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Abstract 
Genome sequencing is enabling precision medicine—tailoring treatment to the unique 
constellation of variants in an individual’s genome. The impact of recurrent pathogenic variants is 
often understood, leaving a long tail of rare genetic variants that are uncharacterized. The problem 
of uncharacterized rare variation is especially acute when it occurs in genes of known clinical 
importance with functionally consequent frequent variants and associated mechanisms. Variants 
of unknown significance (VUS) in these genes are discovered at a rate that outpaces current 
ability to classify them using databases of previous cases, experimental evaluation, and 
computational predictors. Clinicians are thus left without guidance about the significance of 
variants that may have actionable consequences. Computational prediction of the impact of rare 
genetic variation is increasingly becoming an important capability. In this paper, we review the 
technical and ethical challenges of interpreting the function of rare variants in two settings: inborn 
errors of metabolism in newborns, and pharmacogenomics. We propose a framework for a 
genomic learning healthcare system with an initial focus on early-onset treatable disease in 
newborns and actionable pharmacogenomics. We argue that (1) a genomic learning healthcare 
system must allow for continuous collection and assessment of rare variants, (2) emerging 
machine learning methods will enable algorithms to predict the clinical impact of rare variants on 
protein function, and (3) ethical considerations must inform the construction and deployment of 
all rare-variation triage strategies, particularly with respect to health disparities arising from 
unbalanced ancestry representation.  
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1. Introduction 

We are approaching an era in which genome sequencing at birth will be a widespread practice 

with the potential to revolutionize healthcare. Interpretation of the genetic variants identified by 

sequencing, however, is a significant challenge and limits the use of DNA sequencing as a primary 

diagnostic screen1. Current algorithms used to interpret the significance of genetic mutations are 

not reliable enough to be used without additional clinical data2. Yet, accumulating biomedical data 

enables machine learning algorithms to predict the consequence of genetic variants with 

increasing accuracy. The pairing of modern algorithms and widespread genome sequencing is 

beginning to deliver precision medicine in limited settings3, but the broad interpretation of rare 

genetic variation requires algorithmic advances and improved access to data. The identification 

of rare variation responsible for unusual clinical phenotypes is a particularly difficult challenge 

because both the responsible gene and the associated variation must be identified. A slightly 

more tractable problem is the identification of clinically important variants in genes that are already 

known to be clinically significant and have known mechanisms for influencing phenotype.  

This paper focuses on two fields that have known clinically important genes and in the near term 

should benefit greatly from improved rare variant interpretation: pharmacogenomics (PGx) and 

inborn errors of metabolism (IEM). IEM and PGx are subfields of genetics characterized by 

monogenic phenotypes for which therapeutic action can be taken in response to clinically-

important variants in known genes. Both fields have been revolutionized by low-cost sequencing 

and the curation of large databases cataloguing the effects of specific genetic variants. 

Furthermore, both fields struggle with interpretation of the phenotypic effects of rare variants that 

have not been clinically evaluated.  

As an interdisciplinary team supported by the Chan Zuckerberg Biohub, we approach these two 

challenges by addressing both computational and ethical issues, in order to develop a framework 
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for genome-informed medical care that benefits all. Here we review the current practices and 

limitations of variant interpretation in PGx and IEM and highlight recent computational advances 

that will allow researchers to improve precision medicine. Ethical considerations in these activities 

primarily address health disparities, since existing genetic and genomic databases are not 

inclusive of individuals of diverse ancestries. As the recent strategic vision from the US National 

Human Genomic Research Institute (NHGRI) attests, there are significant societal implications of 

a genomic learning healthcare system that we cannot afford to oversimplify4. Our focus on genes 

of known consequence should generalize ultimately to the more difficult cases where the gene, 

function and mechanism are not well-understood.  

2.  PGx and IEM in current clinical practice  

For both PGx and IEM, our detailed understanding of the biological processes at play (the genes 

that are critical and how they interact) has reached a point at which routine genetic screens can 

inform clinical decision making. In the United States, PGx testing is mandated by the Food and 

Drug Administration for a number of drugs due to safety concerns, and recommended for many 

others. Testing for IEMs is routine practice for nearly all newborns in the United States, but the 

role of genetic testing is largely limited to second-tier screens and carrier testing. These two fields 

are linked in more ways than it may superficially appear. The clinical implications for most known 

PGx and IEM driven phenotypes are often caused by variants in a single gene. As monogenic 

traits, there is a critical importance in understanding the impact of variants in the underlying genes, 

but also a narrowing of the problem space that makes for a tractable solution. Additionally, the 

mechanisms of disease and treatment response are generally understood. 

PGx describes how an individual's response to medication is influenced by genetic variation in 

pharmacogenes: genes encoding proteins involved in the pharmacokinetics and 
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pharmacodynamics of a drug5. Many pharmacogenes have common genetic variants with known 

clinical significance. These variants can affect the metabolism, transport and action of drugs 

throughout the body and may influence efficacy or lead to adverse events. Studies have shown 

as many as 99.8% of individuals carry at least one genetic variant that could lead to adverse 

outcomes for at least one drug6–8. In the past, clinical practice overlooked the influence of genetics 

on drug response, and—except for several extreme cases9—used a standardized dose of any 

particular drug for most patients, with some trial-and-adjustment to determine the ideal drug and 

dosage. This error-prone process can lead to decreased efficacy and increased incidence of 

adverse events that could be otherwise avoided10. Clinical practice may be moving towards 

genetic testing prior to drug dosing, though at present current practice is still limited to physician-

guided treatment, with genotyping or sequencing ordered by a physician and carried out clinically 

(Fig 1A). To date there are 60 drugs with clinical dosing guidelines published by the Clinical 

Pharmacogenomics Implementation Consortium (CPIC) and 94 drugs with guidelines from the 

Dutch Pharmacogenomics Working Group (DPWG)11. As the inexpensive interrogation of genetic 

information gains a foothold in clinical medicine, pharmacogenetic information will increasingly be 

used in standard care. Importantly, when genetic information is used to guide dosing, the current 

focus is on common polymorphisms in individuals of European ancestry. Common polymorphisms 

in other ancestral groups and rare variants are generally not included in current clinical dosing 

guidelines. This can lead to health disparities based on ancestry, and is problematic for all 

individuals since rare variants are estimated to contribute to as much as 50% of interindividual 

variation in drug response12.  

IEM encompass more than 1,000 genetic disorders, including organic acidemias, urea cycle 

defects, lysosomal storage disorders, and disorders of amino acid metabolism13. IEM are 

characterized by monogenic mutations that can affect protein function and result in altered 

metabolite levels. The majority are autosomal recessive disorders. Many IEM are severe, early-
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onset conditions amenable to therapeutic intervention, with early treatment leading to significantly 

improved clinical outcomes. Since the consequences of unrecognized IEM in pre-symptomatic 

newborns can be catastrophic, detection before symptom manifestation is essential. Newborn 

screening (NBS), a pervasive public health effort, detects over 40 of the most common, treatable 

IEM using biochemical tests performed in blood samples taken shortly after birth.  

Population-level NBS has been a routine part of care in the United States since the 1960s. 

Presently, NBS detects IEM by identifying elevated metabolites in blood, which is performed using 

tandem mass spectrometry (MS/MS), an inexpensive and rapid test. However, disorders may be 

missed, some analytes are non-specific, and follow-up testing may be time-consuming and 

complex1,14. DNA sequencing has the potential to more accurately identify disorders for which 

MS/MS detection is not optimal, and also identify disorders for which there is no appropriate 

metabolite screen.  

 

Figure 1. Simplified overview of the current approach to identification and treatment of patients with IEM or PGx 

related disorders contrasted with our proposed framework, which incorporates early sequencing and analysis of rare 
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variants with machine learning and ethical considerations. (A) Current practice for IEM and PGx begins with an 

observable phenotype. In IEM, this may be an altered metabolite detected by newborn screening; in PGx, perhaps 

an adverse event. Phenotype can also include physical examination, medical history, family history, and relevant 

labs or studies. Genetic sequencing is then performed, which could involve targeted single gene sequencing with 

copy number variant detection, gene panel, whole exome sequencing, or in some cases trio sequencing of the 

affected individual and parents to assess phasing and examine the possibility of de novo variation. If annotated 

pathogenic variants are identified in the target gene, a patient is diagnosed with an IEM or given a different drug/dose. 

Identification of VUS may result in either a diagnosis or lack thereof, depending on the other variants identified. In 

this simplified figure, VUS refers to a variant in the targeted gene of interest as opposed to an incidental finding not 

relevant to diagnosis. Patient diagnosis can occur without DNA sequencing, as is the case with some IEM. (B) 

Hypothetical future approach to patient care in the fields of PGx and IEM. All individuals undergo whole genome 

sequencing at birth. Machine learning models use detected variants to predict phenotype (disease risk or differential 

drug response). Ethics are considered and clinical action is taken accordingly. 

Carrier testing provides an opportunity to detect rare variants in IEM and other disease-associated 

genes15 before conception. However, interpretation of genetic screening results still faces 

significant challenges16, especially in cases identifying variants of uncertain significance (VUS) 

where risk for inherited disease cannot be definitively assessed and actionability is questionable. 

The falling cost of next generation sequencing will continue to expand the identification of genomic 

variants that may cause IEM or alter drug response. While many genetic variants have catalogued 

associations with disease phenotypes or drug response, the majority are of unknown clinical 

consequence. Generating experimental data to validate the pathogenicity of individual variants is 

tedious and expensive, though recent advances have facilitated more large-scale generation of 

data17. Several databases attempt to catalog variants in disease-causing genes, but there is no 

central catalog for associated functional data. Thus, alternative methods for determining or 

predicting functional effects of genetic variants are urgently needed.  
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3.  Ethical considerations in rare variant interpretation 

Genome-informed precision medicine must include analysis of ethical, legal and social 

implications (ELSI) in order to improve upon rather than exacerbate existing health disparities4. 

We have identified six chief concerns with enhancing computational predictors for the phenotypic 

effects of rare variation at the scale proposed here. First, the uncertainty of results and, second, 

the return of clinical results can either improve or compromise clinical care. Although enhanced 

computational predictors for IEM and PGx can minimize harm from the trial-and-error of current 

clinical practices, consistency in clinical education and approaches to ambiguous and incidental 

findings will be critical to determining societal benefit. Third, there are differences between 

research and clinical stakeholders in approaching the classifications of VUS that need to be 

reconciled. Fourth, the underrepresentation of minority groups in current datasets and the 

underlying research that informs them needs particular attention in order to create a larger and 

more diverse reference genome so that biases can be reduced. Fifth, an effective genomic 

learning healthcare system must account for privacy risks. Sixth, there needs to be transparent 

data sharing expectations across all levels of human input into the learning system. Building on 

previous ethical frameworks18,19 and the need for a nuanced approach20, we suggest that trade-

offs between ensuring individual control over data and the social obligations of individuals have 

yet to be engaged with at the level of ethical governance provisions. Discussion of these concerns 

is guided by three central ethical questions, summarized in Table 1 and outlined within the 

Spotlight Boxes.  
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Table 1: Ethical considerations of the adoption of new technologies into clinical genetics 

Area of IEM & PGx and ethical issues Key question 

Whole genome sequencing for newborns 
1) Uncertainty of results 
2) Return of clinical results, including 

results from late-onset disorders 

Can genome sequencing improve 
the uncertainty of results & return of 
clinical results?  

Interpreting VUS 
3) Research and clinical divide 
4) Social/racial inequity 

Can we view the classification of 
VUS as a social justice opportunity, 
to close social and genetic ancestry 
gaps? 

Genomic learning healthcare systems 
5) Privacy risks 
6) Data sharing 

Can blood spot DNA be viewed as a 
public good in genomic learning 
healthcare systems? 
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Ethics Spotlight 1: Can genome sequencing improve the 
uncertainty of results & return of clinical results?  
 

For the use of predictive algorithms as the primary methods of analysis for IEM and PGx to be 
ethically justified, these methods must provide equal or greater certainty than current methods. 
Improving screening and predictive analysis for IEM and PGx at the testing level is contingent 
upon the accuracy of results, the provisions around returning results, and the impact on clinical 
care. Even pathogenic results can have variable penetrance and VUSs, with the possibility of 
reclassification, can cause significant consternation on both the part of the clinician and patient21. 
Perhaps most thoroughly documented in cancer genetics22, the clinical return of genetic results is 
rarely straightforward. The prohibition against the return of uncertain results, outlined by the 
American College of Medical Genetics (ACMG), is such that even if there is a suspicion that an 
uncertain variant is pathogenic, it should conservatively be classified as a VUS since this 
information is used in medical decisions2.  

The follow-up of uncertain results is complicated by clinician/researcher and patient/individual 
expectations and understandings of actionability. Genomic literacy across different healthcare 
professional roles is limited23,24 . The disclosing of sequencing results should be contingent upon 
what has been previously explained to the patient/parent about incidental findings and potential 
treatments25. As healthcare delivery is already biased with regard to decisions about referrals or 
withdrawals of care, it will be challenging for algorithms to correct for existing biases in the 
handling of results26. Uncertain and incidental (or secondary) results in clinical care should be 
considered in the context of existing slippages of fiduciary obligations - such as clinician biases 
and/or patient mistrust - that emerging tests may or may not be able to compensate for27.  The 
NHGRI has called for greater diversity amongst the genomic scientist workforce4.  

In order to contain immediate risks around uncertainty of results and focus resources, is there a 
case for tiered approaches? For example, beginning with targeted sequencing and, upon 
accuracy improvements, expanding programs to include non-targeted sequencing, or, at the 
individual level, only sequencing specific genes as a second tier option if a positive test result 
arises in genome sequencing? Certainly, implementing genome sequencing at the routine 
screening level requires greater computational accuracy, accessibility and more nuanced ethical 
safeguards4,20. In the US healthcare context, it is difficult to resolve the issue of healthcare 
insurance coverage. Can  financial disparity in the follow up of results be partially alleviated with 
temporary coverage through Risk Sharing Agreements between payers and manufacturers of 
tests?28 Can ethical priorities of the clinician and patient transaction may be corroborated with the 
needs of the genomic learning healthcare system (that must maximize scarce resources) such 
that genomic sequencing improves healthcare across all of society?  
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4. Evaluating variants of unknown significance 

Variants in functionally important genes are often suspected to lead to clinical consequences. For 

IEM and PGx, there are hundreds of genes in which nonsense and missense variants are 

associated with clinical outcomes. Although additional genetic, epigenetic, and environmental 

factors alter disease risk and drug response, the gene sequence is the primary determinant of 

phenotype for these genes. Thousands of pathogenic rare variants in these genes have been 

characterized with clinical consequences often well understood and catalogued. Yet exome and 

genome sequencing continue to identify novel variants in these genes at a rapid pace. The ACMG 

has developed guidelines to interpret these variants, but by design, conclusive evidence  is 

required to assert a variant is pathogenic, even in known disease genes2. For example, defects 

in PAH cause phenylketonuria (PKU), an IEM that can lead to severe intellectual disability and 

seizures when untreated. In gnomAD29, a population database of variants seen in more than 

100,000 individuals, 57% of observed protein-altering variants in PAH have unknown 

pathogenicity. Individuals who are homozygous for these variants at birth will have an unknown 

risk of developing PKU, and carriers of these variants cannot be advised of their risk of having a 

child with PKU. Thus, predicting the functional consequence of rare variants in IEM and PGx is 

an important challenge.  

To begin to address this issue, numerous publicly available databases actively catalog genetic 

variants and associated disease and drug response phenotypes. These databases are typically 

human-curated, and bring together information that would otherwise be dispersed across the 

literature, allowing researchers and clinicians to quickly access existing knowledge. Several 

databases focus on the pathogenicity of variants genome-wide, including thousands of variants 

in IEM and PGx genes. These include ClinVar, ClinGen, HGMD, and Online Mendelian 
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Inheritance in Man (OMIM)30–32. Such platforms have a shared goal of linking genes with disease, 

although they take different approaches. ClinVar allows submissions from clinical laboratories, 

research groups, and specialized databases, presenting all submitted data through an online 

interface. Most submissions are not manually vetted and are presented as submitted. ClinGen 

and OMIM attempt to provide authoritative curation of known variants and their relationship to 

disease. Curators review literature and experimental data to determine pathogenicity of genetic 

variants. ClinVar and ClinGen share and collaboratively curate data. In addition to being used for 

standardizing the set of variants with known consequences, these databases are also used by 

researchers and clinicians to evaluate the evidence that an uncatalogued VUS causes disease 

based on its similarity to catalogued variants (e.g., if a VUS results in the same amino acid change 

as a catalogued pathogenic variant, this VUS now has strong evidence for being pathogenic)2. 

Similarly, efforts have been made to catalog the relationship between genetic variation and drug 

response, exemplified by databases including PharmVar and PharmGKB33–35. Like ClinVar, 

PharmVar relies on user submissions of discovered haplotypes in genes related to 

pharmacogenomics.  

These variant databases encapsulate the combined expertise of thousands of clinical researchers 

across the world, but also reveal a large amount of uncertainty. The majority of possible missense 

variants in IEM and PGx genes are classified as VUS or are altogether missing from databases. 

ClinVar alone contains more than 6,000 variants classified as VUS in IEM genes, and more than 

10,000 VUS in PGx genes (Figure 2a,b). Variants in ClinVar change classification as researchers 

submit new evidence, but very few VUS variants are resolved as fully pathogenic or benign 

(Figure 2c,d). Instead, many variants become associated with conflicting classifications. Indeed, 

41% of IEM and PGx variants in ClinVar are of uncertain significance or have conflicting 

interpretations of clinical importance. For novel variants, it is often challenging to establish 

pathogenic certainty until they are observed by multiple clinicians who submit consistent 
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classifications to a variant database. For VUS without further clinical or experimental evidence, 

computational methods offer a possible resolution.  

 

 

 

Fig 2. ClinVar variants of unknown significance in genes related to IEM and PGx. a,b, the number of 

VUS in ClinVar between 2015 and 2020 in IEM and PGx genes, respectively. c,d All ClinVar variants in 
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IEM and PGx genes that were reclassified between Feb 2018 and Feb 2019. Height of bars is proportional 

to number of variants reclassified. A total of 293 variant reclassifications are shown in c, and 434 variant 

reclassifications are shown in d.  

 

Most computational approaches predict the functional impact of single nucleotide polymorphisms 

(SNPs) and small insertions and deletions (INDELs) by training predictive models on variants 

across the entire genome. The popular tool CADD uses a logistic regression model and more 

than 60 genomic features to learn the features that distinguish randomly generated variants from 

recently fixed variants in humans36.The resulting predictor has been used to predict the 

pathogenicity of clinical variants, and is currently used in clinical analysis pipelines37. REVEL, a 

meta-predictor, uses the ensemble of scores from several prediction algorithms like CADD, each 

with different strengths and weaknesses, and is trained to differentiate rare unlabeled variants 

from HGMD pathogenic variants38. Both CADD and REVEL are capable of predicting the effects 

of variants in any gene, which is typical of predictors used in clinical research. However, predictors 

that are gene-, gene family-, or locus-specific generally perform better for both IEM and PGx in 

comparison to predictors that rely on data from the entire genome39–46. Despite their promise, 

bespoke methods are constrained by the limited data available for most genes, such as the 

number of known pathogenic variants and associated functional data. Because these methods 

are designed to predict the functional impact of a variant, their predictions can be some layers 

removed from the clinical consequence. Additionally, pharmacogenes are not under the same 

evolutionary constraint as genes involved in disease, limiting the effectiveness of most predictive 

algorithms47,41  

To combine the best features of variant databases and computational predictors, automated 

systems that use both in tandem are already being tested to predict the pathogenicity of rare 
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variants. Consider one recent study evaluating IEM detection by sequencing dried blood spots 

drawn from newborns1. This study compared the performance of MS/MS to exome sequencing 

as a primary screen for IEM on a set of 805 newborns with confirmed IEM. Variants identified by 

sequencing were automatically assessed on rarity, protein consequence, predicted pathogenicity 

(including CADD), and matched with catalogued pathogenic variants in ClinVar and HGMD to 

predict disease status. Overall, this combination was neither sufficiently sensitive nor specific 

compared to MS/MS, and exome sequencing notably missed a number of cases in which a pair 

of rare, protein-altering variants were absent from the causal gene. However, performance varied 

between IEM, and in some cases, provided more specific diagnoses than analyte testing. 32% of 

pathogenic variants were absent from HGMD and ClinVar. Critically, sequencing led to several 

false positives in which an individual harbored a pair of rare, protein-altering variants in an IEM 

gene, but did not have the associated disorder. These false positives significantly limit the ability 

to use DNA sequencing for screening, and could be mitigated by more accurate computational 

methods that distinguish pathogenic from benign protein-altering variants.   
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Ethics spotlight 2: Can we view the classification of VUS as a social 
justice opportunity?  
 
Whether the classification of VUS and IEMs can offer a fairer distribution of the benefits of 
sequencing technologies across all population groups is a significant question. Most large 
datasets in the US contain homogeneous ancestry that is unrepresentative of disadvantaged 
groups48,49. In addition to the need to improve predictive methods for IEMs, screened individuals 
need to be considered as part of a social group in relationship to a wider and unequal social 
system. The moral obligations embedded within the ethics of clinical research and practice need 
to be better integrated18. For individuals seeking healthcare, polygenic risk scores are more 
accurate for patients of European ancestry because the data on which algorithms are trained 
comes largely from individuals of European ancestry50,51. Similarly, variant impact predictors tend 
to train catalogued variants from databases, which are not representative of all ancestries. ClinVar 
was recently found to be missing a large number of hearing impairment variants that primarily 
affect individuals of African ancestry52, likely indicative of a broader pattern. For variant predictors, 
this bias will lead to greater reliance on European ancestry variants and European genetic 
context, producing less accurate classification of IEM and PGX variants in other ancestries (e.g., 
African ancestry), which would only compound existing injustice in healthcare access for under-
represented populations53,54. Disparity in ancestry representation is especially stark in data 
sources for Genome Wide Association Studies (GWAS), where European ancestry 
disproportionately represents 81% of the data set population48.  
 
Can we alleviate  healthcare disparity by closing current ancestry gaps in GWAS? Given evidence 
that polygenic risk scores can be improved upon by incorporating datasets for a broader range of 
genetic ancestries55, it is imperative that GWAS strive for fairer training data also. As the field 
matures to consider the role of genetic modifiers56, as well as social and environmental 
interactions57, results from GWAS of diverse individuals are needed to consider the effects of 
genetic modifiers and the environment on variants. Newborn screening programs, with their 
mandatory collection and the near universal application of testing, provide a diverse and truly 
representative set of individuals58. That said, racial discrimination in healthcare and healthcare 
research is not simply resolvable through technical fixes. Redressing data under-representation 
and health equity in machine learning precision medicine must be viewed in the context of broader 
social change, which we pick up on in the next Box regarding questions of social obligation.  
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5. Opportunities in rare variant evaluation 

In predicting the effect of a variant on gene function, we can predict its effects on the system, 

such as a metabolic pathway, and then on the physiology/pathophysiology. Cataloging observed 

likely clinically impactful variants in databases such as ClinVar and PharmVar32 can be effective 

for determining the pathogenicity of more frequent rare variants, (allele frequency between 0.01% 

and 1%). These variants are common enough that they have been identified in multiple individuals 

and therefore the effect on phenotype can be verified. However, ultra-rare variants, defined as 

having an allele frequency less than 0.01%, are responsible for a large portion of rare genetic 

disorders. Publicly available databases of PKU patients indicate that 60% of cases involve at least 

one ultra-rare SNV, and in 28% of cases the individual carries an ultra-rare variant on both copies 

of PAH. Some of these ultra-rare variants may be de novo mutations, and the individual may be 

the only person known to harbor that exact variant59. The vast majority of ultra-rare variants are 

absent from clinical databases, indicating that the current approach of cataloguing observed 

genetic variants fails when allele frequencies are especially low. For PAH, which is one of the 

most studied metabolic genes, only 9% of possible SNVs have functional impact classified in 

ClinVar.  

Emerging computational algorithms may serve as a means for evaluating the impact of rare 

variants in IEM and PGx genes. As previously stated, existing algorithms have limited ability to 

accurately predict the impact of variants in these genes, especially among rare variants. Methods 

have been developed to specifically evaluate variants in pharmacogenes, but these are largely 

based on existing methods and may have some of the same inherent biases41. Machine learning 

has revolutionized computer vision and natural language processing by effectively analyzing 

spatial and sequential data60–62. With the rapid growth of biological data, deep learning has also 
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been extensively used in bioinformatics63–70, including transcription factor binding site prediction71, 

genome functional annotation72, and assessment of variant function73,74. Several methods have 

been developed specifically for the evaluation of alleles in pharmacogenes, namely CYP2D675,76. 

These purpose-built models outperform existing methods and are capable of assessing the 

impact of any combination of variants observed in a haplotype, rather than single variants. One 

major drawback of deep learning is that it requires an immense amount of data in order to estimate 

the large number of parameters required for good performance77,78.  

Transfer learning offers an opportunity to leverage the power of deep learning in situations where 

data is limited. It is difficult to obtain sufficient data to develop phenotype prediction algorithms 

from genomic data using deep learning, especially when we only have 10s or 100s of individuals 

with both genome sequencing data and well-characterized clinical or molecular phenotypes. 

Transfer learning is an emerging approach for overcoming the limited data challenges. The idea 

is to build models that perform a task (X) that is similar to the goal task (Y) but for which there are 

large amounts of relevant real or simulated data. Once the model for solving task X is performing 

well, it can be refined with data relevant to task Y. In the case of predicting variants, we might 

build a model using data from a well-studied gene (X) and then refine the model with data from a 

poorly-studied gene (Y). The resulting model may perform very well on Y, since the “lessons” 

learned in modeling X transfer well to Y79–84. There are several flavors of transfer learning that 

have been applied to applications in genetics and proteomics. Convolutional neural network 

(CNN) based approaches pre-train weights of convolutional layers on large datasets that can be 

fine-tuned on smaller datasets75. Transformer based approaches, frequently used in natural 

language processing, have been applied to functional predictions of variants in proteins85,86. 

Graph-CNNs have been used to make drug binding predictions using protein structure data after 

being pre-trained using an unsupervised learning step87. These transfer learning methods could 

in theory be used to create structure-based predictions of the effect of amino acid changes on 
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drug binding. These methods combined with chemoinformatics approaches for representing drug 

molecules could be used to create substrate-specific predictions of drug-protein interactions and 

how genetic variants may influence that behavior. 

The underlying homology between genes existing in gene families and across species may allow 

for an increased ability to perform transfer learning. We may be able to use knowledge learned in 

some domains to inform others. Not surprisingly, some rare diseases have received more 

attention than others, often due to the frequency of disease, serendipitous factors, and scientific 

opportunities. These well-studied diseases typically have significantly more variant impact data 

available than others. PKU has an incidence of 1 in 10,000 newborns, and there are hundreds of 

disease-associated catalogued variants. In comparison, tyrosine hydroxylase deficiency (THD) 

affects fewer than 1 in 100,000 newborns and has been associated with fewer than 20 variants. 

Sequencing benefits individuals with THD less, simply because the disease is rarer and few 

known pathogenic variants exist. The chemical similarity of phenylalanine and tyrosine leads to a 

high degree of homology between phenylalanine hydroxylase (PAH) and tyrosine hydroxylase 

(TH), which presents an opportunity to transfer knowledge about PKU variants to better 

understand THD—for example, in understanding which parts of the protein may be more or less 

tolerant of non-synonymous mutations.  

Ultimately, the goal of any variant interpretation method is to improve clinical care. Integration of 

genetics into the clinic is already quite challenging, and integration of computational methods for 

predicting variant function is rife with further challenges. Learning health systems have long been 

proposed as models for improving healthcare88–90, but integration of genetic data into such a 

system would allow for the accumulation of data to train more sophisticated predictive models as 

well as an opportunity to iteratively improve upon such algorithms.  
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A genomic learning healthcare system would allow for rapid collection and phenotyping of rare 

variants. Learning health systems have been proposed in healthcare since 2007, but none have 

integrated genetics to inform patient treatment89. In these implemented systems, the algorithms 

are constantly improving based on a feedback loop of data that is collected over the course of 

patient treatment. A genomic learning healthcare system would operate in much the same way, 

with the addition that clinical decision support is provided based on genetic data as well as clinical 

data28. In this proposed system, collection, sequencing, and analysis of patient data would be 

required as a first step, and would need to be available as part of the patient’s clinical record in 

the electronic health system. This would enable clinical decision support for IEM and PGx related 

conditions, providing doctors with diagnosis and treatment guidance. Then, the algorithms 

underlying the clinical decision support can be evaluated regularly and updated based on newly 

available patient data. In addition to evaluating the algorithms, sequencing and analyzing 

important genes for every individual treated will allow for more rapid collection and phenotyping 

of ultra-rare variants.  

The ultimate goal of a genomic learning healthcare system is to improve treatment for all patients 

by leveraging their genetic data. This includes triaging rare variants that may be previously 

unseen in patients and potentially making clinical decisions based on their predicted impact. As 

a conservative first step, a genomic learning healthcare system could implement existing clinical 

guidance models for IEM and PGx, such as the pharmacogenomics dosing recommendations 

from the Clinical Pharmacogenomics Implementation Consortium (which was recently supported 

by Medicare). Once genetic data are collected for each patient, predictive models for rare variants 

can be developed and implemented in clinical practice at such a time when there is sufficient 

confidence in the predictions of the model. Careful analysis will be needed in selecting and 

evaluating predictive models for both IEM and PGx, and it is likely that gene-specific models will 
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be needed. We illustrate this framework in Figure 3, before turning to the ethical questions to be 

taken into account.  

 

Figure 3. Proposed workflow for a genomic learning healthcare system. Patients DNA samples are 

collected and sequenced, with genomic data input to computational models. The model outputs a 

predicted phenotype for the patient with results reviewed by clinicians and applied to the patient. 

Outcomes are evaluated and the model continues to learn from a feedback loop to improve outcomes 

for future patients. Icons are from The Noun Project91–94. 
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Ethics Spotlight 3: Can blood spot DNA be viewed as a public good 
in a genomic learning healthcare system?  
Data sources and determination of data ownership and consent for secondary data use will 
significantly shape whether or not genomic learning healthcare systems can improve accuracy 
and reduce biases. Learning health care systems present unique ethical challenges that 
traditional clinical and research ethics - focusing on individual harms and a sharp research/clinical 
divide - will find difficult to address18. Data collection and input (step 1 and step 2 of Fig 3) differs 
between clinical and public health repositories in terms of provisions around secondary use. The 
use of AI in healthcare systems is complicated by issues arising from the possible encoding and 
routinization of human bias, even with the use of seemingly neutral data sources49. Further, AI is 
becoming the repository of the collective medical mind26. More than simply doing no harm, a 
genomic learning healthcare system should actively support greater health equity4,95. Can clinical 
data be viewed as a ‘public good’ insofar as all stakeholders (both healthcare and private industry) 
hold a moral obligation to use and share clinical data in ways that benefit society over and above 
individual or commercial interests19?  
  
If viewing clinical data as a public good, of greatest difficulty would be how to deal with 
computational predictors and healthcare outcomes that accurately capture differences not so 
much resulting from human input biases but rather serving unfair social conditions. For public 
health data use, it is important to identify and address social and political inconsistencies in the 
ethical oversight from Institutional Review Boards and government bodies, particularly in regard 
to informed consent and anonymization of data96. This requires careful consideration for the 
nuances of beneficence regarding collections and distribution of genomic information97. The 
current justification for the mandatory nature of newborn screening rests on the potential harms 
to the child were they not screened for these treatable conditions (see Johnston et al. 2018 for a 
full historical justification)20. Safeguards are needed to protect the storage and research use of 
genetic data, which could become more identifiable.98 With such protections, could the practice 
of informed consent with individuals be seen as less important than another process to ensure 
respect for autonomy at a group level, in order to meet social obligations to contribute to both 
greater knowledge and efforts to reduce social inequity in health18? Because biobanks of newborn 
blood-spots provide a rich and unique dataset for research and improving newborn screening 
(and other genetic testing) -- with enormous potential for contribution to a genomic learning 
healthcare system -- the loss of such potential (if secondary use of blood spots is only permissible 
on a individual consent basis) needs to be carefully weighed up against ethical concerns about 
respect for individual control. How do we ensure respect for individuals in a genomic learning 
healthcare system that relies on the collective contributions of entire populations in order for 
everyone to potentially benefit? These are issues that our research must continue to engage with 
directly.  

Conclusion 

The defining problem of the genomic age is the interpretation of human variation. In reviewing 

computational advancements and ethical concerns, we look to develop gene-specific variant 

interpretation algorithms with a genomic learning healthcare system that builds from a focus on 
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early-onset treatable disease in newborns and actionable pharmacogenomics recommendations. 

We seek diagnosis of IEM and treatment for PGx that is tailored to each individual, and treatment 

outcomes that are shared to improve treatment for future patients across all of society. The 

existing system is the first step towards this goal, as evidenced by confirmatory sequencing of 

patients and variant cataloging in databases such as ClinVar. Yet the existing system falls short, 

because it is reactive rather than predictive, and accurate treatment depends on whether the 

variant has been previously seen and cataloged. Importantly, it remains to be determined whether 

computational methods can alleviate health inequity that is reinforced by these limited variant 

databases. Pervasive sequencing may indeed present a social justice opportunity: to actively 

promote a more fair and consistent distribution of treatment across all population groups. Yet, 

there are many barriers in the way, including unrepresentative sequencing databases, secondary 

data use permissions, barriers to healthcare access, and existing biases at the human interface 

of research and caregiving.  

 

There are technical challenges, including accurate variant classification, data limitations, and 

growing numbers of variants of uncertain significance. A combination of integrated learning and 

transfer learning can overcome existing data limitations in order to improve the computational 

prediction of variants. An increased understanding of each patient’s variants will enable more 

precise diagnosis and treatment. Most importantly, as more patients provide information into the 

system, lessons learned from one patient may inform the care of and benefit all patients. A 

dynamic and fair genomic learning healthcare system will create the greatest patient benefit from 

the captured genomic and phenotypic information, but this will fundamentally depend on careful 

consideration of societal implications.  
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