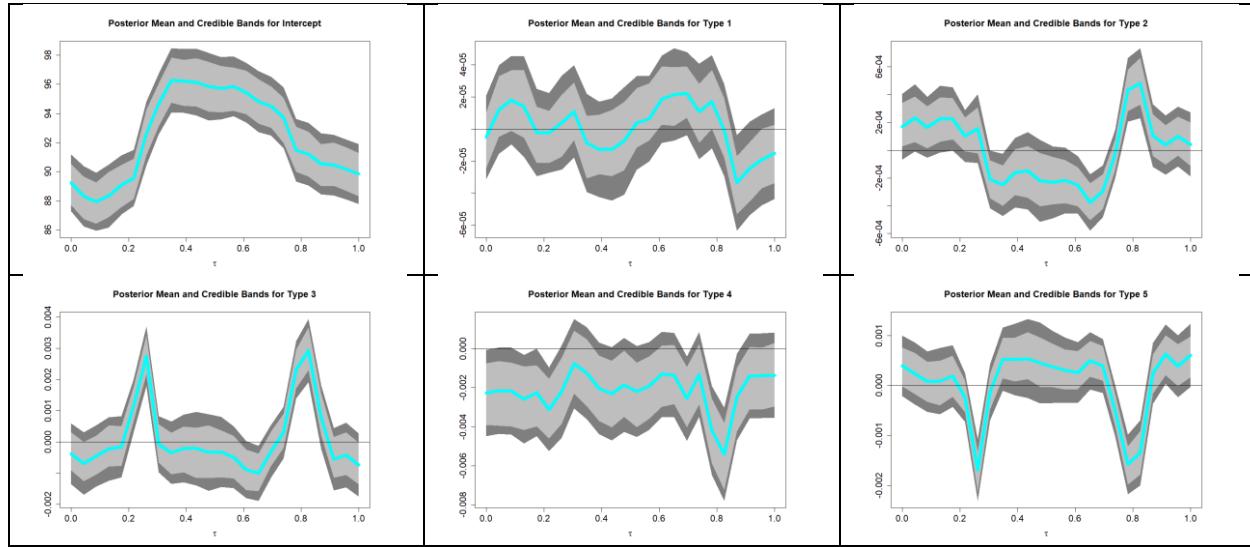
110 2 The Behavioral Factor

111 2.1 The average speed in airports

112 2.1.1 - The B-Spline with Smoothing Parameter

113 We estimate the average speed function by B-Spline using smoothing parameter by GCV for IKA and IFN
114 airport and in both directions. In the IKA airport, the two curves to the airport and from the airport are
115 almost the same in most hours, but in the from the airport has one peak at 9:00. In the other hand, in IFN
116 airport the average speed to the airport is higher in all hours than from the airport, and it has also one peak
117 at 8:00.

123
124 Figure 2: The functional average speed with using B-Spline in both airports and both directions.


125
126
127
128
129
130
131
132
133
134
135
136
137

138 **2.2 The Bayesian Function on Regression**

139 **2.2.1 The estimated regression coefficient plot**

140 The Bayesian FOSR is used to estimate the effects of total vehicle types from 1 to 5 on the average speed
141 function.

142 The intercept shows that the average speed from 10:00 to 20:00 is the highest. The type 1 vehicle from
143 20:00 to 21:00 has statistically negative effect. In the type 2 vehicle from 19:00 to 20:00 has statistically
144 positive effect. In the type 3 at 6:00 and 20:00 has statistically positive effect. In type 4, at 20:00 has
145 statistically negative effect and in type 5 has at 6:00 and 20:00 statistically negative effect. (Figure 1_6)

146 Figure 3: The Posterior Mean and Credible Bands for estimated effects of Vehicle Types from 1 to 5.

147

148

149

150

151

152

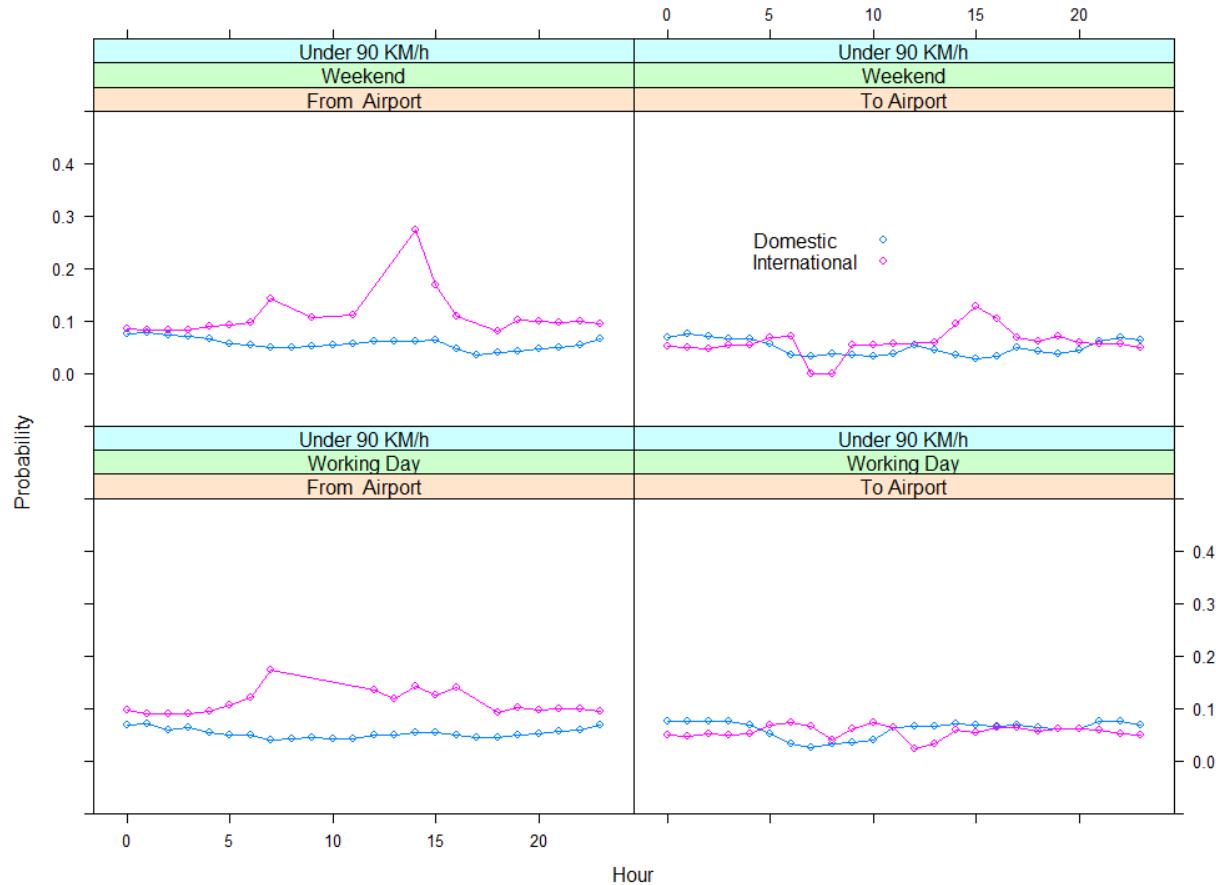
153

154

155

156

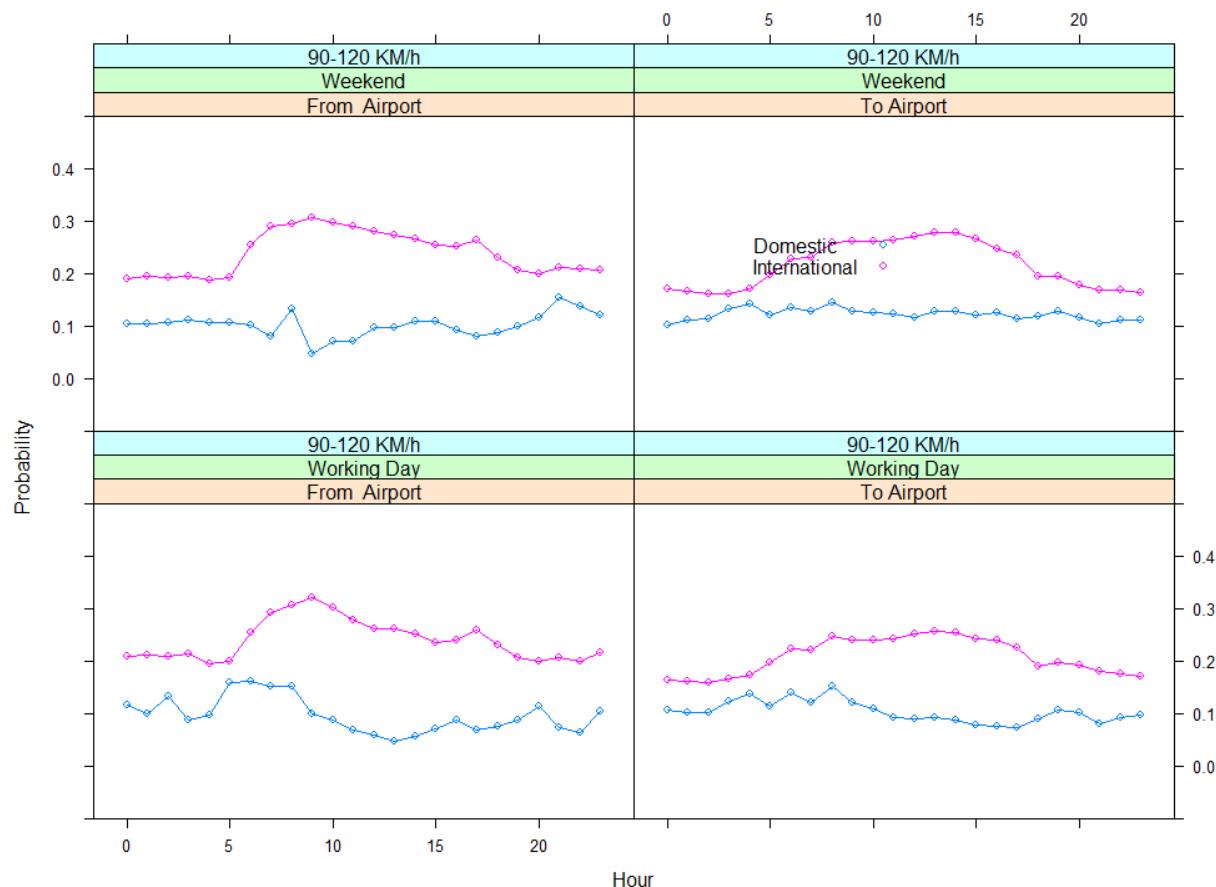
157


158

109 3 Type of Driving Offences

110 3.1 Speeding

111 3.1.1 The Descriptive Statistics


112 The proportion of traffic offences type 1: Speeding

113

114 Figure 4: The proportion of traffic offences type 1, Speeding. For under 90 KM/h average speed, working
115 day and direction.

116

167

168 Figure 5: The proportion of traffic offences type 1, Speeding. For 90-120 KM/h average speed, working
 169 day and direction.

170

171

172

173

174

175

176

177

178

179

180

181 3.1.2 The estimated effects
182 The GAM (Generalized Additive Model) Result

183 Type 1 Driving Offences:

184 Table 2: The ANOVA table of the Parametric Coefficients for type 1 Driving Offences

Terms	Base	Estimate	Std. Error	t-value	Pr(> t)
Intercept		0.10	0.0025	40.5	< 2e-16
Days	Working Day	0.00	0.0017	-2.4	0.01511
Direct	To Airport	0.01	0.0033	4.0	8.30E-05
Type	International	0.14	0.0033	41.6	< 2e-16
Speed	Under 90 KM/H	-0.04	0.0033	-13.4	< 2e-16
Direct:Type	To Airport: International	-0.04	0.0047	-8.6	3.29E-16
Direct:Speed	To Airport: Under 90 KM/H	-0.01	0.0047	-2.7	0.00778
Direct:Type:Speed	From Airport : International: Under 90 KM/H	-0.08	0.0050	-16.1	< 2e-16
Direct:Type:Speed	To Airport : International: Under 90 KM/H	-0.10	0.0047	-20.3	< 2e-16

185 Family: Gaussian, AIC: -1949.267 , BIC: -1733.174 , R-sq.(adj): 0.95, Deviance Explained: 95.6%, n= 373

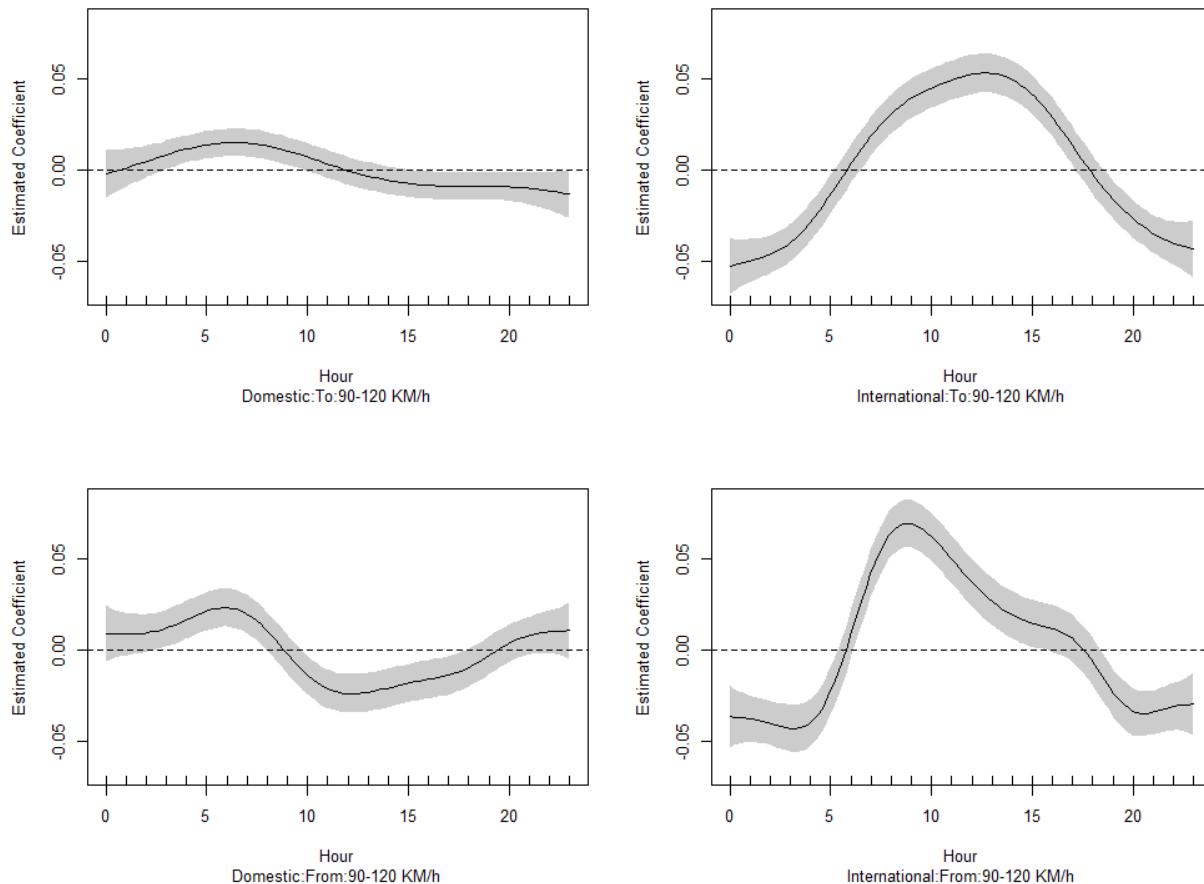

Smooth terms by Hour	edf	Ref.df	F	p-value
Domestic:From Airport:90-120 KM/h	5.445	13	3.569	3.64E-09
International:From Airport:90-120 KM/h	7.937	13	19.495	< 2e-16
Domestic:To Airport:90-120 KM/h	3.216	13	1.449	0.000158
International:To Airport:90-120 KM/h	5.552	13	19.694	< 2e-16
Domestic:From Airport:Under 90 KM/h	1.762	13	0.487	0.022009
International:From Airport:Under 90 KM/h	8.257	13	7.587	< 2e-16
Domestic:To Airport:Under 90 KM/h	3.16	13	1.624	4.63E-05
International:To Airport:Under 90 KM/h	1.354	13	0.339	0.037615

186 Number of basis= 14, cubic regression spline, Estimation method= REML (edf: Effective Degrees of Freedom)

187

188

Driving Offences: Speeding



191

192 Figure 6: The estimated coefficients of Speeding driving offences for Under 90 KM/h/upper left: The
 193 domestic airport and “To” direction is slightly zero in all hours, Upper right: The international airport and
 194 “To” direction is slightly zero in all hours, bottom left: The domestic airport and “From” direction is slightly
 195 zero in all hours, bottom right: The International airport and “From” direction has positive effect between
 196 13 to 15.

197

Driving Offences: Speeding

198

199 Figure 7: – The estimated coefficients of Speeding driving offences for 90-120 KM/upper left: The domestic
 200 airport and “To” direction has positive effects in early morning (4-8), Upper right: The international airport
 201 and “To” direction has positive effect in working hours (7-18), bottom left: The domestic airport and
 202 “From” direction has positive effect in early morning (4-8), bottom right: The International airport and
 203 “From” direction has positive effect in working hours (7-15).

204

205

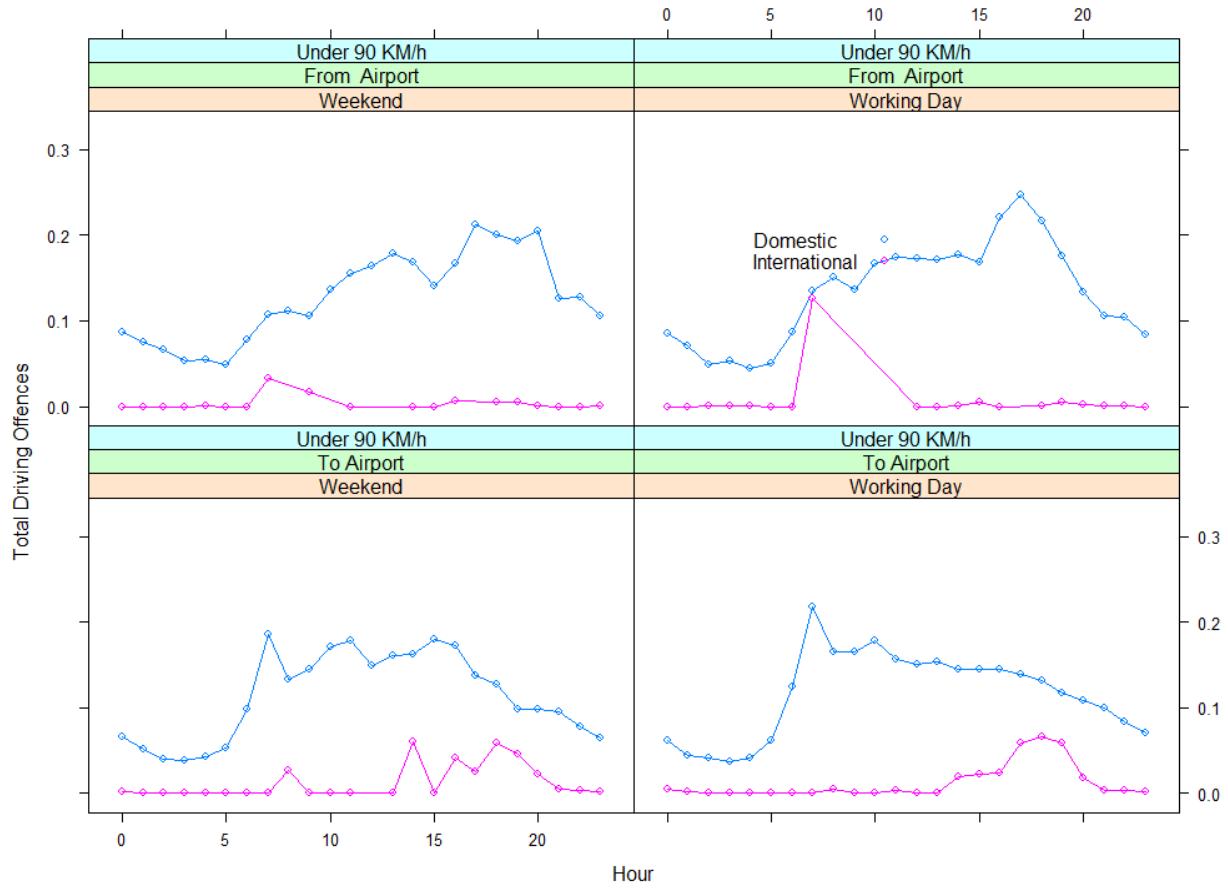
206

207

208

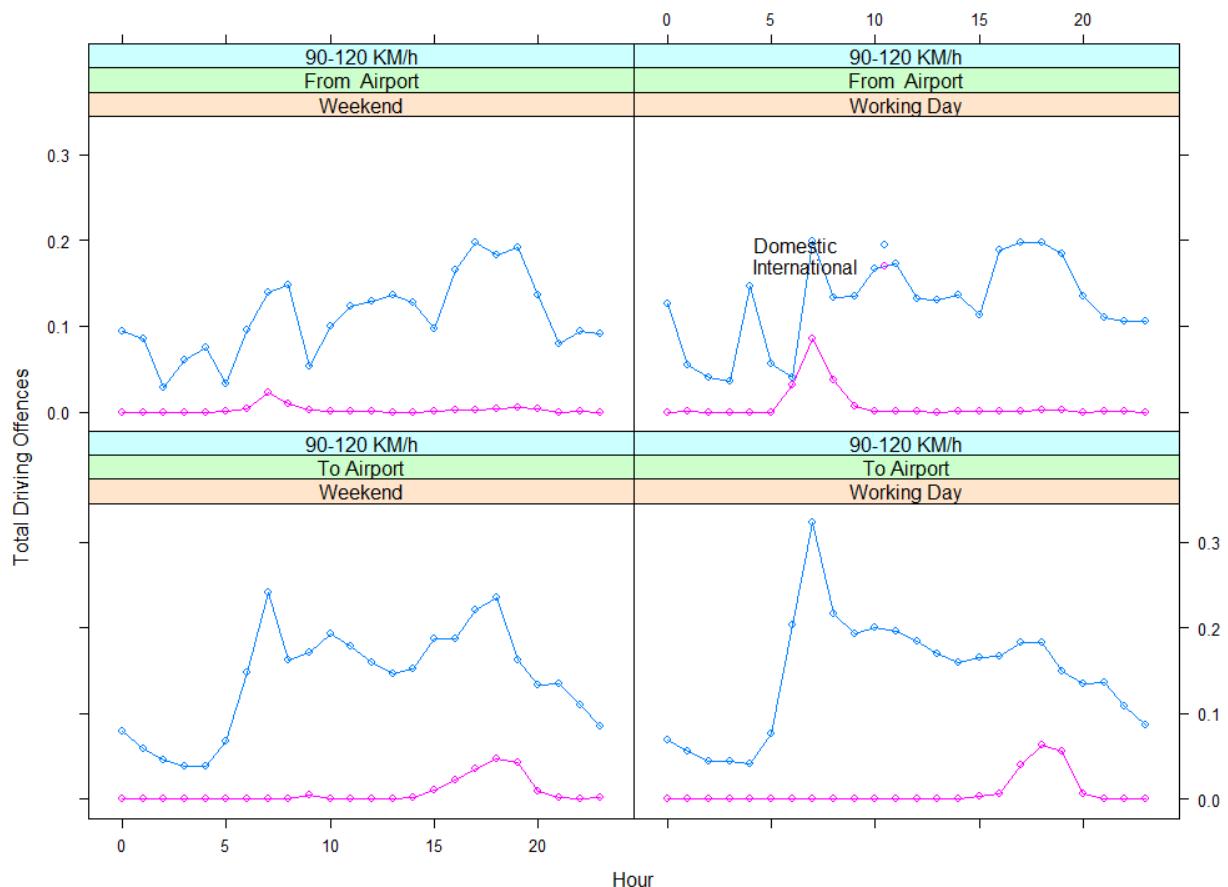
209

210


211

212

၁၁၃ 3.2 Unsafe Distance


၁၁၄ 3.2.1 The Descriptive Statistics

၁၁၅ The proportion of traffic offences type 2: Unsafe Distance

၁၁၆

၁၁၇ Figure 8: The proportion of traffic offences type 2, Unsafe Distance. For under 90 KM/h average speed,
၁၁၈ working day and direction.

٢١٩

٢٢٠ Figure 9: The proportion of traffic offences type 2, Unsafe Distance. For 90-120 KM/h average speed,
٢٢١ working day and direction.

٢٢٢

٢٢٣

٢٢٤

٢٢٥

٢٢٦

٢٢٧

٢٢٨

٢٢٩

٢٣٠

٢٣١

٢٣٢

۲۳۳ 3.2.2 The estimated effects

۲۳۴ Type 2 Driving Offences:

۲۳۵ Table 3: The ANOVA table of the Parametric Coefficients for type 2 Driving Offences

Terms	Base	Estimate	Std. Error	t-value	Pr(> t)
Intercept		0.116	0.0028	41.002	< 2e-16
Days	Working Day	0.005	0.0019	2.459	0.014475
Direct	To Airport	0.023	0.0038	5.978	6.11E-09
Type	International	-0.114	0.0038	-30.207	< 2e-16
Speed	Under 90 KM/H	0.011	0.0038	2.930	0.003635
Direct:Type	To Airport: International	-0.020	0.0053	-3.689	0.000265
Direct:Speed	To Airport: Under 90 KM/H	-0.038	0.0053	-7.192	4.66E-12
Direct:Type:Speed	From Airport : International: Under 90 KM/H	-0.010	0.0055	-1.841	0.066522
Direct:Type:Speed	To Airport : International: Under 90 KM/H	0.032	0.0053	6.006	5.23E-09

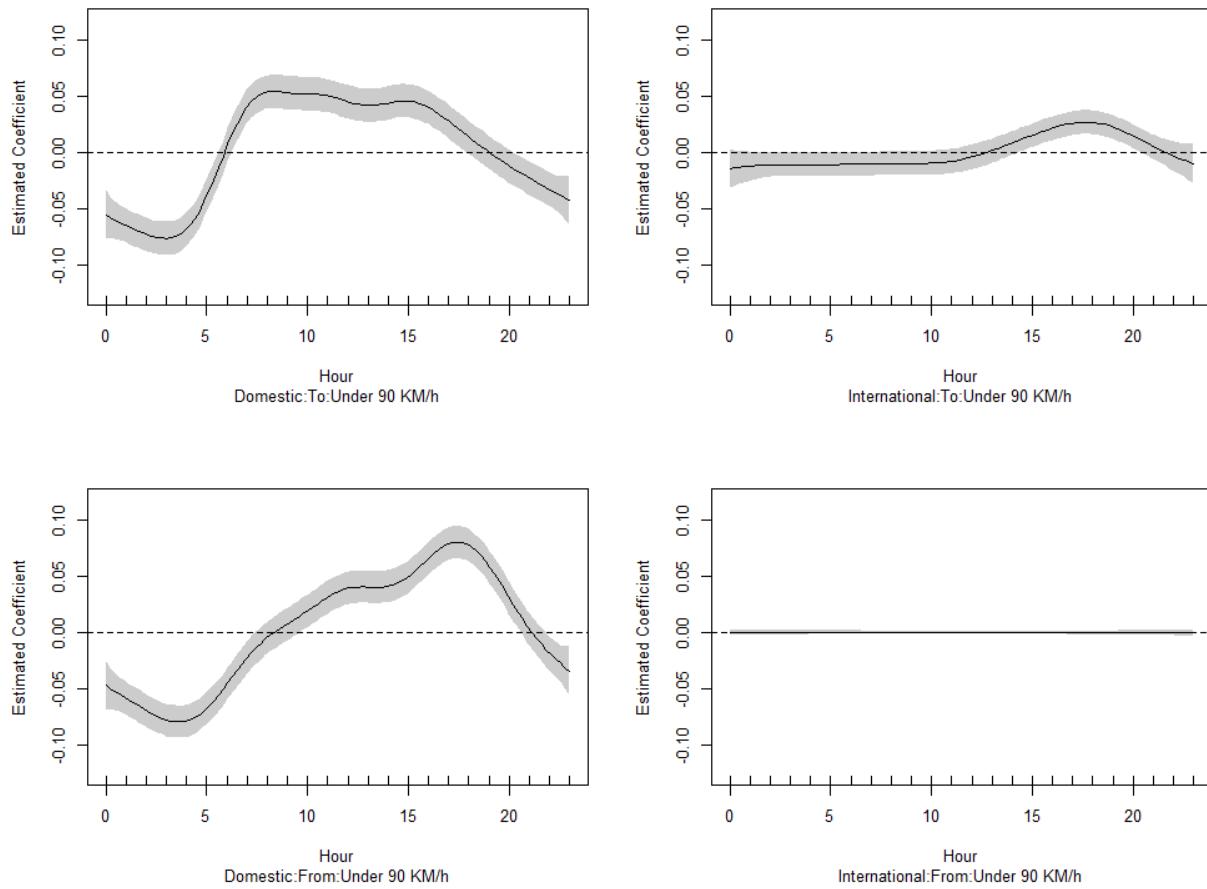
۲۳۶ Family: Gaussian, AIC: -1850.26, BIC: -1589.968, R-sq.(adj): 0.936, Deviance Explained: 94.5%, n= 373

Smooth terms by Hour	edf	Ref.df	F	p-value
Domestic:From Airport:90-120 KM/h	10.73	13	17.887	< 2e-16
International:From Airport:90-120 KM/h	0.07	13	0.006	0.31497
Domestic:To Airport:90-120 KM/h	11.61	13	39.296	< 2e-16
International:To Airport:90-120 KM/h	4.43	13	1.501	0.000438
Domestic:From Airport:Under 90 KM/h	8.07	13	28.246	< 2e-16
International:From Airport:Under 90 KM/h	0.10	13	0.008	0.310932
Domestic:To Airport:Under 90 KM/h	8.52	13	23.759	< 2e-16
International:To Airport:Under 90 KM/h	4.58	13	2.357	2.27E-06

۲۳۷ Number of basis= 14, cubic regression spline, Estimation method= REML (edf: Effective Degrees of

۲۳۸ Freedom)

۲۳۹


۲۴۰

۲۴۱

۲۴۲

۲۴۳

Driving Offences: Safe Following Distance

٢٤٤

٢٤٥ Figure 10: The estimated coefficients of Failing to follow a vehicle at a safe distance offences for Under 90
 ٢٤٦ KM/upper left: The domestic airport and “To” direction has positive effect working hours, Upper right:
 ٢٤٧ The international airport and “To” direction has only positive effect 15 to 20, bottom left: The domestic airport
 ٢٤٨ and “From” direction has positive effect between 10 to 20, bottom right: The International airport and
 ٢٤٩ “From” direction has zero effect.

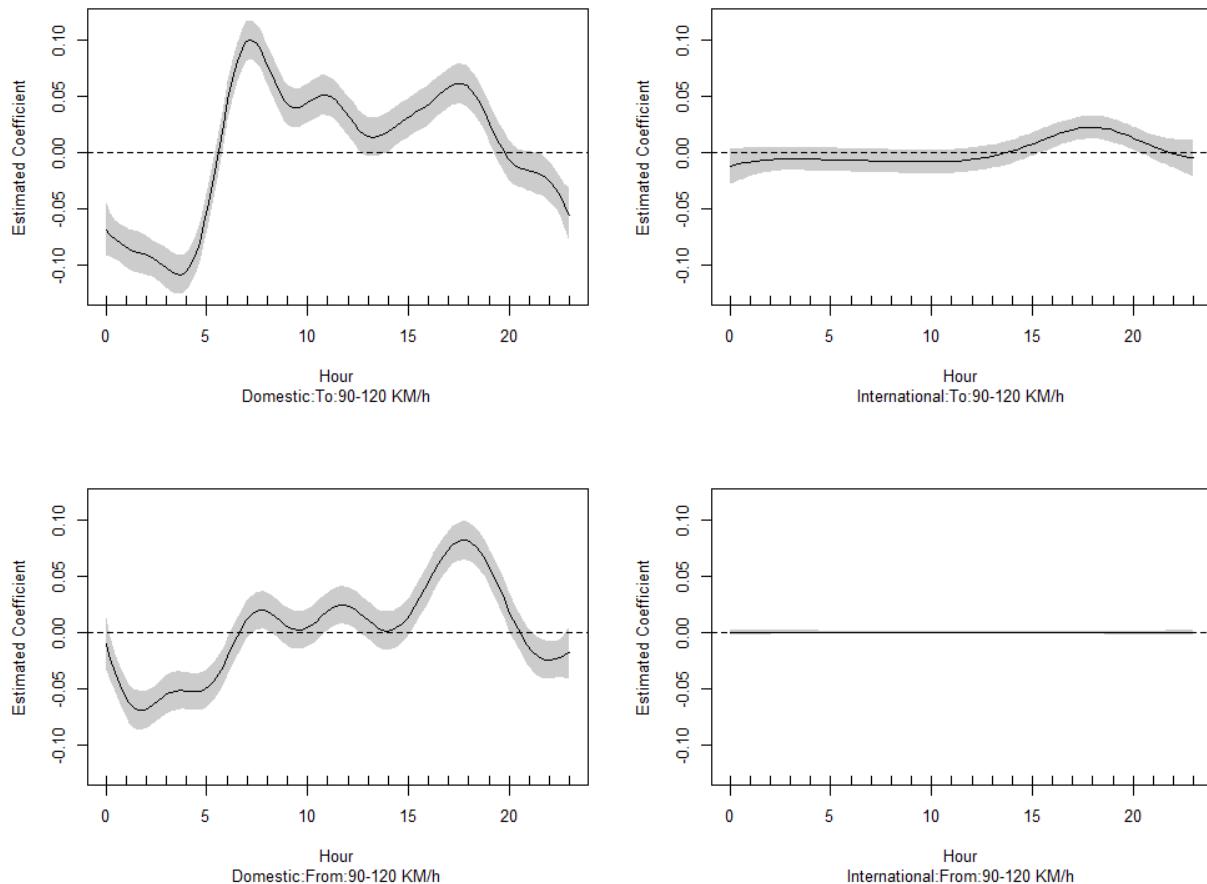
٢٥٠

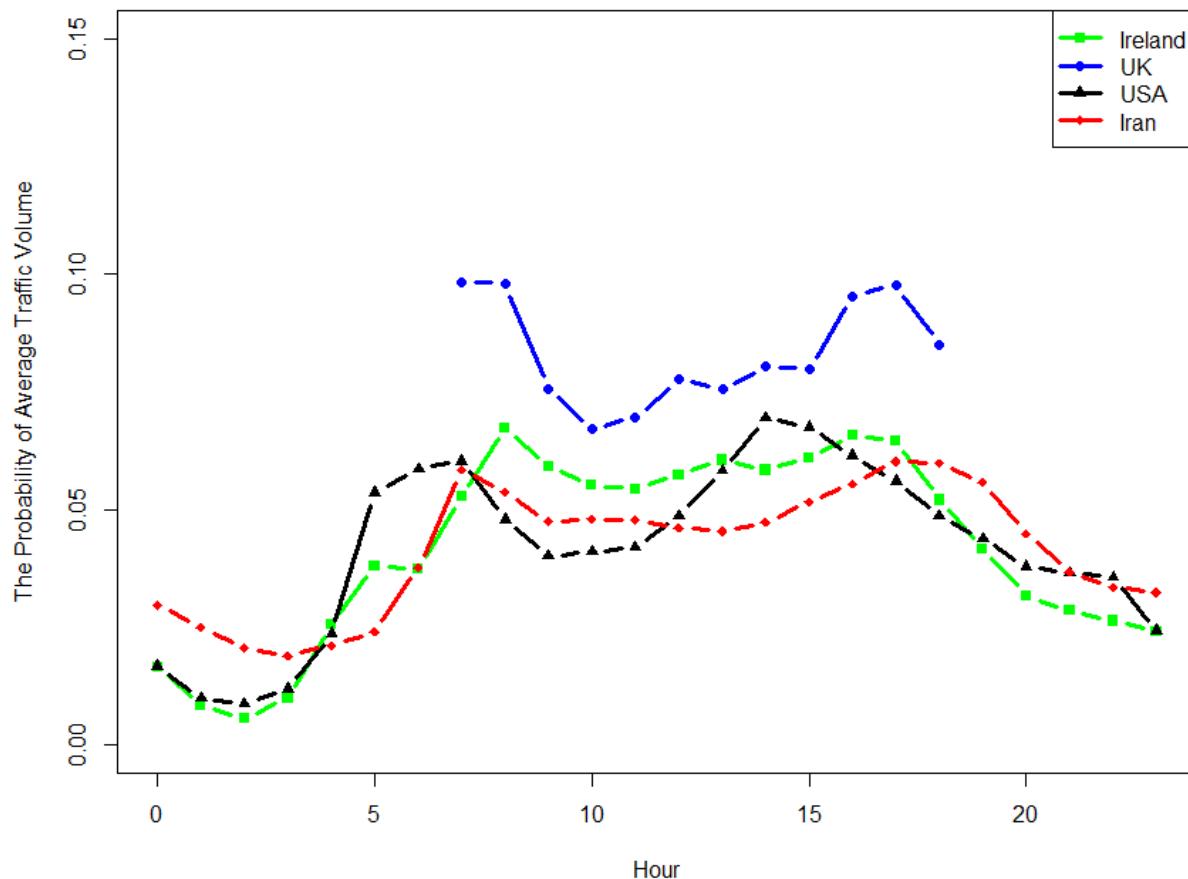
٢٥١

٢٥٢

٢٥٣

Driving Offences: Safe Following Distance




Figure 11: The estimated coefficients of failing to follow a vehicle at a safe distance offences for 90-120 KM/h. Upper left: The domestic airport and “To” direction has positive effect working hours, Upper right: The international airport and “To” direction has only positive effect 15 to 20, bottom left: The domestic airport and “From” direction has positive effect between 10 to 20, bottom right: The International airport and “From” direction has zero effect.

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

۲۷۹ 4 Comparisons between other countries airports

۲۷۰ 4.1 The plot

۲۷۱

۲۷۲

۲۷۳ Figure 12: The Probability of Average Traffic Volume in different Airport Countries.

۲۷۴

۲۷۵

۲۷۶

۲۷۷

۲۷۸

۲۷۹

۲۸۰

٢٨١ 4.2 The Data resources

٢٨٢ 4.2.1 USA

٢٨٣ There are one airport:

٢٨٤ Table 4- The list of traffic count sites near the Hartsfield–Jackson Atlanta International Airport in the US

Row	Airport name	Traffic Count Name	Description	Time-Interval
1	Hartsfield–Jackson Atlanta International Airport	0000063_1407 - 063-1407 0000063_R160 - 063-r160 0000063_R651 - 063-r651 0000063_8264 - 063-8264	SR 000300 BEG AT R PY 403225 L SR 040300 BEG AT Airport Blvd	2018

٢٨٥

٢٨٦ We use only Hartsfield–Jackson Atlanta International Airport dataset because they are available online.

٢٨٧ **Data Profile**

٢٨٨ The Georgia Department of Transportation's Traffic Analysis and Data Application (TADA!)

٢٨٩ **Description**

٢٩٠ The Georgia Department of Transportation's Traffic Analysis and Data Application (TADA!) website
٢٩١ presents data collected from the Georgia Traffic Monitoring Program located on the public roads in
٢٩٢ Georgia. The Website uses a dynamic mapping interface to allow the User to access data from the
٢٩٣ map as well as in a variety of report, graph, and data export formats. **Website**

٢٩٤ <https://gdottrafficdata.drakewell.com/publicmultinodemap.asp>

٢٩٥

٢٩٦

٢٩٧

٢٩٨

٢٩٩

٣٠٠

٣٠١

٣٠٢

٣٠٣

٣٠٤

٣٠٥

٣٠٦

٣٠٧

೩೦೮ 4.2.2 UK

೩೦೯ There are two airports:

೩೧೦ Table 5- The list of traffic count sites near the Heathrow Airport and Gatwick Airport in the UK

Row	Airport name	Count Point IDs	Time-Interval
1	Heathrow Airport	Left (38599,47625,75148,78401) Up (26118,56114,942674,16112,3612136013) Right (58197,6123,73633,36309) Bottom (953083,942678,73734)	2018
2	Gatwick Airport	46035,18231,57660,36274,90299,946199	2018

೩೧೧ The data is not available for all hours. The average of all count point were used.

೩೧೨

೩೧೩ **Data Profile**

೩೧೪ Road traffic statistics

೩೧೦ **Data Description**

೩೧೬ Summary and street-level traffic data for road-links on the motorway, 'A' road and minor road network in

೩೧೭ Great Britain. Use this website to find information about the road traffic statistics collected over the last

೩೧೮ 18 years, across 34,416 manual count points. The latest information available covers 2018.

೩೧೯ **Website**

೩೨೦ <https://roadtraffic.dft.gov.uk/>

೩೨೧

೩೨೨

೩೨೩

೩೨೪

೩೨೫

೩೨೬

೩೨೭

೩೨೮

೩೨೯

೩೩೦

೩೩೧

೩೩೨

۳۳۳ 4.2.3 Ireland

۳۳۴ There are two airports:

۳۳۵ Table 6- The list of traffic count sites near Dublin, Cork and Shanon airport in Ireland

Row	Airport name	Traffic Count Name	Name	Description	Time-Interval
1	Dublin	NRA 000000001011	TMU N01 000.0 N	M01 Airport Link Road Between R132 Swords Road and Jn2 Dublin Airport	2018-10-23 to 2019-10-22
2	Cork	NRA 000000001271	TMU N27 000.0 N	N27 Between Cork Airport and Cork, Ballycurreen, Co. Cork	2018-10-23 to 2019-10-22
3	Shanon	NRA 000000001191	TMU N19 001.5 S	N19 Between R472 and Drumgeely roundabout, Ballymurtagh Co Clare.	2018-10-23 to 2019-10-22

۳۳۶

۳۳۷ We use only Dublin and Cork dataset because they are complete for that period.

۳۳۸ **Data Profile**

۳۳۹ TII Traffic Data Site

۳۴۰ **Data Description**

۳۴۱ The TII Traffic Data website presents data collected from the TII traffic counters located on the National Road Network. The Website uses a dynamic mapping interface to allow the User to access data in a variety of report formats.

۳۴۴ **Website**

۳۴۵ [https://www.nratrafficdata.ie/c2/gmapbasic.asp?sgid=ZvyVmXU8jBt9PJE\\$c7UXt6](https://www.nratrafficdata.ie/c2/gmapbasic.asp?sgid=ZvyVmXU8jBt9PJE$c7UXt6)

۳۴۶

۳۴۷

۳۴۸

۳۴۹