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By taking advantage of a stability criterion established recently, the critical temperature Tc is
reckoned with help of the microscopic parameters, characterising the normal and superconducting
electrons, namely the independent-electron band structure and a repulsive two-electron force. The
emphasis is laid on the sharp Tc dependence upon electron concentration and inter-electron coupling,
which might offer a practical route toward higher Tc values and help to understand why high-Tc

compounds exhibit such remarkable properties.
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The BCS theory[1], despite its impressive success, does8

not enable one to predict superconductivity occurring in9

any metallic compound. Such a drawback ensues from10

an attractive interaction, assumed to couple electrons to-11

gether, which is not only at loggerheads with the sign of12

the Coulomb repulsion but in addition leads to question-13

able conclusions to be discussed below. Therefore this14

work is intended at investigating the Tc dependence upon15

the parameters, characterising the motion of electrons16

correlated together through a repulsive force, within the17

framework of a two-fluid picture[2] to be recalled below.18

The conduction electrons comprise bound and inde-19

pendent electrons, in respective temperature dependent20

concentration cs(T ), cn(T ), such that c0 = cs(T ) + cn(T )21

with c0 being the total concentration of conduction elec-22

trons. They are organized, respectively, as a many bound23

electron[3] (MBE) state, characterised by its chemical24

potential µ(cs), and a Fermi gas[4] of Fermi energy25

EF (T, cn). The Helmholz free energy of independent26

electrons per unit volume Fn and EF on the one hand,27

and the eigenenergy per unit volume Es(cs) of bound28

electrons and µ on the other hand, are related[4, 5], re-29

spectively, by EF = ∂Fn

∂cn
and µ = ∂Es

∂cs
. Then a stable30

equilibrium is conditioned[6] by Gibbs and Duhem’s law31

EF (T, cn(T )) = µ(cs(T )) , (1)

which expresses[5] that the total free energy Fn + Es is32

minimum provided ∂EF

∂cn
+ ∂µ

∂cs
> 0. Noteworthy is that33

∂µ
∂cs

< 0 has been shown to be a prerequisite for per-34

sistent currents[6], thermal equilibrium[3], the Josephson35

effect[7] and a stable[2] superconducting phase. Likewise,36

Eq.(1) reads[3, 6] for T = Tc37

EF (Tc, c0) = µ(cs = 0) = εb/2 , (2)

with εb being the energy of a bound electron pair[3]. Note38

that Eqs.(1,2) are consistent with the superconducting39

transition being of second order[5], whereas it has been40

shown[3] to be of first order at T < Tc (⇒ EF (T, c0 −41

cs) ̸= µ(cs)), if the sample is flown through by a finite42

current.43

The binding energy[3] of the superconducting state
Eb(T < Tc) has been worked out as

Eb(T ) =
∫ Tc

T

(Cs(u) − Cn(u)) du ,

with Cs(T ), Cn(T ) being the electronic specific heat of a44

superconductor, flown through by a vanishing current[3]45

and that of a degenerate Fermi gas[4]. A stable phase46

(⇒ Eb > 0) requires Cs(Tc) > Cn(Tc), which can be47

secured[2] only by fulfilling the following condition48

∂EF

∂cn
(Tc, c0) = − ∂µ

∂cs
(0), ρ′(EF (Tc, c0)) > 0 , (3)

with ρ (ϵ) , ϵ being the independent electron density of49

states and one-electron energy, respectively, and ρ′ = dρ
dϵ .50

Since the remaining analysis relies heavily on51

Eqs.(2,3), explicit expressions are needed for52

EF (Tc, c0), ∂EF

∂cn
(Tc, c0), εb, ∂µ

∂cs
(0). Because the in-53

dependent electrons make up a degenerate Fermi gas54

(⇒ T << EF /kB with kB being Boltzmann’s constant),55

applying the Sommerfeld expansion[4] up to T 2 yields56

EF (Tc, c0) = EF (0, c0) − ρ′

ρ
(πkBTc)2

6
∂EF

∂cn
(Tc, c0) =

(
ρ + ρ′′ (πkBTc)2

6

)−1 , (4)

with ρ = ρ(EF (0, c0)), ρ′ = dρ
dEF

(EF (0, c0)), ρ′′ =57

d2ρ
dE2

F

(EF (0, c0)). As for εb, ∂µ
∂cs

(0), a truncated Hubbard58

Hamiltonian HK , introduced previously[8–10], will be59

used. The main features of the calculation[3] are sum-60

marised below for self-containedness.61

The independent electron motion is described by the
Hamiltonian Hd

Hd =
∑
k,σ

ϵ(k)c+
k,σck,σ .

ϵ(k), k are the one-electron energy (ϵ(k) = ϵ(−k)) and a
vector of the Brillouin zone, respectively, σ = ± is the
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electron spin and the sum over k is to be carried out over
the whole Brillouin zone. Then c+

k,σ, ck,σ are creation and
annihilation operators on the Bloch state |k, σ⟩

|k, σ⟩ = c+
k,σ |0⟩ , |0⟩ = ck,σ |k, σ⟩ ,

with |0⟩ being the no electron state. The Hamiltonian
HK reads then

HK = Hd + U

N

∑
k,k′

c+
k,+c+

K−k,−cK−k′,−ck′,+ ,

with N >> 1, U > 0 being the number of atomic sites,62

making up the three-dimensional crystal, and the Hub-63

bard constant, respectively. Note that the Hamiltonian64

used by Cooper[11] is identical to HK=0, but with U < 0.65

HK sustains[3] a single bound pair eigenstate, the en-66

ergy εb(K) of which is obtained by solving67

1
U

= 1
N

∑
k

1
εb(K) − ε(K, k)

=
∫ tK

−tK

ρK(ε)
εb(K) − ε

dε. (5)

±tK are the upper and lower bounds of the two-electron
band, i.e. the maximum and minimum of ε(K, k) =
ϵ(k)+ϵ(K−k) over k, whereas ρK(ε) is the corresponding
two-electron density of states, taken equal to

ρK(ε) = 2
πtK

√
1 −

(
ε

tK

)2

.

The dispersion curves εb(K) are plotted in Fig.1.68

Though Eq.(5) is identical to the equation yielding the69

Cooper pair energy[11], their respective properties are70

quite different :71

• the data in Fig.1 have been calculated with U > 0,72

rather than U < 0 favoured by Cooper[11] and73

BCS[1], because, due to the inequality[3] U ∂µ
∂cs

<74

0, choosing U < 0 entails ∂µ
∂cs

> 0, which has75

been shown not to be consistent with persistent76

currents[6], thermal equilibrium[3], the Josephson77

effect[7] and occurance[2] of superconductivity. As78

a further consequence of U > 0, εb(K) shows up79

in the upper gap of the two-electron band struc-80

ture (⇒ εb(K) > tK) rather than in the lower81

gap (⇒ εb(K = 0) < −tK) in case of the Cooper82

pair[11]. Nevertheless the bound pair is thermo-83

dynamically stable, because, as a consequence of84

EF (Tc, c0) = εb(K)/2 in Eq.(2), every one-electron85

state of energy < εb(K)/2 is actually occupied, so86

that, due to Pauli’s principle, a bound electron pair87

cannot decay into two one-electron states of energy88

ϵ(k) < EF , ϵ(K − k) < EF ;89

• a remarkable feature in Fig.1 is that εb(K) → tK90

for U → tK/2, so that there is no bound pair for91

U < tK/2 (accordingly, the dashed curve is no92

longer defined in Fig.1 for Ka
π < .13), in marked93

contrast with the opposite conclusion reached by94

Cooper[11], that there is a Cooper pair, even for95

U → 0. This discrepancy results from the three-96

dimensional Van Hove singularities, showing up97

at both two-electron band edges ρK (ε → ±tK) ∝98 √
tK − |ε|, unlike the two-electron density of states,99

used by Cooper[11] which is constant and thence100

displays no such singularity. Likewise the width101

of Cooper’s two-electron band is equal to a Debye102

phonon energy 2tK=0 = ωD ≈ 30meV << EF ≈103

3eV . Hence the resulting small concentration of104

superconducting electrons, cs(T =0)
c0

≈ ωD

EF
≈ .01,105

entails that London’s length should be at least 10106

times larger than observed values[12–15];107

• at last Cooper’s assumption U < 0 implies εb/2 ̸=108

EF (Tc), which is typical of a first order transition109

but runs afoul at all measurements, proving con-110

versely the superconducting transition to be of sec-111

ond order (⇒ εb/2 = EF (Tc) in accordance with112

Eq.(2)).113

The bound pair of energy εb(K) turns, at finite concen-114

tration cs, into a MBE state, characterised by µ(cs). Its115

properties have been calculated thanks to a variational116

procedure[3], displaying several merits with respect to117

that used by BCS[1] :118

• it has been shown that µ(0) = εb/2;119

• the energy of the MBE state has been shown to be120

exact for |U | → ∞;121

• an analytical expression has been worked out for122
∂µ
∂cs

(K, cs = 0) as :123

∂µ

∂cs
(K, cs = 0) = −

∫ tK

−tK

ρK (ε)
(εb(K)−ε)3 dε

2
(∫ tK

−tK

ρK(ε)
(εb(K)−ε)2 dε

)2 . (6)

The Tc dependence on c0 will be discussed inside a124

model for which ρ(ϵ) is defined as125

ρ(ϵ) = η
√

ϵ − ϵb ⇒ c0 = 2
3

η (EF (0, c0) − ϵb)
3
2 , (7)

with η =
√

2m
3
2 V

π2~3 , whereas ϵb, m, V = 17Å3 stand for126

the bottom of the conduction band, electron mass and127

volume of the unit-cell, respectively.128

With help of Eq.(4), Eqs.(2,3) can be recast into a129

system of two equations130

EF (0, c0) − ρ′

ρ
(πkBTc)2

6 − εb(K)
2 = 0(

ρ + ρ′′ (πkBTc)2

6

)−1
+ ∂µ

∂cs
(K, cs = 0) = 0

, (8)

to be solved for the two unknowns c0(Tc), tK(Tc) with Tc131

being dealt with as a disposable parameter.132
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FIG. 1. Dispersion curves of tK as a dashed-dotted line and
of εb(K) as solid, dashed and dotted lines, associated with
various U values, respectively; those data have been obtained
with tK = t cos (Ka/2), where t, a are the one-electron band-
width and the lattice parameter, respectively.

To that end, starting values are assigned to U, tK ,133

which gives access to εb(K), ∂µ
∂cs

(K, cs = 0)) and134

thence to EF (0, c0) , ϵb and finally to c0, owing to135

Eqs.(2,3,7). Those values of c0, tK are then fed into136

Eqs.(8) to launch a Newton procedure, yielding the so-137

lutions c0(Tc), tK(Tc). The results are presented in ta-138

ble I. Since we intend to apply this analysis to high-Tc139

compounds[16], we have focused upon low concentrations140

c0 < 0.2, which entails, in view of Eqs.(4,7), that
∣∣∣ ∂µ

∂cs

∣∣∣141

takes a high value. This requires in turn εb(K) → tK142

(see Eq.(6)) and thence[3] U → tK

2 , in agreement with143
tK

U ≈ 2 in table I.144

A remarkable property of the data in table I is that
c0, tK are barely sensitive to large variations of Tc, i.e.
|δc0| < 10−3, |δtK | < 10−5 for δTc ≈ 400K. This can be
understood as follows : taking advantage of Eqs.(2,4,7)
results into

2EF (0, c0)
εb(K)

− 1 = π2

12

(
kBTc

∆(Tc)

)2

,

which, due to dtK

dTc
≈ 0, ∆(Tc) ≈ 1eV, Tc = 400K, yields145

indeed δc0 = c0(400K) − c0(1K) ≈ 10−3, in agreement146

with the data in table I. Such a result is significant in147

two respects, regarding high-Tc compounds, for which c0148

can be varied over a wide range :149

• because of dc0
dTc

≈ 0, the one-electron band structure150

can be regarded safely as c0 independent, which151

enhances the usefulness of the above analysis;152

• the large doping rate up to ≈ 0.2 is likely to give rise153

to local fluctuations of c0, which, in view of the ut-154

most sensitivity of Tc with respect to c0, will result155

TABLE I. Solutions c0(Tc), tK(Tc), ∆(Tc) (∆(Tc) =
EF (0, c0(Tc)) − ϵb) of Eqs.(8); the unit for c0 is the number
of conduction electrons per atomic site.

Tc(K) c0 tK(eV ) ∆(eV ) U(eV )
1 0.10215 6 1.1976 3.39

400 0.10225 5.9999 1.1984 3.39

Tc(K) c0 tK(eV ) ∆(eV ) U(eV )
1 0.14897 2 1.5402 1.04

400 0.14906 1.9999 1.5407 1.04

Tc(K) c0 tK(eV ) ∆(eV ) U(eV )
1 0.19158 4 1.8214 2.2

400 0.19167 3.9999 1.8219 2.2

into a heterogeneous sample, consisting in domains,156

displaying Tc varying from 0 up to a few hundreds157

of K. Thus the observed Tc turns out to be the158

upper bound of a broad distribution of Tc values,159

associated with superconducting regions, the set of160

which makes up a percolation path throughout the161

sample. However, if the daunting challenge of mak-162

ing samples, wherein local c0 fluctuations would be163

kept well below 10−4, could be overcome, this might164

pave the way to superconductivity at room temper-165

ature.166

The Tc dependence upon U will be analysed with

ρ(ϵ) = 4
πt

√
1 −

(
1 − ϵ

t

)2
.

Our purpose is to determine the unknowns167

tK(EF , Tc), U(EF , Tc) with EF = EF (T = 0, c0)168

and c0 =
∫ EF

0 ρ(ϵ)dϵ. To that end, Eq.(3) will first be169

solved for tK by replacing ∂EF

∂cn
(Tc, c0), ∂µ

∂cs
(0) by their170

expressions given by Eqs.(4,6), while taking advantage171

of Eq.(2). Then the obtained tK value is fed into Eq.(5)172

to determine U . The results are presented in Fig.2.173

It can be noticed that there is no solution for c0 >174

.75, because ∂EF

∂cn
(Tc, c0) ≈ 1

ρ (EF (0, c0)) and ∂µ
∂cs

(0) > U
2175

decrease and increase, respectively, with increasing c0, so176

that Eq.(3) can no longer be fulfilled eventually. But the177

most significant feature is that δU is almost insensitive178

to large Tc variation, except for EF → 0, i.e. for EF close179

to the Van Hove singularity, located at the bottom of the180

band, which has two consequences :181

• c0 cannot be varied in most superconducting ma-182

terials, apart from high-Tc compounds, so that U183

is unlikely to be equal to U(c0), indicated in Fig.2.184

Conversely, since high-Tc compounds allow for wide185

c0 variation, c0 can be tuned so that U = U(c0);186
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FIG. 2. Plots of EF (Tc, c0), tK(Tc, c0), U(Tc, c0) calculated for
Tc = 1K and t = 3eV ; the unit for c0 is the number of conduc-
tion electrons per atomic site; δf with f = EF , tK , U is de-
fined as δf =

∣∣∣1 − f(300K,c0)
f(1K,c0)

∣∣∣; the scale is linear for EF , tK , U

but logarithmic for δEF , δtK , δU .

• the only possibility for a non high-Tc material to187

turn superconducting is then offered at the bot-188

tom of the band, because δU becomes large due to189

ρ′

ρ (EF → 0) ∝ 1
EF

in Eq.(4). Such a conclusion,190

that superconductivity was likely to occur in the191

vicinity of a Van Hove singularity in low-Tc ma-192

terials, had already been reached[3] independently,193

based on magnetostriction data.194

It will be shown now that ρ(ϵ), ρK(ε) cannot stem from
the same one-electron band. The proof is by contradic-
tion. As a matter of fact ρ(ϵ) should read in that case

ρ(ϵ) = 4
πt

√
1 −

(ϵ

t

)2
.

Hence U > 0 entails, in view of Fig.1 and Eq.(2), that195

there is εb

2 = EF > 0, which implies ρ′(EF ) < 0 in con-196

tradiction with Eq.(3). Accordingly, since the two differ-197

ent one-electron bands, defining respectively ρ(ϵ), ρK(ε),198

display a sizeable overlap, they should in addition belong199

to different symmetry classes of the crystal point group,200

so that superconductivity cannot be observed if there are201

only s-like electrons at EF or if the point group reduces202

to identity. Noteworthy is that those conclusions had203

already been reached empirically by Matthias[17].204

The critical temperature Tc has been calculated for205

conduction electrons, coupled via a repulsive force,206

within a model based on conditions, expressed in207

Eqs.(2,3). Superconductivity occurring in conventional208

materials has been shown to require EF (Tc) being lo-209

cated near a Van Hove singularity, whereas a practical210

route towards still higher Tc values has been delineated211

in high-Tc compounds, provided the upper bound of lo-212

cal c0 fluctuations can be kept very low. The thermody-213

namical criterions in Eqs.(2,3) unveil the close interplay214

between independent and bound electrons in giving rise215

to superconductivity. At last, it should be noted that216

Eqs.(2,3) could be applied as well to any second order217

transition, involving only conduction electrons, such as218

ferromagnetism or antiferromagnetism.219
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