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Abstract –By taking advantage of a stability criterion established recently, the critical tem-
perature Tc is reckoned with help of the microscopic parameters, characterising the normal and
superconducting electrons, namely the independent-electron band structure and a repulsive two-
electron force. The emphasis is laid on the sharp Tc dependence upon electron concentration and
inter-electron coupling, which might offer a practical route toward higher Tc values and help to
understand why high-Tc compounds exhibit such remarkable properties.

Introduction. – The BCS theory [1], despite its im-
pressive success, does not enable one to predict [2] su-
perconductivity occurring in any metallic compound. As
shown elsewhere [3], such a drawback ensues from an at-
tractive interaction, assumed to couple electrons together,
which is not only at loggerheads with the sign of the
Coulomb repulsion, but in addition leads to inconsisten-
cies to be recalled below. Therefore this work is intended
at investigating the Tc dependence upon the parameters,
characterising the motion of electrons correlated together
through a repulsive force, in order to devise, within the
framework of a two-fluid picture developed elsewhere [3–6],
a single model, valid for all superconductors, including low
and high Tc materials, as well. This is in marked contrast
with the mainstream approach, tending to seek a partic-
ular model, dedicated to each superconducting compound
[7–9].

In order to reach the hereabove mentioned goal, a his-
torical survey, aimed at identifying the cause of the BCS
failure and its far-reaching consequences, is needed. More-
over, it will enable the reader to understand why our pre-
vious work [3–6] is not only unrelated to the mainstream
view, but also runs afoul at it. As a matter of fact, the
original sin was to purport with no scientific proof what-
soever that the many bound electron state, coming out of
the BCS variational calculation [1], conveyed the signature
of superconductivity, namely it did sustain persistent cur-
rents. Actually, the only well-established property of the

BCS state [1] is that its energy is lower than that of the
Fermi gas [10] of same electron concentration at T = 0K,
which is of course irrelevant to the issue of persistent cur-
rents. Accordingly, since the BCS conclusion requires by
all means to assume an attractive two-electron coupling,
all authors [7–9], in the wake of BCS, lacking anyhow a re-
liable criterion of superconductivity, took for granted that
any contrived two-electron interaction would ensure super-
conductivity, provided it is attractive. Illustrative exam-
ples of this surmise can be found, in particular, in several
extensive studies [11–17] dealing with the electron-phonon
coupling that has been believed to mediate the attractive
force between electrons since Froehlich’s work [18]. Un-
fortunately, such wishful thinking proved a fatal mistake,
whenever it was shown [3] that superconductivity cannot
arise, if the electrons are coupled together through an at-
tractive force. As an appalling consequence, the whole re-
search work in superconductivity decayed eventually into
a muddled, religious war, vividly documented by Zaanen
[8] and Lederer [9].

This barren bickering might have lasted till doomsday,
were it not for the recent discovery [4] of a long-awaited
criterion of superconductivity, saying that persistent cur-
rents are observed, not because the resistivity vanishes
(it has been shown [19–22] actually to be finite, albeit
much smaller than in the corresponding normal metallic
phase), but rather because their being destroyed by the
Joule effect would violate the second law of thermody-
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namics. Likewise, a simple experiment was proposed [4]
to validate this conclusion and to bring evidence for the
anomalous properties of the Joule effect, taking place in a
superconductor. Furthermore it proved gratifying to real-
ize that a prerequisite for a thermodynamically stable su-
perconducting phase, discovered subsequently [6], turned
out to be consistent with the above mentioned criterion of
superconductivity [4]. The discussion below will take full
advantage of this achievement but it could not be overem-
phasized that our thermodynamical criterion [4] acts as a
watershed, distinguishing our work from that of all other
authors who, unlike us, never question the BCS assump-
tion of an attractive inter-electron force and in addition
disregard the issue of persistent currents.

The outline is as follows : the conditions, warranting
thermal stability in a superconductor, are recalled in sec-
tion 1, while the parameters, needed to calculate Tc, are
derived in section 2; the Tc dependences on electron con-
centration and inter-electron coupling are discussed in sec-
tion 3, 4, respectively; the main results are summarised in
the conclusion.

1-Thermal stability. – The conduction electrons are
taken to comprise [3, 4, 6] bound and independent elec-
trons, in respective temperature dependent concentration
cs(T ), cn(T ), such that

c0 = cs(T ) + cn(T ) ,

with c0 being the total concentration of conduction elec-
trons. They are organized, respectively, as a many bound
electron [3] (MBE) state, characterised by its chemical
potential µ(cs), and a Fermi gas [10] of Fermi energy
EF (T, cn). The Helmholz free energy of independent elec-
trons per unit volume Fn and EF on the one hand, and
the eigenenergy per unit volume Es(cs) of bound electrons
and µ on the other hand, are related [10,23], respectively,
by EF = ∂Fn

∂cn
and µ = ∂Es

∂cs
. Then a stable equilibrium is

conditioned [4] by Gibbs and Duhem’s law

EF (T, cn(T )) = µ(cs(T )) , (1)

which expresses [23] that the total free energy Fn + Es is
minimum at T kept fixed, provided ∂EF

∂cn
+ ∂µ

∂cs
> 0. Note-

worthy is that ∂µ
∂cs

< 0 has been shown to be a prereq-
uisite for persistent currents [4], thermal equilibrium [3],
the Josephson effect [5] and a stable [6] superconducting
phase. Likewise, Eq.(1) reads [3, 4, 6] for T = Tc

EF (Tc, c0) = µ(cs = 0) = εB/2 , (2)

with εB being the energy of a bound electron pair [3].
Note that Eqs.(1,2) are consistent with the supercon-
ducting transition being of second order [23], whereas
it has been shown [3] to be of first order at T < Tc

(⇒ EF (T, c0 −cs) > µ(cs)), if the sample is flown through
by a finite current (⇒ cs < cs(T )).

The binding energy of the superconducting state
EB(T < Tc) has been worked out [3, 24] as

EB(T ) =
∫ Tc

T

(Cs(u) − Cn(u)) du ,

with Cs(T ), Cn(T ) being the electronic specific heat of a
superconductor, flown through by a vanishing current [3]
and that of a degenerate Fermi gas [10]. A stable phase
(⇒ EB > 0) requires Cs(Tc) > Cn(Tc), which can be
secured only by fulfilling the following conditions [6]

∂EF

∂cn
(Tc, c0) = − ∂µ

∂cs
(0), ρ′(EF (Tc, c0)) > 0 , (3)

with ρ (ϵ) , ϵ being the one-electron density of states and
energy [10], respectively, and ρ′ = dρ

dϵ .

2-Microscopic parameters. – Since the remaining
analysis relies heavily on Eqs.(2,3), explicit expressions
are needed for EF (Tc, c0), ∂EF

∂cn
(Tc, c0), εB ,

∂µ
∂cs

(0). Because
the independent electrons make up a degenerate Fermi gas
(⇒ T << EF /kB with kB being Boltzmann’s constant),
applying the Sommerfeld expansion [10] up to T 2 yields

EF (Tc, c0) = EF (0, c0) − ρ′

ρ
(πkBTc)2

6
∂EF

∂cn
(Tc, c0) =

(
ρ+ ρ′′ (πkBTc)2

6

)−1 , (4)

with ρ = ρ(EF (0, c0)), ρ′ = dρ
dEF

(EF (0, c0)), ρ′′ =
d2ρ
dE2

F

(EF (0, c0)). As for εB ,
∂µ
∂cs

(0), a truncated Hubbard
Hamiltonian HK , introduced previously [25–27], will be
used. The main features of the calculation [3] are sum-
marised below for self-containedness.

The independent electron motion is described by the
Hamiltonian Hd

Hd =
∑
k,σ

ϵ(k)c+
k,σck,σ .

ϵ(k), k are the one-electron energy (ϵ(k) = ϵ(−k)) and a
vector of the Brillouin zone, respectively, σ = ± is the
electron spin and the sum over k is to be carried out over
the whole Brillouin zone. Then c+

k,σ, ck,σ are creation and
annihilation operators on the Bloch state |k, σ⟩

|k, σ⟩ = c+
k,σ |0⟩ , |0⟩ = ck,σ |k, σ⟩ ,

with |0⟩ being the no electron state. The Hamiltonian HK

reads then

HK = Hd + U

N

∑
k,k′

c+
k,+c

+
K−k,−cK−k′,−ck′,+ ,

with N >> 1, U > 0 being the number of atomic sites,
making up the three-dimensional crystal, and the Hubbard
constant, respectively. Note that the Hamiltonian used by
Cooper [28] is identical to HK=0, but with U < 0.
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HK sustains [3] a single bound pair eigenstate, the en-
ergy εB(K) of which is obtained by solving

1
U

= 1
N

∑
k

1
εB(K) − ε(K, k)

=
∫ tK

−tK

ρK(ε)
εB(K) − ε

dε. (5)

±tK are the upper and lower bounds of the two-electron
band, i.e. the maximum and minimum of the two-electron
energy ε(K, k) = ϵ(k)+ϵ(K−k) over k with K kept fixed,
whereas ρK(ε) is the corresponding two-electron density of
states, taken equal to

ρK(ε) = 2
πtK

√
1 −

(
ε

tK

)2

, −tK ≤ ε ≤ tK .

The dispersion curves εB(K) are plotted in Fig.1.
Though Eq.(5) is identical to the equation yielding the
Cooper pair energy [28], their respective properties are
quite different :

• the data in Fig.1 have been calculated with U > 0,
rather than U < 0 favoured by Cooper [28] and BCS
[1], because, due to the inequality [3] U ∂µ

∂cs
< 0, choos-

ing U < 0 entails ∂µ
∂cs

> 0, which has been shown not
to be consistent with persistent currents [4], thermal
equilibrium [3], the Josephson effect [5] and occurence
[6] of superconductivity. As a further consequence
of U > 0, εB(K) shows up in the upper gap of the
two-electron band structure (⇒ εB(K) > tK) rather
than in the lower gap (⇒ εB(K = 0) < −tK) in
case of the Cooper pair [28]. Nevertheless the bound
pair is thermodynamically stable, because every one-
electron state of energy ϵ(k) ≤ EF (Tc, c0) is occupied
for a degenerate Fermi gas [10], so that, due to Pauli’s
principle, a bound electron pair of energy εB(K) =
2EF (Tc, c0), according to Eq.(2), cannot decay into
two one-electron states ϵ(k) ≤ EF , ϵ(K − k) ≤ EF

such that

ϵ(k) + ϵ(K − k) ≤ εB(K) ;

• a remarkable feature in Fig.1 is that εB(K) → tK
for U → tK/2, so that there is no bound pair for
U < tK/2 (accordingly, the dashed curve is no longer
defined in Fig.1 for Ka

π < .13), in marked contrast
with the opposite conclusion drawn by Cooper [28],
that there is a Cooper pair, even for U → 0. This
discrepancy results from the three-dimensional Van
Hove singularities, showing up at both two-electron
band edges ρK (ε → ±tK) ∝

√
tK − |ε|, unlike the

two-electron density of states, used by Cooper [28]
which is constant and thence displays no such singu-
larity. Likewise the width of Cooper’s two-electron
band is equal to a Debye phonon energy 2tK=0 =
ωD ≈ 30meV<< EF ≈ 3eV. Hence the result-
ing small concentration of superconducting electrons,
cs(T =0)

c0
≈ ωD

EF
≈ .01, entails that London’s length

should be at least 10 times larger than observed val-
ues [19–22];

• at last Cooper’s assumption U < 0 implies εB/2 <
EF (Tc), which is typical of a first order transition but
runs afoul at all measurements, proving conversely
the superconducting transition to be of second order
(⇒ εB/2 = EF (Tc) in accordance with Eq.(2)).

The bound pair of energy εB(K) turns [3], at finite con-
centration cs, into a MBE state, characterised by µ(cs).
Its properties have been calculated thanks to a variational
procedure, displaying several merits with respect to that
used by BCS [1] :

• it shows that µ(0) = εB/2;

• the energy of the MBE state has been shown to be
exact for |U | → ∞;

• an analytical expression has been worked out for
∂µ
∂cs

(K, cs = 0) as :

∂µ

∂cs
(K, cs = 0) = −

∫ tK

−tK

ρK(ε)
(εB(K)−ε)3 dε

2
(∫ tK

−tK

ρK (ε)
(εB(K)−ε)2 dε

)2 . (6)

Note that εB(K) → tK ⇒
∣∣∣ ∂µ

∂cs
(K, cs = 0)

∣∣∣ → ∞.
At last, focussing on HK instead of the Hubbard Hamil-

tonian H, as done above, deserves a special comment. H
can be written as

H = Hd +
∑
K

(HK −Hd) .

The bound electron pair of eigenenergy εB(K) is indeed an
eigenstate of both HK and H, whereas the BCS scheme
[1], introduced to approximate the many bound electron
eigenstate ψK of HK , cannot be applied to H. However
HK is not a realistic Hamiltonian, because it involves four-
electron forces, whenever it is Fourier transformed back
into real space. Thus ψK is seen to be of little signifi-
cance, unless it happens to be an eigenstate ofH too. Such
a claim, which has been demonstrated [25] but within a
Hilbert space, containing the usual [10] one S, as a sub-
space, will be proved in S too, in a forthcoming publica-
tion.

3-Tc versus electron concentration. – The Tc de-
pendence on c0 will be discussed by assigning to the one-
electron density of states the expression valid for free elec-
trons [10]

ρ(ϵ) = η
√
ϵ− ϵb ⇒ c0 = 2

3
η (EF (0, c0) − ϵb)

3
2 , (7)

with η =
√

2m
3
2 V

π2h̄3 , whereas ϵb,m, V = 17Å3 stand for the
bottom of the conduction band, electron mass and vol-
ume of the unit-cell, respectively. With help of Eq.(4),
Eqs.(2,3) can be recast into a system of two equations

EF (0, c0) − ρ′

ρ
(πkBTc)2

6 − εB(K)
2 = 0(

ρ+ ρ′′ (πkBTc)2

6

)−1
+ ∂µ

∂cs
(K, cs = 0) = 0

, (8)
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Fig. 1: Dispersion curves of tK as a dashed-dotted line, and of
εB(K) as solid, dotted and dashed lines, associated with vari-
ous U values, respectively; those data have been obtained with
tK = t cos (Ka/2), where t, a are the one-electron bandwidth
and the lattice parameter, respectively.

to be solved for the two unknowns c0(Tc), tK(Tc) with Tc

being dealt with as a disposable parameter.
To that end, starting values are assigned to U, tK , which

gives access to εB(K), ∂µ
∂cs

(K, cs = 0)) and thence to
EF (0, c0) , ϵb and finally to c0, owing to Eqs.(2,3,7). Those
values of c0, tK are then fed into Eqs.(8) to launch a New-
ton procedure, yielding the solutions c0(Tc), tK(Tc). The
results are presented in table 1. Since we intend to apply
this analysis to high-Tc compounds [7], we have focused
upon low concentrations c0 < 0.2, which entails, in view
of Eqs.(4,7), that

∣∣∣ ∂µ
∂cs

∣∣∣ takes a high value. This requires
in turn εB(K) → tK (see Eq.(6)) and thence [3] U → tK

2 ,
in agreement with tK

U ≈ 2 in table 1.
A remarkable property of the data in table 1 is that

c0, tK are barely sensitive to large variations of Tc, i.e.
|δc0| < 10−3, |δtK | < 10−5 for δTc ≈ 400K. This can be
understood as follows : taking advantage of Eqs.(2,4,7)
results into

2EF (0, c0)
εB(K)

− 1 = π2

12

(
kBTc

∆(Tc)

)2

,

which, due to dtK

dTc
≈ 0,∆(Tc) ≈ 1eV, Tc = 400K, yields

indeed δc0 = c0(400K) − c0(1K) ≈ 10−3, in agreement
with the data in table 1. Such a result is significant in two
respects, regarding high-Tc compounds, for which c0 can
be varied over a wide range :

• because of dc0
dTc

≈ 0, the one-electron band structure
can be regarded safely as c0 independent, which en-
hances the usefulness of the above analysis;

Table 1: Solutions c0(Tc), tK(Tc), ∆(Tc) (∆(Tc) =
EF (0, c0(Tc)) − ϵb) of Eqs.(8); tK , ∆, U are expressed in
eV, whereas the unit for c0 is the number of conduction
electrons per atomic site.

Tc(K) c0 tK ∆
1 0.10215 6 1.1976

400 0.10225 5.9999 1.1984
U = 3.39

Tc(K) c0 tK ∆
1 0.14897 2 1.5402

400 0.14906 1.9999 1.5407
U = 1.04

Tc(K) c0 tK ∆
1 0.19158 4 1.8214

400 0.19167 3.9999 1.8219
U = 2.2

• the large doping rate up to ≈ 0.2 is likely to give
rise to local fluctuations of c0. Hence, in view of the
utmost sensitivity of Tc with respect to c0, this will
result into a heterogeneous sample, consisting in do-
mains, displaying Tc varying from 0 up to a few hun-
dreds of K. Thus the observed Tc turns out to be
the upper bound of a broad distribution of Tc val-
ues, associated with superconducting regions, the set
of which makes up a percolation path throughout the
sample. However, if the daunting challenge of making
samples, wherein local c0 fluctuations would be kept
well below 10−4, could be overcome, this might pave
the way to superconductivity at room temperature.

4-Tc versus inter-electron coupling. – The Tc de-
pendence upon U will be analysed with the one-electron
density of states

ρ(ϵ) = 4
πt

√
1 −

(
1 − ϵ

t

)2
,

where 2t stands for the one-electron bandwidth (⇒ 0 ≤
ϵ ≤ 2t). Our purpose is to determine the unknowns
tK(EF , Tc), U(EF , Tc) with

EF = EF (T = 0, c0) , c0 =
∫ EF

0
ρ(ϵ)dϵ .

To that end, Eq.(3) will first be solved for tK by replacing
∂EF

∂cn
(Tc, c0), ∂µ

∂cs
(0) by their expressions given by Eqs.(4,6),

while taking advantage of Eq.(2). Then the obtained tK
value is fed into Eq.(5) to determine U . The results are
presented in Fig.2.

It can be noticed that there is no solution for c0 > .75,
because ∂EF

∂cn
(Tc, c0) ≈ 1

ρ (EF (0, c0)) and ∂µ
∂cs

(0) > U
2 de-

crease and increase, respectively, with increasing c0, so
that Eq.(3) can no longer be fulfilled eventually. This
property is indeed observed in high Tc compounds, for
which Tc decreases down to 0 for c0 > .25.

p-4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 May 2021                   doi:10.20944/preprints202011.0602.v4

https://doi.org/10.20944/preprints202011.0602.v4


Towards room-temperature superconductivity

Fig. 2: Plots of EF (Tc, c0), tK(Tc, c0), U(Tc, c0) calculated for
Tc = 1K and t = 3eV; the unit for c0 is the number of conduc-
tion electrons per atomic site; δf with f = EF , tK , U is defined
as δf =

∣∣∣1 − f(300K,c0)
f(1K,c0)

∣∣∣; the scale is linear for EF
t

, tK
t

, U
t

on the
left hand side, but logarithmic for dimensionless δEF , δtK , δU
on the right hand side.

But the most significant feature is that δU is almost
insensitive to large Tc variation, except for EF → 0, i.e.
for EF close to the Van Hove singularity, located at the
bottom of the one-electron band, which has two conse-
quences:

• c0 cannot be varied in most superconducting materi-
als, apart from high-Tc compounds, so that U is un-
likely to be equal to U(c0), indicated in Fig.2. Con-
versely, since high-Tc compounds allow for wide c0
variation, c0 can be tuned so that U = U(c0);

• the only possibility for a non high-Tc material to turn
superconducting is then offered at the bottom of the
band, because δU becomes large due to ρ′

ρ (EF →
0) ∝ 1

EF
in Eq.(4). Such a conclusion, that super-

conductivity was likely to occur in the vicinity of a
Van Hove singularity in low-Tc materials, had already
been drawn independently, based on magnetostriction
data [3].

It will be shown now that the one and two-electron den-
sities of states ρ(ϵ), ρK(ε) cannot stem from the same one-
electron band. The proof is by contradiction. As a matter
of fact the one-electron density of states should read in
that case

ρ(ϵ) = 4
πt

√
1 −

(ϵ
t

)2
.

Hence U > 0 entails, in view of Fig.1 and Eq.(2), that
there is εB

2 = EF > 0, which implies ρ′(EF ) < 0 in con-
tradiction with Eq.(3). Accordingly, since the two different

one-electron bands, giving rise to ρ(ϵ), ρK(ε), respectively,
display a sizeable overlap, they should in addition belong
to different symmetry classes of the crystal point group, so
that superconductivity cannot arise if there are only s-like
electrons at EF (no alcali or noble metal is indeed super-
conducting) or if the point group reduces to identity. At
last superconductivity is inferred not to occur in case of
an almost full conduction band, because it is tantamount
to EF being located near the upper band-edge and thence
implies ρ′(EF (Tc, c0)) < 0, in contradiction with Eq.(3).
Noteworthy is that all of those hereabove conclusions had
already been drawn empirically [2].

Conclusion. – This work, combined with our previ-
ous publications [3–6, 19–22], is aimed at presenting the
reader with a comprehensive, albeit elementary solution,
based mainly on thermodynamics, of the long-standing
riddle of superconductivity. The critical temperature Tc

has been calculated for conduction electrons, coupled via
a repulsive force, within a model based on two conditions,
expressed in Eqs.(2,3) and characterising a second order
transition happening at Tc. It should be noted that Eq.(3),
unlike Eq.(2), is difficult to fulfil. Likewise, the unfor-
tunate consequences of an attractive inter-electron force,
assumed by BCS [1], have been analysed.

Superconductivity occurring in conventional materials
has been shown to require EF (Tc) being located near a
Van Hove singularity of the one-electron band structure,
whereas a practical route towards still higher Tc values
has been delineated in high-Tc compounds, provided the
local electron concentration can be controlled accurately.
At last, the thermodynamical criterions in Eqs.(2,3) un-
veil the close interplay between independent and bound
electrons in giving rise to superconductivity.

Since magnetic (ferromagnetic, antiferromagnetic, ferri-
magnetic, static spin-wave...) transitions are also of sec-
ond order and involve only conduction electrons [29], it
might be tempting to apply the thermodynamical con-
ditions in Eqs.(2,3) to the study of this case. However
this cannot be done, because the electrons, responsible for
the magnetic long-range order, are localised or Wannier-
like [10], unlike the normal and bound electrons which are
itinerant and Bloch-like [10]. Hence tackling the magnetic
issue will require a dedicated approach.
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