Preprint
Article

This version is not peer-reviewed.

A Data Driven Approach for the Measurement of 10Be/9Be in Cosmic Rays with Magnetic Spectrometers

Submitted:

19 November 2020

Posted:

23 November 2020

You are already at the latest version

Abstract
Cosmic Rays (CR) are a powerful tool for the investigation of the structure of the magnetic fields in the galactic halo and the property of the Inter-Stellar Medium. Two parameters of the CR propagation models: the galactic halo thickness, H, and the diffusion coefficient, D, are loosely constrained by current CR flux measurements, in particular a large degeneracy exist being only H/D well measured. The 10Be/9Be isotopic flux ratio (thanks to the 2 My lifetime of 10Be) can be used as a radioactive clock providing the measurement of CR residence time in the galaxy. This is an important tool to solve the H/D degeneracy. Past measurements of 10Be/9Be isotopic flux ratio in CR are scarce, limited to low energy and affected by large uncertainties. Here a new technique to measure 10Be/9Be isotopic flux ratio, with a Data-Driven approach, in magnetic spectrometers is presented. As an example by applying the method to Beryllium events published by PAMELA experiment it is now possible to determine the important 10Be/9Be measurement avoiding the prohibitive uncertainties coming from the Monte Carlo simulation. It is shown how the accuracy of PAMELA data permits to infer a value of the halo thickness H within 25% precision.
Keywords: 
;  ;  
Subject: 
Physical Sciences  -   Acoustics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated