2

5

۲

Towards room-temperature superconductivity

Jacob Szeftel¹,* Nicolas Sandeau², Michel Abou Ghantous³, and Muhammad El-Saba⁴

¹ENS Paris-Saclay/LuMIn, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France

²Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France

³American University of Technology, AUT Halat, Highway, Lebanon and

⁴Ain-Shams University, Cairo, Egypt

By taking advantage of a stability criterion established recently, the critical temperature T_c is reckoned with help of the microscopic parameters, characterising the normal and superconducting electrons, namely the independent-electron band structure and a *repulsive* two-electron force. The emphasis is laid on the sharp T_c dependence upon electron concentration and inter-electron coupling, which might offer a practical route toward higher T_c values and help to understand why high- T_c compounds exhibit such remarkable properties.

PACS numbers: 74.25.Bt,74.25.Jb,74.62.Bf

The BCS theory [1], despite its impressive success, does 8 ⁹ not enable one to predict superconductivity occurring in ¹⁰ any metallic compound. Such a drawback ensues from ¹¹ an *attractive* interaction, assumed to couple electrons to-¹² gether, which is not only at loggerheads with the sign of ¹³ the Coulomb repulsion but in addition leads to questionable conclusions to be discussed below. Therefore this 14 work is intended at investigating the T_c dependence upon 15 the parameters, characterising the motion of electrons 16 correlated together through a *repulsive* force, within the 17 framework of a two-fluid picture [2] to be recalled below. 18 The conduction electrons comprise bound and inde-19 ²⁰ pendent electrons, in respective temperature dependent concentration $c_s(T), c_n(T)$, such that $c_0 = c_s(T) + c_n(T)$ 21 with c_0 being the total concentration of conduction elec-22 trons. They are organized, respectively, as a many bound 23 ²⁴ electron[3] (MBE) state, characterised by its chemical ²⁵ potential $\mu(c_s)$, and a Fermi gas [4] of Fermi energy $_{26} E_F(T, c_n)$. The Helmholz free energy of independent ²⁷ electrons per unit volume F_n and E_F on the one hand, 28 and the eigenenergy per unit volume $\mathcal{E}_s(c_s)$ of bound ²⁹ electrons and μ on the other hand, are related [4, 5], re-³⁰ spectively, by $E_F = \frac{\partial F_n}{\partial c_n}$ and $\mu = \frac{\partial \mathcal{E}_s}{\partial c_s}$. Then a stable ³¹ equilibrium is conditioned[6] by Gibbs and Duhem's law

$$E_F(T, c_n(T)) = \mu(c_s(T)) \quad , \tag{1}$$

³² which expresses[5] that the total free energy $F_n + \mathcal{E}_s$ is ³³ minimum provided $\frac{\partial E_F}{\partial c_n} + \frac{\partial \mu}{\partial c_s} > 0$. Noteworthy is that ³⁴ $\frac{\partial \mu}{\partial c_s} < 0$ has been shown to be a prerequisite for per-³⁵ sistent currents[6], thermal equilibrium[3], the Josephson ³⁶ effect[7] and a stable[2] superconducting phase. Likewise, ³⁷ Eq.(1) reads[3, 6] for $T = T_c$

$$E_F(T_c, c_0) = \mu(c_s = 0) = \varepsilon_b/2$$
 , (2)

³⁸ with ε_b being the energy of a bound electron pair[3]. Note ³⁹ that Eqs.(1,2) are consistent with the superconducting ⁴⁰ transition being of second order[5], whereas it has been ⁴¹ shown[3] to be of first order at $T < T_c \ (\Rightarrow E_F(T, c_0 - c_s) \neq \mu(c_s))$, if the sample is flown through by a finite ⁴³ current. The binding energy[3] of the superconducting state $E_b(T < T_c)$ has been worked out as

$$E_b(T) = \int_T^{T_c} \left(C_s(u) - C_n(u) \right) du$$

⁴⁴ with $C_s(T), C_n(T)$ being the electronic specific heat of a ⁴⁵ superconductor, flown through by a vanishing current[3] ⁴⁶ and that of a degenerate Fermi gas[4]. A stable phase ⁴⁷ ($\Rightarrow E_b > 0$) requires $C_s(T_c) > C_n(T_c)$, which can be ⁴⁸ secured[2] only by fulfilling the following condition

$$\frac{\partial E_F}{\partial c_n}(T_c, c_0) = -\frac{\partial \mu}{\partial c_s}(0), \quad \rho'(E_F(T_c, c_0)) > 0 \quad , \quad (3)$$

⁴⁹ with $\rho(\epsilon)$, ϵ being the independent electron density of ⁵⁰ states and one-electron energy, respectively, and $\rho' = \frac{d\rho}{d\epsilon}$. ⁵¹ Since the remaining analysis relies heavily on ⁵² Eqs.(2,3), explicit expressions are needed for ⁵³ $E_F(T_c, c_0), \frac{\partial E_F}{\partial c_n}(T_c, c_0), \varepsilon_b, \frac{\partial \mu}{\partial c_s}(0)$. Because the in-⁵⁴ dependent electrons make up a degenerate Fermi gas ⁵⁵ ($\Rightarrow T << E_F/k_B$ with k_B being Boltzmann's constant), ⁵⁶ applying the Sommerfeld expansion[4] up to T^2 yields

$$E_F(T_c, c_0) = E_F(0, c_0) - \frac{\rho'}{\rho} \frac{(\pi k_B T_c)^2}{6} \\ \frac{\partial E_F}{\partial c_n}(T_c, c_0) = \left(\rho + \rho'' \frac{(\pi k_B T_c)^2}{6}\right)^{-1} , \qquad (4)$$

⁵⁷ with $\rho = \rho(E_F(0,c_0)), \rho' = \frac{d\rho}{dE_F}(E_F(0,c_0)), \rho'' =$ ⁵⁸ $\frac{d^2\rho}{dE_F^2}(E_F(0,c_0))$. As for $\varepsilon_b, \frac{\partial\mu}{\partial c_s}(0)$, a truncated Hubbard ⁵⁹ Hamiltonian H_K , introduced previously[8–10], will be ⁶⁰ used. The main features of the calculation[3] are sum-⁶¹ marised below for self-containedness.

The independent electron motion is described by the Hamiltonian H_d

$$H_d = \sum_{k,\sigma} \epsilon(k) c^+_{k,\sigma} c_{k,\sigma}$$

 $\epsilon(k), k$ are the one-electron energy $(\epsilon(k) = \epsilon(-k))$ and a vector of the Brillouin zone, respectively, $\sigma = \pm$ is the

electron spin and the sum over k is to be carried out over $_{93}$ the whole Brillouin zone. Then $c_{k,\sigma}^+$, $c_{k,\sigma}$ are creation and 94 annihilation operators on the Bloch state $|k, \sigma\rangle$

$$|k,\sigma\rangle = c^+_{k,\sigma} |0\rangle \quad , \quad |0\rangle = c_{k,\sigma} |k,\sigma\rangle \quad ,$$

95

96

97

98

99

100

101

102

103

109

119

with $|0\rangle$ being the no electron state. The Hamiltonian H_K reads then

$$H_K = H_d + \frac{U}{N} \sum_{k,k'} c^+_{k,+} c^+_{K-k,-} c_{K-k',-} c_{k',+} \quad ,$$

104 62 with N >> 1, U > 0 being the number of atomic sites, 105 63 making up the three-dimensional crystal, and the Hub-106 ⁶⁴ bard constant, respectively. Note that the Hamiltonian 107 used by Cooper[11] is identical to $H_{K=0}$, but with U < 0. H_K sustains [3] a single bound pair eigenstate, the en-108

⁶⁷ ergy $\varepsilon_b(K)$ of which is obtained by solving

$$\frac{1}{U} = \frac{1}{N} \sum_{k} \frac{1}{\varepsilon_b(K) - \varepsilon(K,k)} = \int_{-t_K}^{t_K} \frac{\rho_K(\varepsilon)}{\varepsilon_b(K) - \varepsilon} d\varepsilon. \quad (5) \quad (5)$$

 $\pm t_K$ are the upper and lower bounds of the two-electron band, i.e. the maximum and minimum of $\varepsilon(K,k) =$ two-electron density of states, taken equal to

$$\rho_K(\varepsilon) = \frac{2}{\pi t_K} \sqrt{1 - \left(\frac{\varepsilon}{t_K}\right)^2} \quad . \label{eq:rho_K}$$

The dispersion curves $\varepsilon_b(K)$ are plotted in Fig.1. ¹²⁰ 68 ⁶⁹ Though Eq.(5) is identical to the equation yielding the 121Cooper pair energy [11], their respective properties are 70 122 71 quite different : 123

- the data in Fig.1 have been calculated with U > 0, 72 rather than U < 0 favoured by Cooper[11] and 73 BCS[1], because, due to the inequality[3] $U \frac{\partial \mu}{\partial c_s} <$ 74 0, choosing U < 0 entails $\frac{\partial \mu}{\partial c_s} > 0$, which has 75 been shown *not* to be consistent with persistent 76 currents[6], thermal equilibrium[3], the Josephson 77 effect[7] and occurance[2] of superconductivity. As 78 a further consequence of U > 0, $\varepsilon_b(K)$ shows up 79 in the upper gap of the two-electron band struc-80 ture $(\Rightarrow \varepsilon_b(K) > t_K)$ rather than in the lower 81 gap ($\Rightarrow \varepsilon_b(K=0) < -t_K$) in case of the Cooper 82 pair[11]. Nevertheless the bound pair is thermo-83 dynamically stable, because, as a consequence of 84 $E_F(T_c, c_0) = \varepsilon_b(K)/2$ in Eq.(2), every one-electron 85 state of energy $\langle \varepsilon_b(K)/2$ is actually occupied, so 86 that, due to Pauli's principle, a bound electron pair 87 cannot decay into two one-electron states of energy 88 $\epsilon(k) < E_F, \epsilon(K-k) < E_F;$ 89
- a remarkable feature in Fig.1 is that $\varepsilon_b(K) \to t_K$ 90
- 91
- $U < t_K/2$ (accordingly, the dashed curve is no 132 being dealt with as a disposable parameter. 92

longer defined in Fig.1 for $\frac{Ka}{\pi}$ < .13), in marked contrast with the opposite conclusion reached by Cooper[11], that there is a Cooper pair, even for $U \to 0$. This discrepancy results from the threedimensional Van Hove singularities, showing up at both two-electron band edges $\rho_K (\varepsilon \to \pm t_K) \propto$ $\sqrt{t_K - |\varepsilon|}$, unlike the two-electron density of states, used by Cooper[11] which is constant and thence displays no such singularity. Likewise the width of Cooper's two-electron band is equal to a Debye phonon energy $2t_{K=0} = \omega_D \approx 30 meV \ll E_F \approx$ 3eV. Hence the resulting small concentration of superconducting electrons, $\frac{c_s(T=0)}{c_0} \approx \frac{\omega_D}{E_F} \approx .01$, entails that London's length should be at least 10 times larger than observed values [12–15];

• at last Cooper's assumption U < 0 implies $\varepsilon_b/2 \neq$ $E_F(T_c)$, which is typical of a first order transition but runs afoul at all measurements, proving conversely the superconducting transition to be of second order $(\Rightarrow \varepsilon_b/2 = E_F(T_c))$ in accordance with Eq.(2)).

The bound pair of energy $\varepsilon_b(K)$ turns, at finite concen-114 $\epsilon(k) + \epsilon(K-k)$ over k, whereas $\rho_K(\varepsilon)$ is the corresponding ¹¹⁵ tration c_s , into a MBE state, characterised by $\mu(c_s)$. Its ¹¹⁶ properties have been calculated thanks to a variational ¹¹⁷ procedure[3], displaying several merits with respect to ¹¹⁸ that used by BCS[1]:

- it has been shown that $\mu(0) = \varepsilon_b/2$;
 - the energy of the MBE state has been shown to be exact for $|U| \to \infty$;
- an analytical expression has been worked out for $\frac{\partial \mu}{\partial c_s}(K, c_s = 0)$ as :

$$\frac{\partial \mu}{\partial c_s}(K, c_s = 0) = -\frac{\int_{-t_K}^{t_K} \frac{\rho_K(\varepsilon)}{(\varepsilon_b(K) - \varepsilon)^3} d\varepsilon}{2\left(\int_{-t_K}^{t_K} \frac{\rho_K(\varepsilon)}{(\varepsilon_b(K) - \varepsilon)^2} d\varepsilon\right)^2} \quad . \tag{6}$$

The T_c dependence on c_0 will be discussed inside a 124 ¹²⁵ model for which $\rho(\epsilon)$ is defined as

$$\rho(\epsilon) = \eta \sqrt{\epsilon - \epsilon_b} \Rightarrow c_0 = \frac{2}{3} \eta \left(E_F(0, c_0) - \epsilon_b \right)^{\frac{3}{2}} \quad , \quad (7)$$

¹²⁶ with $\eta = \frac{\sqrt{2}m^{\frac{3}{2}}V}{\pi^{2}\hbar^{3}}$, whereas $\epsilon_{b}, m, V = 17\text{\AA}^{3}$ stand for ¹²⁷ the bottom of the conduction band, electron mass and ¹²⁸ volume of the unit-cell, respectively.

129 With help of Eq.(4), Eqs(2,3) can be recast into a 130 system of two equations

$$E_F(0, c_0) - \frac{\rho'}{\rho} \frac{(\pi k_B T_c)^2}{6} - \frac{\varepsilon_b(K)}{2} = 0 \left(\rho + \rho'' \frac{(\pi k_B T_c)^2}{6}\right)^{-1} + \frac{\partial \mu}{\partial c_s} (K, c_s = 0) = 0$$
(8)

for $U \to t_K/2$, so that there is no bound pair for 131 to be solved for the two unknowns $c_0(T_c), t_K(T_c)$ with T_c

FIG. 1. Dispersion curves of t_K as a dashed-dotted line and of $\varepsilon_h(K)$ as solid, dashed and dotted lines, associated with various U values, respectively; those data have been obtained with $t_K = t \cos{(Ka/2)}$, where t, a are the one-electron band-156 width and the lattice parameter, respectively.

157

158

182

183

159 To that end, starting values are assigned to U, t_K , 133 which gives access to $\varepsilon_b(K), \frac{\partial \mu}{\partial c_s}(K, c_s = 0))$ and 160 134 161 thence to $E_F(0, c_0), \epsilon_b$ and finally to c_0 , owing to 162 Eqs.(2,3,7). Those values of c_0, t_K are then fed into 136 163 Eqs.(8) to launch a Newton procedure, yielding the so-164 ¹³⁸ lutions $c_0(T_c), t_K(T_c)$. The results are presented in ta-165 ble I. Since we intend to apply this analysis to high- T_c 139 ¹⁴⁰ compounds [16], we have focused upon low concentrations $_{141} c_0 < 0.2$, which entails, in view of Eqs.(4,7), that $\left| \frac{\partial \mu}{\partial c_s} \right|$ 142 takes a high value. This requires in turn $\varepsilon_b(K) \to t_K$ ¹⁴³ (see Eq.(6)) and thence [3] $U \to \frac{t_K}{2}$, in agreement with 144 $\frac{t_K}{U} \approx 2$ in table I.

A remarkable property of the data in table I is that 167 Our purpose is to determine the $|\delta c_0| < 10^{-3}, |\delta t_K| < 10^{-5}$ for $\delta T_c \approx 400 K$. This can be understood as follows : taking advantage of Eqs.(2,4,7)results into

$$\frac{2E_F(0,c_0)}{\varepsilon_b(K)} - 1 = \frac{\pi^2}{12} \left(\frac{k_B T_c}{\Delta(T_c)}\right)^2 \quad ,$$

146 indeed $\delta c_0 = c_0(400K) - c_0(1K) \approx 10^{-3}$, in agreement ¹⁴⁷ with the data in table I. Such a result is significant in ¹⁴⁸ two respects, regarding high- T_c compounds, for which c_0 can be varied over a wide range : 149

- because of $\frac{dc_0}{dT_c} \approx 0$, the one-electron band structure 181 band, which has two consequences : 150 can be regarded safely as c_0 independent, which 151 enhances the usefulness of the above analysis; 152
- the large doping rate up to ≈ 0.2 is likely to give rise 184 153 to local fluctuations of c_0 , which, in view of the ut- 185 154 most sensitivity of T_c with respect to c_0 , will result 186 155

TABLE I. Solutions $c_0(T_c), t_K(T_c), \Delta(T_c)$ ($\Delta(T_c)$) _ $E_F(0, c_0(T_c)) - \epsilon_b)$ of Eqs.(8); the unit for c_0 is the number of conduction electrons per atomic site.

$T_c(K)$	c_0	$t_K(eV)$	$\Delta(eV)$	U(eV)
1	0.10215	6	1.1976	3.39
400	0.10225	5.9999	1.1984	3.39

$T_c(K)$	c_0	$t_K(eV)$	$\Delta(eV)$	U(eV)
1	0.14897	2	1.5402	1.04
400	0.14906	1.9999	1.5407	1.04

$T_c(K)$	c_0	$t_K(eV)$	$\Delta(eV)$	U(eV)
1	0.19158	4	1.8214	2.2
400	0.19167	3.9999	1.8219	2.2

into a heterogeneous sample, consisting in domains, displaying T_c varying from 0 up to a few hundreds of K. Thus the observed T_c turns out to be the upper bound of a broad distribution of T_c values, associated with superconducting regions, the set of which makes up a percolation path throughout the sample. However, if the daunting challenge of making samples, wherein local c_0 fluctuations would be kept well below 10^{-4} , could be overcome, this might pave the way to superconductivity at room temperature.

The T_c dependence upon U will be analysed with

$$\rho(\epsilon) = \frac{4}{\pi t} \sqrt{1 - \left(1 - \frac{\epsilon}{t}\right)^2}$$

unknowns c_0, t_K are barely sensitive to large variations of T_c , i.e. ${}_{168} t_K(E_F, T_c), U(E_F, T_c)$ with $E_F = E_F(T = 0, c_0)$ 169 and $c_0 = \int_0^{E_F} \rho(\epsilon) d\epsilon$. To that end, Eq.(3) will first be ¹⁷⁰ solved for t_K by replacing $\frac{\partial E_F}{\partial c_n}(T_c, c_0), \frac{\partial \mu}{\partial c_s}(0)$ by their ¹⁷¹ expressions given by Eqs.(4,6), while taking advantage ¹⁷² of Eq.(2). Then the obtained t_K value is fed into Eq.(5) $_{173}$ to determine U. The results are presented in Fig.2.

 $\varepsilon_b(K)$ 12 $(\Delta(I_c))$ 174 It can be noticed that there is no solution for $c_0 > 1$ 175 Which, due to $\frac{dt_K}{dT_c} \approx 0, \Delta(T_c) \approx 1 eV, T_c = 400K$, yields 176 decrease and increase, respectively, with increasing c_0 , so that Eq.(3) can no longer be fulfilled eventually. But the 177 $_{178}$ most significant feature is that δU is almost insensitive ¹⁷⁹ to large T_c variation, except for $E_F \to 0$, i.e. for E_F close 180 to the Van Hove singularity, located at the bottom of the

> • c_0 cannot be varied in most superconducting materials, apart from high- T_c compounds, so that U is unlikely to be equal to $U(c_0)$, indicated in Fig.2. Conversely, since high- T_c compounds allow for wide c_0 variation, c_0 can be tuned so that $U = U(c_0)$;

FIG. 2. Plots of $E_F(T_c, c_0), t_K(T_c, c_0), U(T_c, c_0)$ calculated for $T_c = 1K$ and t = 3eV; the unit for c_0 is the number of conduction electrons per atomic site; δf with $f = E_F, t_K, U$ is defined as $\delta f = \left| 1 - \frac{f(300K,c_0)}{f(1K,c_0)} \right|$; the scale is linear for E_F, t_K, U 220 but logarithmic for $\delta E_F, \delta t_K, \delta U$.

• the only possibility for a non high- T_c material to 187 225 turn superconducting is then offered at the bot-188 226 tom of the band, because δU becomes large due to 227 189 $\frac{\rho'}{\rho}(E_F \to 0) \propto \frac{1}{E_F}$ in Eq.(4). Such a conclusion, ²²⁸ that superconductivity was likely to occur in the ²²⁹ 190 191 230 vicinity of a Van Hove singularity in low- T_c ma-192 231 terials, had already been reached[3] independently, 193 232 based on magnetostriction data. 194 233

It will be shown now that $\rho(\epsilon)$, $\rho_K(\varepsilon)$ cannot stem from ²³⁵ the same one-electron band. The proof is by contradiction. As a matter of fact $\rho(\epsilon)$ should read in that case

$$\rho(\epsilon) = \frac{4}{\pi t} \sqrt{1 - \left(\frac{\epsilon}{t}\right)^2}$$

¹⁹⁵ Hence U > 0 entails, in view of Fig.1 and Eq.(2), that ²⁴³ ¹⁹⁶ there is $\frac{\varepsilon_b}{2} = E_F > 0$, which implies $\rho'(E_F) < 0$ in con-²⁴⁴ tradiction with Eq.(3). Accordingly, since the two differ-197 ¹⁹⁸ ent one-electron bands, defining respectively $\rho(\epsilon), \rho_K(\varepsilon),$ ¹⁹⁹ display a sizeable overlap, they should in addition belong 200 to different symmetry classes of the crystal point group, 201 so that superconductivity cannot be observed if there are 250 [16] N.P. Armitage, P. Fournier and R.L. $_{202}$ only s-like electrons at E_F or if the point group reduces $_{251}$ ²⁰³ to identity. Noteworthy is that those conclusions had ²⁵² [17] ²⁰⁴ already been reached empirically by Matthias [17].

The critical temperature T_c has been calculated for 205 conduction electrons, coupled via a repulsive force, 206 within a model based on conditions, expressed in 207 Eqs.(2,3). Superconductivity occurring in conventional 208 materials has been shown to require $E_F(T_c)$ being lo-209 210 cated near a Van Hove singularity, whereas a practical route towards still higher T_c values has been delineated 211 in high- T_c compounds, provided the upper bound of lo-212 cal c_0 fluctuations can be kept very low. The thermody-213 $_{214}$ namical criterions in Eqs.(2,3) unveil the close interplay between independent and bound electrons in giving rise 215 216 to superconductivity. At last, it should be noted that $_{217}$ Eqs.(2,3) could be applied as well to any second order ²¹⁸ transition, involving only conduction electrons, such as ²¹⁹ ferromagnetism or antiferromagnetism.

corresponding author : jszeftel@lpqm.ens-cachan.fr

221

222

223

224

234

236 237

238

239

245

247

- [1]J.R. Schrieffer, Theory of Superconductivity, ed. Addison-Wesley (1993)
- J. Szeftel, N. Sandeau, M. Abou Ghantous and M. El [2]Saba, J.Supercond.Nov.Mag., doi : 10.1007/s10948-020-05743-4
- [3] J. Szeftel, N. Sandeau and M. Abou Ghantous, J.Supercond.Nov.Mag., 33 (2020) 1307
- [4] N.W. Ashcroft and N. D. Mermin, Solid State Physics, ed. Saunders College (1976)
- [5] L.D. Landau and E.M. Lifshitz, Statistical Physics, ed. Pergamon Press (1959)
- [6] J. Szeftel, N. Sandeau and M. Abou Ghantous, Eur.Phys.J.B, 92 (2019) 67
- [7] J. Szeftel, N. Sandeau and M. Abou Ghantous, arXiv : 2003.07196
- [8] J. Szeftel and A. Khater, Phys.Rev.B, 54 (1996) 13581
- [9]J. Szeftel, Electron Correlations and Material Properties 2, eds. A. Gonis, N. Kioussis, M. Ciftan, (Kluwer Academic, New York, 2003)
- J. Szeftel and M. Caffarel, J.Phys. A, 37 (2004) 623 [10]240
- [11] L.N. Cooper, Phys. Rev., 104 (1956) 1189 241
- J. Szeftel, N. Sandeau and A. Khater, Phys.Lett.A, 381 242 [12](2017) 1525
 - [13]J. Szeftel, Khater, Ν. Sandeau and А. Prog.In.Electro.Res.M, 69 (2018) 69
- [14]J. Szeftel, M. Abou Ghantous and N. Sandeau, 246 Prog.In.Electro.Res.L, 81 (2019) 1
- 248 [15] J. Szeftel, N. Sandeau, M. Abou Ghantous and A. 249 Khater, EPL, 131 (2020) 17003
 - Greene. Rev.Mod.Phys., 82 (2010) 2421
- B. T. Matthias, T. H. Geballe and V. B. Compton, Rev.Mod.Phys., 35 (1963) 1 253