
"Definitions/""fluids-logo"-eps-converted-to.pdf

Article

A Unifying Perspective on Transfer Function
Solutions to the Unsteady Ekman Problem

Jonathan M. Lilly 1∗ and Shane Elipot 2

1 Theiss Research, La Jolla, California; j.m.lilly@theissresearch.org
2 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida;

selipot@rsmas.miami.edu

����������
�������

Abstract: The unsteady Ekman problem involves finding the response of the near-surface currents
to wind stress forcing under linearized dynamics. Its solution can be conveniently framed in the
frequency domain in terms of a quantity that is known as the transfer function, the Fourier transform
of the impulse response function. In this paper, a theoretical investigation of a fairly general transfer
function form is undertaken with the goal of paving the way for future observational studies. Building
on earlier work, we consider in detail the transfer function arising from a linearly-varying profile of the
vertical eddy viscosity, subject to a no-slip lower boundary condition at a finite depth. The linearized
horizontal momentum equations are shown to transform to a modified Bessel’s equation for the
transfer function. Two self-similarities, or rescalings that each effectively eliminate one independent
variable, are identified, enabling the dependence of the transfer function on its parameters to be
more readily assessed. A systematic investigation of asymptotic behaviors of the transfer function is
then undertaken, yielding expressions appropriate for eighteen different regimes, and unifying the
results from numerous earlier studies. A solution to a numerical overflow problem that arises in the
computation of the transfer function is also found. All numerical code associated with this paper is
distributed freely for use by the community.

Keywords: Ekman currents; ocean surface currents; wind stress forcing; transfer function;
wind-driven response

1. Introduction

An important problem in physical oceanography involves understanding the realtionship between
the wind stress forcing and the near-surface currents. An ability to accurately predict the currents given
the wind is central to numerous practical applications, such as navigation, spill and debris tracking,
and monitoring microplastic distributions, as well as being essential for estimating the contribution of
wind forcing to the ocean’s mechanical energy budget [1–3]. Consequently, this topic has been one of
ongoing interest since the pioneering paper of Ekman [4] over a hundred years ago.

Because the wind-driven response depends upon the details of momentum mixing within the
surface mixed layer, an important line of research has been understanding the dependence of the
near-surface currents on the assumptions regarding the profile of vertical eddy viscosity, denoted here
K(z), together with the lower boundary conditions [5–16]. Recent work on the wind-driven currents has
focused on the impacts of diverse phenomena, including Stokes drift and wave breaking [11,14,17–19],
realistically structured mixed layer turbulence [20–22], diurnal cycling [23,24], stratification and
buoyancy gradient effects [25–28], and the impact of more general variations of the eddy viscosity
with depth [10,13,14] and possibly also with time [9,15,29].

This goal of this paper is to contribute to obtaining the best possible estimate of the near-surface
currents given the wind stress, by unifying and refining existing linear theories of the wind-driven
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response. Specifically, we show that numerous previous solutions for the wind-driven currents
[4–8,11,12] can be combined into a single form, that due to a general linear profile for the eddy viscosity
with currents vanishing at the bottom of a finite-depth boundary layer. The potential for a still more
general linear theory, encompassing higher-order [14,15] or time-dependent [15] forms for the eddy
viscosity, is also discussed. Additional effects such as those due to waves, buoyancy, or diurnal cycling
could be incorporated at a later time by combining the results of the present paper with those of
the studies cited above. Our motivation is the desire to test predictions for the near-surface currents
based on the transfer function against observations in order to determine which postulated form, and
which choices of parameters, yield the optimal predictions of the currents. Doing so first requires a
sufficient understanding of the theoretical transfer function itself, and consequently this paper focuses
on theoretical considerations, leaving comparisons to real-world data to the future.

In the linear theory, the equations of motion lead to a relationship between the wind stress and
the wind-forced currents that can be expressed as a linear time-invariant filter. The wind-driven
near-surface currents are then given by a time-domain convolution between the depth-dependent
impulse response function (a.k.a. the Green’s function) and the surface wind stress forcing.
Alternatively, the problem may be cast into the frequency domain, where a linear time-invariant
filter becomes a multiplication between the Fourier transform of the forcing and the Fourier transform
of the impulse response function, a quantity known as the transfer function. While the two formulations
are equivalent, there are numerous reasons to prefer working in the frequency domain. The action
of a multiplication is more straightforward, as well as more computationally efficient, than that of
a convolution. Moreover, physical phenomena—such as inertial oscillations, tides, and eddies—are
often more distinct and more readily discernible in the frequency domain than in the time domain.
Finally, for many of the cases studied herein, there exist analytic solutions for the transfer function
for which no comparable expressions can be found for the impulse response function. For all of these
reasons we will focus almost entirely on the transfer function formulation.

Linear theories of the wind-driven response can be categorized according to their assumptions
regarding the vertical profile of the vertical eddy viscosity K(z), as well as the lower boundary
condition. Ekman [4] derived a solution for the steady-state response—the famous Ekman spiral—for a
constant eddy viscosity, K(z) = K0, with the lower boundary condition of velocity vanishing at infinite
depth. Time-dependent solutions to the Ekman problem were found by Fredholm (reported in [4]),
Gonella [5,6], and Krauss [7], with the latter author incorporating the effects of a finite boundary layer
depth h. Madsen [8] argued based on boundary layer theory that an eddy viscosity linearly increasing
from zero, K(z) = K1z, is more appropriate than a constant value, and found the time-dependent
solution for a flow that vanishes at infinity. Lewis and Belcher [11] later found a number of special
solutions for time-dependent problems, including the effects of either a general linear viscosity profile
of the form K(z) = K0 + K1z or a finite boundary layer depth h, but not both. All of the various Ekman-
and Madsen-type solutions were effectively consolidated and generalized by Elipot and Gille [12], who
derived six different analytic solutions for the transfer function corresponding to a constant, linear,
or offset linear eddy viscosity profile, and with no-slip lower boundary conditions applied either at
infinity or at the bottom of a boundary layer of finite thickness h.1

Here we extend and refine the work of Elipot and Gille [12] in a number of ways. The linearized
equations of motion are found to yield an equation for the transfer function that can be converted into
the modified Bessel’s equation, streamlining the derivation. A subtle numerical issue is uncovered,
wherein evaluation of the transfer function form can lead to spurious results on account of numerical
overflow or underflow arising from the modified Bessel function terms in the solution; this problem is
solved with the help of a series representation. Self-similarities are found that effectively eliminate

1 Elipot and Gille [12] also found the solutions with a free-slip lower boundary condition for a constant, linear, and offset
linear eddy viscosity profile. However, as described later, the free-slip solutions appear to be unphysical and therefore are
only treated here in passing.
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two degrees of freedom in the transfer function’s dependence on its parameters, allowing the span of
its possible forms to be more clearly examined. Finally, we find that all six no-slip transfer functions
presented by Elipot and Gille [12] are nested, in the sense that they are all derivable as the asymptotic
behaviors under suitable limits from the most general form.

The establishment of nestedness provides a unifiying conceptual simplification, because it means
that the most general solution of Elipot and Gille [12]—for an offset linear viscosity K(z) = K0 + K1z
and a finite boundary layer depth h—either explicitly reduces to, or is equivalent to, the solutions of
Fredholm, Krauss, Gonella, Madsen, and Lewis and Belcher, as well as the associated steady-state
responses or generalized Ekman spirals. Nestedness is also of practical importance for the use of
transfer functions in observational studies. Transfer functions depend upon physical parameters, such
as the Ekman depth and the roughness length, the most appropriate values of which are not always
known. A theoretical transfer function can be used to infer the best values of unknown parameters
through the optimization of a predicted versus observed response, as was done by Elipot and Gille [12]
for the Southern Ocean. In such a optimization, it is far more convenient to employ a single transfer
function form that can be varied as a function of its parameters, than to deal with individual discrete
solutions. The results obtained here are thus directly relevant for observational studies.

The structure of the paper is as follows. In Sect. 2, the general no-slip transfer function is derived.
Self-similarities of the transfer function are identified in Sect. 3, allowing its behavior to be examined as
a function parameter space. An asymptotic analysis in Sect. 4 systematically identifies reduced forms
that occur in limiting regimes of the controlling parameters, recovering the results from a number of
earlier studies within a unifying framework. The paper concludes with a discussion. All numerical
code associated with this paper is freely distributed for use by the community, as described in Section 6.

2. Derivation of the wind-to-current transfer function

In this section the transfer function for the linearized momentum equation is derived for a general
linear profile of the vertical eddy viscosity, building on simplifying Elipot and Gille [12].

2.1. Transfer function fundamentals

Let ξ(t, z) = u(t, z) + iv(t, z) be the wind-driven portion of the currents as a function of time t and
depth z, and let τ(t) ≡ τx(t) + iτy(t) be the surface wind stress, both represented in complex-valued
notation with i ≡

√
−1 where the real parts are the eastward components and the imaginary parts are

the northward components. If the currents can be taken to be the result of a linear time-invariant filter
acting on the wind stress, then one may write [see e.g. 30, Chapter 5]

ξ(t, z) =
∫ ∞

−∞
g(t− s, z) τ(s)ds (1)

for some function g(t, z), called the Green’s function or impulse response function. The latter term is used
because, if the wind stress takes the form of an impulse or Dirac delta function, τ(t) = δ(t), then the
convolution in Equation (1) gives ξ(t, z) = g(t, z). By convention g(t, z) is defined to vanish for t < 0,
implying that future values of the wind field do not affect the present value of the currents, and that
the response at time t is due to the integrated effects of all forcing prior to this time.

It is assumed that the wind stress τ(t) and the wind-driven currents ξ(t, z) can both be considered
to be stationary stochastic processes. It follows that these may be expressed in terms of their spectral
representations [31, Equation (4.11.4)]

τ(t) =
1

2π

∫ ∞

−∞
eiωtdT (ω) + τ (2)

ξ(t, z) =
1

2π

∫ ∞

−∞
eiωtdΞ(ω, z) + ξ(z) (3)
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where dT (ω) and dΞ(ω, z) are the corresponding Fourier-domain increment processes. These
equations state that the time-domain processes τ(t) and ξ(t, z) are aggregations of uniformly rotating
components from different frequencies, together with their mean or expected values ξ(z) ≡ E{ξ(t, z)}
and τ ≡ E{τ(t)}. Here E{·} is the expectation operator, or average over a statistical ensemble.
Stationarity of the mean implies that E{dT (ω)} and E{dΞ(ω, z)} both vanish for ω 6= 0—meaning
that the complex-valued Fourier coefficient of the oscillatory component eiωt vanishes in an ensemble
average—and the explicit use of ξ(z) and τ lets us set these expectations to vanish at ω = 0 as well.
Second-order stationarity implies that E {dT (ω)dT ∗(υ)} = 0 for ω 6= υ, and similarly for dΞ(ω, z).

The reason for the perhaps unfamiliar notation dT (ω) in Equation (2) is that τ(t), being a
stochastic process with a non-finite time-integrated magnitude,

∫ ∞
−∞ |τ(t)|dt, does not have a Fourier

transform in the usual sense, and similarly for ξ(t, z). However, these processes do have spectral
representations, Equations (2) and (3), given in terms of stochastic Riemann-Stieltjes integrals, see e.g.
Sects. 1.4 and 4.11 Priestley [31] or Sect. 4.1 of [30]. For this reason, the spectral representations are our
starting point for expressing dynamics in the frequency domain, rather than attempting to take the
forward Fourier transforms of τ(t) and ξ(t, z). The quantities dT (ω) and dΞ(ω, z) are also known as
the generalized Fourier transforms of the corresponding time-domain processes.

The impulse response function g(t, z) is assumed to be absolutely integrable,
∫ ∞
−∞ |g(t, z)|dt < ∞,

and as such it has a Fourier transform in the usual sense, G(ω, z) ≡
∫ ∞
−∞ e−iωtg(t, z)dω, a quantity

known as the transfer function. The impulse response function may be represented as the inverse
Fourier transform of the transfer function,

g(t, z) =
1

2π

∫ ∞

−∞
eiωtG(ω, z)dω. (4)

The solution, Equation (1), is then given in terms of the transfer function, as shown in Appendix A, by

ξ(t, z) =
1

2π

∫ ∞

−∞
eiωtG(ω, z)dT (ω) + τG(0, z) (5)

where the first term is the transient response, while ξ(z) = τG(0, z) is the steady response. Note that
the linear time-invariant filter, expressed in the frequency domain, is simply a multiplication.

Several other important solutions can be derived immediately from the transfer function
formulation. Firstly, the steady response portion of the wind-driven currents, representing a
generalized Ekman spiral, is given by ξ(z) = G(0, z) τ and is thus found by simply evaluating
the transfer function at the zero frequency. Secondly, the solution for monochromatic wind stress
forcing, dT (ω) = αeiϕδ(ω−ωo)dω with forcing amplitude α > 0, phase ϕ, and frequency ωo, is

ξ(t, z) = α |G(ω, z)| ei(ϕ+Φ(ω,z))eiωot (6)

where we have written G(ω, z) = |G(ω, z)| eiΦ(ω,z), expressing the transfer function in terms of an
amplitude and a phase. As was also noted by [12], the wind-driven velocity vector at a fixed z, like the
wind stress, thus rotates uniformly at frequency ωo, with the transfer function magnitude |G(ω, z)|
acting as a gain factor, and its phase Φ(ω, z) determining the fixed angle in physical space between the
rotating wind currents and the rotating winds. Finally, the “switch-on” problem, which we define as a
steady forcing that is turned on at time t = 0 from a motionless initial condition, can be represented by
choosing the forcing as τ(t) = U(t) where U(t) is the unit step function. Its solution for t ≥ 0 is

ξ(t, z) =
∫ ∞

−∞
g(t− s, z)U(s)ds =

∫ t

0
g(s, z)ds =

1
2π

∫ ∞

−∞
eiωt G(ω, z)

iω
dω− 1

2π

∫ ∞

−∞

G(ω, z)
iω

dω (7)

where the final, time-independent term ensures that the initial condition ξ(0, z) = 0 is satisfied. Thus
G(ω, z)/(iω) is the transient part of the switch-on solution expressed in the frequency domain.
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2.2. The linearized equations for the wind-driven flow

The linearized horizontal momentum balance of the wind-driven currents in a homogeneous
surface layer, neglecting pressure gradients and the advection of momentum, is given by

∂

∂t
ξ(t, z) + i f ξ(t, z) =

∂

∂z

(
K(z)

∂

∂z
ξ(t, z)

)
(8)

as expressed in complex-valued notation. Here K(z) is the turbulent vertical viscosity, f is the local
Coriolis frequency, and the depth coordinate z is defined to be positive downwards. This equation,
sometimes referred to as the Ekman equation, states that acceleration is generated by the vertical
convergence of the turbulent flux of horizontal momentum, together with rotation due to the Coriolis
force. The term in parentheses parameterizes the vertical flux of horizontal momentum as being down
the vertical gradient of horizontal velocity, with a proportionality coefficient K(z) that varies in the
vertical. As in Elipot and Gille [12], the form of the turbulent vertical viscosity will be taken to be

K(z) = K0 + K1z (9)

with both K0 and K1 being non-negative.2 This form includes as special cases both a constant viscosity
profile, K(z) = K0, assumed by Ekman [4], as well a viscosity linearly increasing from zero, K(z) = K1z,
as considered by Madsen [8]. The Ekman equation will be subject to the upper boundary condition

τ(t)
ρ

= −K(0)
∂

∂z
ξ(t, 0) (10)

meaning that at the ocean’s surface, the turbulent vertical flux of horizontal momentum balances the
wind stress. The lower boundary condition will be the no-slip condition of vanishing flow at the bottom
of a boundary layer of thickness h.

For future reference, we note that integrating Equation (8) over the depth of the boundary layer h,
and applying the upper boundary condition, leads to the Ekman transport equation[

∂

∂t
+ i f

] ∫ h

0
ξ(t, z)dz = K(h)

∂

∂z
ξ(t, h) +

τ(t)
ρ

. (11)

Here, the vertical redistribution of momentum within the boundary layer has been removed, so that
the Ekman transport is forced only by the wind stress and the vertical flux of turbulent momentum at
the base of the boundary layer. For finite h, this stress will be nonzero, implying that a momentum
exchange will lead to the underlying fluid exerting a force on the boundary layer. In the limit as h
tends to infinity, if the solutions are decaying exponentially in the vertical—as will prove to be the
case—the no-slip condition would imply that derivatives of all orders at the base of the boundary later
also vanish as h tends to infinity, and the first term on the right-hand-side of Equation (11) would be
zero. A related equation is the vertically-integrated kinetic energy equation

∂

∂t

∫ h

0

1
2
|ξ(t, z)|2 dz = ρ−1< {τ(t)ξ∗(t, 0)} −

∫ h

0
K(z)

∣∣∣∣ ∂

∂z
ξ(t, z)

∣∣∣∣2 dz (12)

which we obtain by multiplying Equation (8) by ξ∗(t, z), integrating, applying the boundary conditions,
and taking the real part. This shows that the vertically-integrated kinetic energy is modified by the
surface forcing, which can increase or decrease the energy depending on the relationship between the
wind stress and the currents, together with dissipation of kinetic energy occurring everywhere within

2 While the solution does permit K1 to be negative, such that K(z) decreases to a non-negative value at the bottom of the
boundary layer, this possibility is not explored herein.
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the boundary layer and proportional to the local vertical shear. It is interesting to note that due to the
no-slip condition at the lower boundary, kinetic energy dissipation does not occur there. A related
frequency-domain energy equation was derived by Elipot and Gille [32].

The response of the surface currents to the winds can be readily found using the transfer function
formulation. The linearized momentum equation, Equation (8), and the upper boundary condition,
Equation (10), can be expressed respectively as[

(K0 + K1z)
∂2

∂z2 + K1
∂

∂z
− i (ω + f )

]
G(ω, z) = 0 (13)

∂

∂z
G(ω, z) = − 1

ρK0
(14)

after substituting into these equations the solution ξ(t, z) expressed in terms of the transfer function
from Equation (5), together with the assumed form for the eddy viscosity from Equation (9).

It is useful to recast the parameters K0 and K1 controlling this system in terms of length scales.
We introduce

δ ≡
√

2K0

| f | , µ ≡ 2K1

| f | , zo ≡
K0

K1
=

δ2

µ
(15)

which are the Ekman depth3 δ, what we will refer to as the Madsen depth µ, and finally the roughness
length zo. The first two of these will be seen to be the penetration depths of the solutions of Ekman
[4] and of Madsen [8] for K(z) = K0 and K(z) = K1z, respectively. The three length scales δ, µ, and zo

turn out to be more natural than working with K0 and K1 directly. Note that only two of the three are
independent. In terms of δ and zo, the viscosity coefficients K0 and K1 can be written as

K0 =
1
2

δ2| f |, K1 =
1
2

δ2

zo
| f | (16)

such that the vertical eddy viscosity profile is given by

K(z) =
1
2

δ2| f |
(

1 +
z
zo

)
. (17)

From this, we see that one interpretation of zo is the depth at which the viscosity has doubled from its
surface value. Equivalently, the roughness length expresses the contribution of the surface value of
viscosity to the viscosity profile in terms of a vertical offset, since K(z) = (z + zo)K1. It will be seen
that small zo, implying a strong gradient of the eddy viscosity, corresponds to a more Madsen-like
solution, whereas large zo, implying a weak gradient, corresponds to a more Ekman-like solution.

2.3. Transformation to the modified Bessel’s equation

Inspired by the known form of the solutions to Equations (13) and (14) from [12], we define a
function ζz(ω) as

ζz(ω) ≡ 2
√

2
zo

δ

√(
1 +

z
zo

)
i(ω + f )
| f | (18)

which captures important dependence on both frequency ω and depth z, with the latter being expressed
as a subscript for later notational compactness. As this point a sign function s(ω, f ) is introduced,

s = s(ω, f ) ≡ sgn( f ) sgn(1 + ω/ f ) (19)

3 Note we refer to δ as the Ekman depth, although Ekman defined his “depth of the wind-currents” as πδ.
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where sgn(x), the signum function, takes on the values −1, 0, or +1 according whether its argument is
negative, zero, or positive, respectively. The ζz(ω) function may then be rewritten as

ζz(ω) = 2
√

2 esiπ/4 zo

δ

√(
1 +

z
zo

) ∣∣∣∣1 + ω

f

∣∣∣∣ (20)

on account of the fact that ω + f = f (1 + ω/ f ) = s| f | |1 + ω/ f | together with
√

si = esiπ/4. The use
of the latter form for ζz(ω) helps us to keep correct track of the complex phase. Note that s changes
sign across ω = − f and across f = 0, leading to ninety-degree phase shifts in ζz(ω) across both the
inertial frequency and across the equator.

The function ζz(ω) has been written in Equation (20) with z and ω both appearing only in their
dimensionless forms z/zo and ω/ f . This highlights the fact that the dependencies on z and on ω

are closely related, though not identical. For cyclonic frequencies, those with ω/ f > 0, an increase
in ω/ f —moving away from the inertial frequency toward more strongly cyclonic frequencies—is
the same as an increase in the dimensionless depth z/zo. This symmetry of the frequency and depth
dependencies breaks down for anticyclonic frequencies, ω/ f < 0, as both z and zo are always positive.

Under a change of independent variable from z to ζz(ω), with G?(ω, ζz(ω)) ≡ G(ω, z), it may be
readily shown (see Appendix B) that Equation (13) becomes

ζ2
z

∂2

∂ζ2
z

G?(ω, ζz) + ζz
∂

∂ζz
G?(ω, ζz)− ζ2

z G?(ω, ζz) = 0 (21)

omitting the frequency argument of ζz(ω) for notational clarity. This equation is recognized as the
modified Bessel equation of order zero, see e.g. Equation 9.6.1 of [33]; we note that since the frequency
ω can be treated as a parameter, Equation (21) may be regarded as an ordinary differential equation.
The general solution for G(ω, z) is therefore given by

G(ω, z) = c1(ω)I0(ζz(ω)) + c2(ω)K0(ζz(ω)) (22)

where Iη(x) and Kη(x) are the ηth-order modified Bessel functions of the first and second kind,
respectively, and c1(ω) and c2(ω) are functions of frequency chosen to match the boundary conditions.

From this general solution, the transfer function for a turbulent vertical viscosity of the form
K(z) = K0 + K1z within a boundary layer of finite depth h, subject to a no-slip lower boundary
condition and the upper boundary condition of Equation (14), is found to be

G(ω, z) =
√

2 e−siπ/4

ρ| f |δ
1√

|1 + ω/ f |
I0 (ζh(ω))K0 (ζz(ω))− I0 (ζz(ω))K0 (ζh(ω))

I0 (ζh(ω))K1 (ζ0(ω)) + I1 (ζ0(ω))K0 (ζh(ω))
(23)

which is valid for z ≤ h, with G(ω, z) vanishing for z > h. That Equation (23) indeed satisfies
the boundary conditions is verified in Appendix C. Elipot and Gille [12] previously derived this
solution, although they did not explicitly transform the differential equation for the transfer function,
Equation (13), into the modified Bessel’s equation as has been done here.

In the vicinity of the inertial frequency, in the limit as ω → − f , the transfer function exhibits the
asymptotic behavior, as will be shown later,

G(ω, z) ∼ 2
ρ| f |µ ln

(
1 + h/zo

1 + z/zo

)
, ω → − f (24)

with the tilde notation meaning that the limit of the ratio of the left-hand side to the right-hand is unity
as ω approaches − f . The transfer function is seen to be real-valued and non-negative at the inertial
frequency ω = − f at all depths z, such that its phase is zero, in agreement with the observational
results reported in Elipot and Gille [12]. Physically this means that the rotating wind-driven currents at
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inertial frequency are always aligned with the rotating component of the wind stress at that frequency.
The same is not true for a version of the transfer function with a free-slip lower boundary derived
by [12], which is shown in Appendix D to have a phase jump of ±90◦ across the inertial frequency.
Because of this unphysical feature, the free-slip transfer function will not be discussed further. Note
that while Equation (21) appears to also have a singularity at f = 0, this is not the case, but rather is a
consequence of the choice of parameters that have been applied for convenience for the oceanographic
problem; in fact Equation (21) also solves the non-rotating equation.

In applications it may be required to evaluate the transfer function over a very large parameter
space. For example, it will be shown later that the transfer function exhibits simplifying behaviors—e.g.
purely Ekman-like or purely Madsen-like—for extreme values of its parameters. When computing
the transfer function, one encounters a subtle but nontrivial challenge. Numerical overflow may
occur for parameter ranges where the arguments to the Bessel functions become too large, causing
the Bessel functions to obtain larger values than can be represented in double-precision floating-point
format. The evaluation of Equation (23) will then fail, even if the numerator and denominator would
otherwise cancel to produce a physically meaningful result. A solution to this problem is presented in
Appendix E through the use of a series expansion.

3. Behavior of the transfer function

Here the behavior of the general no-slip transfer function in Equation (23) is analyzed as a function
of parameter space. The key to understanding its behavior is recognizing that two of the controlling
parameters simply result in rescaling its amplitude and frequency.

3.1. Essential behavior of the transfer function

In addition to being a function of frequency ω and the observational depth z—what we will call
the observational parameters—the transfer function given in Equation (23) is a function of four other
parameters that we will call the structural parameters. These may be taken as the local Coriolis frequency
f , the Ekman depth δ, the roughness length zo, and the boundary layer thickness h. Examining the
behavior of the transfer function is complicated by the fact that the parameter space over which its
form varies has so many dimensions. However, self-similarities of the transfer function exists which
allows us to reduce the four-dimensional structural parameter space to just two dimensions.

The first self-similarity involves the dependence on f . Apart from the | f |−1 in the leading
coefficient, G(ω, z) depends on f only through the ratio ω/ f . This suggests defining a rescaled version
of the transfer function as

G̃(ω, z) = ρ| f |G(ω, z) (25)

which removes the explicit dependence of the transfer function amplitude on the Coriolis frequency f .
Dependence on f can then be absorbed into dependence on ω, reducing the structural parameter
space from four dimensions to three. Note that G̃(ω, z) has units of m−1, whereas G(ω, z) has units of
m2s kg−1. In all plots of the transfer function herein, we will show this rescaled version. The second
self-similarity will be presented after an initial discussion of the transfer function form.

At this point, for orientation, we turn to Fig. 1, which presents the dependence of the transfer
function amplitude as a function of both depth z and frequency ω, with the parameter choices δ = 20 m,
zo = 20 m, and h = ∞ or h = 50 m. For these same parameter choices, the curves traced out by the
transfer function on the complex plane as ω varies are shown in Fig. 2. Here, as in subsequent figures,
we choose f > 0, indicating a northern hemisphere location. In both panels of Fig. 1, we see a strong
maximum centered on the inertial frequency ω = − f , the Fourier-domain manifestation of the fact
that the wind stress forcing excites weakly damped oscillations at that frequency.

Comparing the two panels of Fig. 1, we see in both, the transfer function magnitude decays
away from the inertial frequency ω = − f as well as away from the surface. There are two main
differences related to the effects of the finite value for h. Whereas for infinite h, the transfer function is
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Figure 1. Examples of the transfer function for (a) infinite boundary layer depth h and (b) h = 50 m. In
both panels, the magnitude of the rescaled transfer G̃(ω, z) ≡ ρ| f |G(ω, z) is shown. The parameter
choices, chosen for display purposes rather than for realism, are δ = 20 m and zo = 20 m. The depth
z = 20 m is indicated in both panels by a dotted black line, while the curving white lines are curves of
constant |ζz(ω)|. Roman numerals, shown here for future reference, refer to the regimes enumerated
later in (a) Table 1 and (b) Table 2. Areas where the various forms from Tables 1 and 2 apply are
schematically indicated by the regions separated by white lines together with the gray horizontal lines.
See Sect. 4.4 for further details regarding these regimes.

unbounded at the inertial frequency—as is most clear from the open curves in Fig. 2(a)—for finite h
this singularity becomes smoothed into a finite value. ( The importance of the finite depth boundary
layer in damping the response to forcing at the inertial frequency can be inferred from the vertically
integrated momentum equation, Equation (11), since the left-hand side must vanish for a strictly
inertial response.) Because such singularities are not observed in the real ocean, we expect the finite h
transfer functions to be more physically meaningful. A second obvious difference is that the rate of
decay of the transfer function with increasing depth seen in Fig. 1(a) is heightened in Fig. 1(b) as z
approaches the boundary layer depth h, such that the transfer function tends to zero there.

Another feature to note in Fig. 2 is the difference in the transfer function curve on the complex
plane between the surface and at depth. For z > 0, the real part of the transfer function crosses the
line x = 0, and zooming in reveals that it continually circles the origin as it decays; this occurs for
both h = ∞ and h = 50 m, although it is more apparent in the latter case. This implies that the phase
angle of the transfer function is continually increasing or decreasing as the frequency moves away
from ω = − f . By contrast, at the surface, z = 0, the two sides of transfer function do not spiral, but
rather each approach the origin at a 45◦ angle to the positive x-axis. Thus, at the surface, there is a 90◦

phase difference between large positive and large negative frequencies.

3.2. Comparison with the impulse response function

It is useful to compare the finite-depth transfer function shown in Fig. 1(b) and Fig. 2(b) with its
impulse response or Green’s function g(t, z), presented in Fig. 3. Because an analytic solution for the
full impulse response function is not available, it has been computed numerically as the inverse Fourier
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Figure 2. The rescaled transfer functions G̃(ω, z) from Fig. 1, plotted on the complex plane. Curves are
plotted every 5 m from the surface to 45 m for (a) the h = ∞ or (b) h = 50 m cases. In each panel, the
transfer function at the surface is plotted with the heavy solid line, while the transfer function at 45 m
is plotted with the heavy dashed line. Note the difference in axis limits between the two panels.

transform of G(ω, z). As seen in Fig. 3a, the amplitude decays both with time and with depth over
most of the domain. For the chosen parameter values, the impulse response function is very rapidly
decaying in time, executing little more than a single oscillation before essentially vanishing; this is a
consequence of the fact that parameters have been chosen for display purposes in the transfer function
schematic of Fig. 1. The phase difference between the real and imaginary parts of the transfer function
shows a ninety degree offset. When the real part obtains a local maximum, imaginary part will obtain
a local minimum a quarter of an inertial period later. This is an expression of the clockwise-rotating
circular response expected for inertial oscillations in the northern hemisphere.

At times very close to the origin, rather than decaying, the transfer function exhibits a thin wedge
of growing amplitudes that broadens with depth. Very near the surface, the transfer function obtains its
maximum value at time t = 0, but at deeper depths it rises from an initial value of zero to a maximum
amplitude at an intermediate time, leading to an apparent vertical propagation of the maximum
response as the momentum of initial impulse is diffused downward from level to level.

3.3. A second self-similarity of the transfer function

A second-self similarity of the transfer function allows variations of the Ekman depth, or
equivalently of the inertial amplitude, to be absorbed into the frequency axis. To show this we
introduce Υ(ω) ≡ 1 + ω as a frequency deviation that can be used to replace the frequency ω. Next
we define a version of the ζz(ω) function, expressed in terms of Υ rather than ω, as

Zz (Υ, δ, zo) ≡ 2
√

2 esiπ/4 zo

δ

√
(1 + z/zo) |Υ| (26)

where we have written the dependence on z as a subscript, as with ζz(ω), and have explicitly indicated
the dependence on δ and zo. Similarly a new version of the transfer function is defined as

Γ (Υ, z, δ, zo, h) =
√

2 e−siπ/4

δ

1√
|Υ|
I0 (Zh)K0 (Zz)− I0 (Zz)K0 (Zh)

I0 (Zh)K1 (Z0) + I1 (Z0)K0 (Zh)
(27)
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Figure 3. The impulse response or Green’s function g(t, z) corresponding to the transfer function
G̃(ω, z) shown in Fig. 1(b) and Fig. 2(b). For display purposes, the impulse response function is divided
by its own maximum over all times and depths. Panel (a) shows the magnitude of g(t, z) as a function
of time and depth with a logarithmic color scale, and with the white contours indicating marking
log (g(t, z)/max{g}) = 10−n for n being a nonnegative integer. Panels (b) and (c) respectively show the
real and imaginary parts of the transfer function at 5 m depth intervals, the same depths used in Fig. 2.
Line styles are also as in that plot. The horizontal lines in (a) mark the depths of the corresponding
curves plotted in (b) and (c). Vertical dotted lines mark locations of the zero-crossings of the real part of
g(t, z), which we observe to occur at (1/4 + n/2) inertial periods at all depths.
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omitting the arguments to Zz on the right-hand side for clarity, and again explicitly indicating the
parametric dependencies on the left-hand-side. One finds that ζz(ω) and G̃(ω, z) are recovered by

ζz(ω) = Zz (Υ(ω/ f ), δ, zo) , G̃(ω, z) = Γ (Υ(ω/ f ), z, δ, zo, h) (28)

where the right-hand sides can be considered functions of the original parameter set ω, z, f , δ, zo, and h.
An important simplification now occurs. For some positive number α, one finds

Zz (Υ, αδ, zo) = Zz

(
α−2Υ, δ, zo

)
, Γ (Υ, z, αδ, zo, h) = α−2Γ

(
α−2Υ, z, δ, zo, h

)
. (29)

Thus, a rescaling of the Ekman depth δ can be absorbed into a rescaling of the frequency deviation Υ,
together with an amplitude rescaling of the re-parameterized transfer function Γ.

This self-similarity can be framed in an arguably more useful way. The most prominent feature of
the transfer function is its value at the inertial frequency, given earlier in Equation (24). We define the
amplitude of the rescaled transfer function at the inertial frequency as

A(z, δ, zo, h) ≡ ρ| f |G (− f , z) =
2zo

δ2 ln
(

1 + h/zo

1 + z/zo

)
. (30)

The definition of A can be inverted to give δ as a function of other parameters

δ = ∆(z, A, zo, h) ≡

√
2zo

A
ln
(

1 + h/zo

1 + z/zo

)
(31)

and consequently one can replace δ with A as a controlling parameter. Observe from Equation (31) that
multiplying A by α−2 is equivalent to multiplying δ by α, which in turn was shown in Equation (29) to
be equivalent to multiplying both Υ and Γ by α−2. Thus, as with δ, the inertial amplitude A can be
absorbed into rescaling the frequency deviation together with an amplitude scaling.

The four structural parameters f , δ (or A), zo, and h have now been reduced to just two parameters
determining the transfer function shape, zo and h, together with two rescalings. The first rescaling
absorbs f into the frequency ω, while the second absorbs the Ekman depth δ, or equivalently the
inertial amplitude A, into the nondimensional frequency deviation Υ(ω/ f ) = 1 + ω/ f , with both
rescalings also affecting the overall transfer function amplitude.

3.4. Variability of transfer function structure

The results of the previous section show that in order to investigate the behavior of the transfer
function as a function of the four structural parameters f , δ (or A), zo, and h, we only need to vary zo

and h. In Fig. 4, the rescaled inertial amplitude A, given in Equation (30), is presented for h = 1000 m
as a function of δ and µ = δ2/zo. The depth of observation is chosen as z = 15 m, as this is the nominal
observation depth for surface drifters in NOAA’s Global Drifter Program [34]. The inertial amplitude
exhibits a rectangular shape on the log δ vs. log µ plane, decreasing both towards the right-hand side
and towards the top of this plot. To understand this shape, we note the asymptotic behaviors

A(z, δ, zo, h) ∼ 2zo

δ2 ln
(

h
z

)
, zo → 0 (32)

A(z, δ, zo, h) ∼ 2
h− z

δ2 , zo → ∞ (33)

which show that when zo is small, A decreases with increasing µ = δ2/zo but is independent of δ for a
fixed choice of µ, while when zo is large, A decreases with increasing δ but is independent of µ. This
matches the behavior seen in the plot. The same behavior (not shown) occurs for other choices of h.
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Figure 4. The rescaled inertial amplitude A ≡ ρ| f |G(− f , z) on the δ vs. µ plane for z = 15 m and
h = 1000 m; note that this quantity is independent of the choice of Coriolis frequency f . Black contours
mark locations where A = 10n m−1 for integer n, while white lines are lines of constant zo with
zo = δ2/µ = 10n m. Note that zo increases towards the lower right-hand corner. The heavy black line
is the A = 1 m−1 contour, a curve that will be referred to in subsequent figures, while the heavy white
line is the zo = 1 m contour. Black dots mark intersections of the zo = 10n m lines with the A = 1 m−1

contour. As discussed subsequently, the limits of high and low values of zo correspond respectively
to purely Madsen-like and purely Ekman-like transfer functions, modified by the finite value of the
boundary layer depth h; this tendency is reflected with the “M” and “E” labels.

Transfer functions on the complex plane for various (δ, µ) values are shown in Fig. 5(a)–(f) for
h = 16 m, 100 m, 1000 m, 104 m, 105 m, and 106 m respectively; the reason for presenting such large
values of h, with a boundary layer depth even exceeding the ocean depth, is to better examine the
limiting behavior of the transfer function as h approaches the value of infinity that is implicitly used in
the Ekman and Madsen solutions. Other parameter values are chosen such that the inertial amplitude
is held fixed at A = 1 m−1, while zo = 10n with integer n. For the h = 1000 m case presented in
Fig. 5(c), these zo values correspond to the black dots shown in Fig. 4, a few of which fall beyond
the edges of that plot. Because the transfer function shape does not change with zo and h held fixed,
transfer functions that lie along curves of constant zo in Fig. 4 are identical to one another apart from
rescaling the amplitude and the frequency axis. Thus, Fig. 5(c) completely characterizes the variability
of the transfer function form with the choices h = 1000 m and z = 15 m, and by examining different h
values, Fig. 5 essentially captures the entire range of transfer function shapes at z = 15 m.

We call attention to three features of these transfer functions, explored here graphically, and
then in the following section through the asymptotic behavior of the transfer function in various
parameter regimes. The first is the overall transition from an Ekman-like solution with K(z) = K0 to a
Madsen-like solution with K(z) = K1z. In each panel in Fig. 5, the transfer function curves transition
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Figure 5. Transfer functions at 15 m depth on the complex plane with A = 1 m−1 and with h = 16 m,
100 m, 1000 m, 104 m, 105 m, and 106 m in panels (a)–(f) respectively. The transfer functions in panel (c),
with h = 1000 m, correspond to the dots on the δ vs. µ plane in Fig. 4. In each panel, transfer functions
are drawn for δ = 10n with n taking on all integer values from -12 and 12. The heavy black solid line is
for the largest value of zo, the point that is farthest into the Ekman-like regime along the A = 1 m−1

contour, while the heavy black dashed line is for smallest value of zo, i.e. the farthest point into the
Madsen regime. Not all lines are visible because some almost exactly overlap others. A thin white line
and thin black line show the asymptotic forms for the depth-modified Ekman and depth-modified
Madsen solutions presented later in Table 2 as forms III-h and VII-h; these nearly exactly overlie
the heavy solid and heavy dashed lines, respectively. According to the self-similarity established in
Sect. 3.3, for each choice of h the transfer functions for a different A value but the same values of zo

would appear identical to those shown here apart from an overall amplitude scaling; thus this figure
essentially reflects the entire range of possible behaviors of the transfer function at depth z = 15 m.

from the heavy solid line, corresponding to large zo = K0/K1 values or the Ekman-like limit, to the
heavy dashed line for small zo = K0/K1 values or the Madsen-like limit. Note that many of the plotted
curves are not visible, because near the limiting forms, the curves tend to be extremely similar and
lie on top of one another. Comparing panels, we observe that the nature of this transition changes
depending on the boundary layer depth h. For panels (a) and (b), corresponding to h = 16 m and
h = 100 m, the Madsen limit is a broader circle than the Ekman limit, indicating larger transfer function
amplitudes. For deeper boundary layer depths h, the situation changes, and the Madsen curve ends up
becoming highly elongated along the real axis. Meanwhile, the Ekman curves remain largely circular
as h increases, while reducing their radii and shifting their centers towards the positive real direction.

The second feature we call attention to is the phase behavior as the frequency tends to very large
positive or negative values. For h = 16 m, a spiraling of the transfer function around the origin with
increasing frequency deviation |ω + f | is clearly seen, meaning that the phase of transfer function
continues to increase or decrease as its amplitude decays. As h increases, this spiraling diminishes
until it is not longer visible in the plots, however, magnification would reveal that it is still occurring
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Figure 6. As in Fig. 5(c), the transfer function with h = 1000 m, but for an observation depth of the
surface, z = 0, rather than z = 15 m. All other parameter settings are as in that plot. The Madsen-like
solution at zo = 0, plotted as a thin black line overlaying the heavy dashed line in Fig. 5(c), collapses to
a single value at all frequencies at the surface, as indicated by the black dot.

but at smaller amplitudes for larger h values. In general the Madsen-like curves, which all visibly cross
the x-axis even for large h, show a greater tendency for spiraling than the Ekman-like curves. This
spiraling with increasing frequency deviation is related to the well-known spiraling of the wind-driven
currents with depth, as a consequence of the depth/frequency symmetry discussed earlier.

For comparison, the transfer functions for the same parameter settings as in Fig. 5(c), but for
the surface instead of at z = 15 m, are shown in Fig. 6. The transfer functions at the surface have a
simpler structure than those at depth, with the versions for other h being qualitatively quite similar to
those shown here. A key difference in comparison with the subsurface transfer functions concerns the
phase behavior, as spiraling about the origin is not observed at the surface. Instead, the two branches
approach the origin at an angle of ±45◦ with respect to the positive x-axis, leading to a ninety-degree
phase difference between large positive and large negative frequencies. In this plot, the flattening of
the transfer function approaching the Madsen-like limit of zo = 0 is even more accentuated than at
depth. It will be shown later that the depth-modified transfer function collapses to a single point for
all frequencies at z = 0 in the Madsen-like limit. This is a related to the logarithmic singularity that
emerges at the surface in the infinite depth transfer function, and that was noted by [8].

The third feature is the near-inertial behavior, already seen in Fig. 1 and Fig. 2. As was discussed
earlier, a singularity occurs at ω = − f when the boundary layer depth is set to infinity, but this
singularity is damped out for finite choices of h. Thus, one would expect a singularity to begin
emerging in Fig. 5 as h tends to infinity. The reason it is not seen is that we have specifically chosen
parameters in the various panels such that the transfer function amplitude A remains fixed at the
value of A = 1 m−1, together with the fact that the transfer function curves have been computed on a
very dense frequency array. However, with δ and zo fixed and h increasing, one would indeed see a
singularity emerge, such as was observed between the two panels of Fig. 2.

These three features—the transition from an Ekman-like to Madsen-like behavior, shown to be
controlled by zo the phase progression with increasing or decreasing frequency, and the inertial peak,
controlled by h—will all revisited in the next section.
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4. Asymptotic behavior of the transfer function

In this section we examine the asymptotic behaviors of the general no-slip transfer function
G(ω, z), given by Equation (23), for various limits of its controlling parameters, unifying the results
from a number of earlier studies.

4.1. Regimes of the transfer function

In investigating limiting behaviors, zo/δ, z/zo, and zo/h emerge as controlling quantities, all three
of which may be larger than, equal to, or smaller than one. The ratio zo/δ determines whether the
gradient of the vertical viscosity is strong or weak. When the gradient is strong, the roughness length
zo is small compared with δ, and the dynamics are Madsen-like—by which we mean dominated by
K1—while when the gradient is weak, the dynamics are Ekman-like or dominated by K0. The ratio
z/zo controls the nondimensional position of the observation depth. Finally, zo/h determines the
extent to which the solution is influenced by the effect of a finite-depth boundary layer.

At this point a new notation will be introduced to help keep track of the ordering of parameters
in various limits:

a←< b means lim
( a

b

)
→ 0. (34)

The symbol “←<” is an arrow superposed on a less than sign, indicating an ordering as well as a limit.4

An advantage of this approach is that we can order multiple variables, such that

a←< b←< c means lim
( a

b

)
→ 0, lim

(
b
c

)
→ 0 (35)

with the former being a more compact and legible notation.

4.2. Transfer function expressions

Asymptotic forms of the general no-slip transfer function are presented in Table 1, for the limit
of large h, and Table 2 including the effects of finite h. Each table is a 3× 3 matrix in which the three
columns are for the three possible relationships between zo and δ (zo ←< δ, indeterminate, and δ←< zo

with ω 6= − f , respectively), while the three rows are for the three possible relationships between z and
zo (z←< zo, indeterminate, and zo ←< z). The orderings implied by the intersections of the row limits
and the column limits are detailed in each entry of the tables. In addition to ζz(ω), given earlier in
Equation (20), two related functions,

ζz(ω) ∼ φz(ω) ≡ ζ0(ω)

[
1 +

1
2

z
zo

]
, z←< zo (36)

ζz(ω) ∼ ςz(ω) ≡ 2
√

2 esiπ/4

√
z
µ

∣∣∣∣1 + ω

f

∣∣∣∣ , zo ←< z (37)

emerge in the limits of small or large nondimensional observation depth z/zo, respectively.
The infinite h regimes in Table 1 are denoted by Roman numerals I–IX, while the finite h regimes

in Table 2 are denoted by I-h, II-h, etc. All forms in these tables can be derived under the indicated
limits from the general solution presented earlier in Equation (23), for K(z) = K0 + K1z and finite h,
which inhabits regime V-h at the center of Table 2. When limits of both zo/δ and zo/z are involved,
these may be taken in either order. For example, in moving from V-h to VII-h, one may move first left
and then down or first down and then left. All of the infinite h forms in Table 1 can be derived by
first deriving form V from V-h, then taking appropriate limits of zo/δ and of z/zo, or alternatively by

4 The notation “a � b” is not sufficient because it simply means that a is much less than b, as opposed to the limit as a/b
tends to zero that is required here.
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taking the infinite h limit of the corresponding expression in Table 2, yielding identical results in either
case. Relevant details on the derivations of the asymptotic forms are given in Appendix F.

All six terms along the two anti-diagonals—those enclosed in boxes—were previously presented
by Elipot and Gille [12], and are labeled according to the numbering system of those authors, e.g.
EG-1a, etc.5 These were derived therein as six separate cases, by setting K(z) = K0, K(z) = K1z, or
K(z) = K0 + K1z in the transfer function equation, Equation (13), and then setting a lower boundary
condition of velocity vanishing at either an infinite depth or at z = h. All of the other forms in these
tables are new. The new expressions are useful as giving the intermediate steps in the derivations that
move from the central form to the upper right and lower left asymptotic limits, and are also themselves
relevant approximations to the transfer function under certain dynamical regimes.

The expressions in these tables either explicitly or implicitly subsume the results from a number
of earlier studies, as we will now discuss in detail, clarifying a point made by Elipot and Gille [12].
Form III is the transfer function for the Ekman case (K1 = 0) with currents vanishing at infinity, first
presented by Gonella [6] following the derivation of the associated impulse response function by the
same author [5]. The impulse response function corresponding to form III is, in turn, closely related to
the switch-on solution given in Ekman [4] and attributed to I. Fredholm. As discussed in Section 2.1,
the solution to the switch-on problem in the frequency domain can be readily expressed in terms of the
transfer function as G(ω, z)/(iω). Similarly, frequency-domain versions of the switch-on solutions
derived by Lewis and Belcher [11] for the general linear viscosity profile K(z) = K0 + K1z for infinite
depth, and for K = K0 or K = K1z for both infinite and finite h values, are readily found from forms
V, III, III-h, VII, and VII-h. Considering the Ekman problem modified for the effects of finite depth,
Krauss [7] found the impulse response function as well as its Laplace transform, the being essentially
identical to the transfer function in III-h apart from a change of variables. Finally, the transfer function
in regime VII is basically the same as the Laplace transform solution of Madsen [8].

4.3. Survey of asymptotic behavior

Next we survey the behaviors in Tables 1 and 2, with reference to the Ekman/Madsen transition,
the spiraling behavior with increasing frequency discussed earlier, and the near-inertial peak.

The Ekman-like (K1 = 0) and Madsen-like (K0 = 0) solutions—in the upper-right hand and
lower-left hand corners of these tables, respectively—are seen to represent opposing limits around
which the behavior of the transfer function can be characterized. The right-hand columns of both tables
can be thought of as “near-Ekman”, or close to the K1 = 0 behavior but with a minor effect due to the
vertical gradient of viscosity. Similarly, the left-hand columns can be thought of as “near-Madsen”,
or close to the K0 = 0 behavior but with a minor effect due to the surface value of the viscosity.
The transitions to pure Ekman or Madsen dynamics, in which the effect of K1 or K0, respectively, is
entirely neglected, is seen to involve not only a condition on the regime parameter zo/δ but also on the
nondimensional depth z/zo. An interesting aspect is how the Ekman and Madsen solutions interact.
The Ekman-like solutions in regimes III and III-h contain no dependence on zo or on µ, while the
Madsen-like solutions in regimes VII and VII-h contain no dependence on δ. For all other forms, both
δ and zo, or else δ and µ, are required. In other words, all other entries apart from the lower left and
upper right corners are mixed in the sense that they include to some extent the influence of both the
surface value of the viscosity K0 as well as its gradient K1. The more general expressions in the central
column are required when strengths of these two effects are roughly comparable.

One interesting aspect of the Ekman/Madsen transition concerns the surface singularity of the
Madsen solution. The original Madsen solution in regime VII has a logarithmic singularity at z = 0, a

5 Note that in [12],
√

i(ω + f ) is occasionally rewritten as eiπ/4
√
(ω + f ), which is not correct; this applies to transfer

functions 1a, 1b, and 1c in the first row of their Table 1. While
√

i = eiπ/4, changing the sign inside the radical gives√
−i = e−iπ/4 which is not the same as

√
i×
√
−1 = ei3π/4.
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consequence of the asymptotic behavior K0(x) ∼ − ln(x) for x → 0. As was pointed out by Madsen [8],
this is an unrealistic aspect of that solution. (The effect of a finite depth does not help, since form VII-h
still has the surface singularity, due to the fact that as z → 0 we have G(ω, z) ∼ 2(ρ| f |µ)−1 ln(h/z)
for all fixed frequencies.) This problem lead Lewis and Belcher [11] to consider the offset linear eddy
viscosity K(z) = K0 + K1z, for which they derived a switch-on solution for the infinite depth case,
comparable to our regime V. However, the “near-Madsen” solutions in regimes IV and IV-h, in which
the role of K0 is small but non-negligible, also have this singularity removed, showing that only a small
value of the eddy viscosity at the surface is sufficient to resolve this unphysical feature.

Regarding the phase behavior at large positive and negative frequencies, we see from the Ekman
transfer function, form III, that for z = 0, the phase of the transfer function is given by arg{G(ω, 0)} =
−siπ/4 = −i sgn( f ) sgn(1 + ω/ f )π/4. This implies that between very large positive and very large
negative frequencies, the change in phase of the transfer function will be ±π/2, or ninety degrees. The
same behavior can be found by taking the large frequency deviation limit of the general form V-h. This
ninety-degree phase difference at z = 0 is a thus general results for all parameter choices, apart from
the pure Madsen solution which is singular at the surface. This explains the pattern seen earlier in
Figure 6. For z 6= 0, numerical computation shows the phase to increase or decrease continuously as
one proceeds to large frequency deviations |ω + f |, leading to the spiraling behavior seen in Figure 5.

The value of the transfer function at the inertial frequency ω = − f , previously presented in
Equation (24), holds for all parameter values and is most readily derived from the near-Madsen forms
in the left-hand columns of these tables. When h is infinite, the value of the transfer function at the
inertial frequency is unbounded, leading to the well-known singular behavior seen earlier in Fig. 2(a).
The sigularity is removed with the introduction of a finite boundary layer depth h, as seen in Fig. 2(b).
As such singularities are not observed in reality, all of the infinite h transfer functions considered here
have a prominent feature that is physically unrealistic.

4.4. A depth/frequency interpretation of regimes

The asymptotic behaviors seen in Tables 1 and 2 not only give limiting forms appropriate for
various parameter choices of different transfer functions, but also, to an extent, those occurring at
different frequencies or depths within the same transfer function. The columns of Tables 1 and 2, which
set the regime of the δ/zo ratio, can alternatively be seen as specifying the regime of the frequency
deviation |1 + ω/ f |. The ratio zo/δ acts through the ζz(ω) function, given in Equation (20), that
appears in the arguments to the Bessel functions, and limiting behaviors occur when those arguments
are either very small or very large. The zo ←< δ limit is thus essentially equivalent to ω → − f , while
δ←< zo with ω 6= − f is essentially equivalent to |1 + ω/ f | → ∞. For this reason, zo ←< δ, and δ←< zo

with ω 6= − f , may be referred to as the near-inertial and far-inertial limits, respectively.
In the case of Table 1, we may therefore see these expressions as asymptotic forms arising on the

depth / frequency, or z/ω, plane for any individual realization of the transfer function, provided δ

and zo are both nonzero. In other words, one expects to see these regimes approximately occurring
within a given transfer function, as labeled in the schematic in Fig. 1(a), not only between transfer
functions with different parameters. Thus, the classical Ekman solution is the asymptotic behavior of
the general no-slip transfer function with zo ←< h in its near-surface, high-frequency limit, while the
Madsen solution arises in the deep, near-inertial limit. For Table 2, the interpretation of the rows as
pertaining to depth regimes within a given transfer function no longer applies, because the upper and
lower rows involve opposing limits of the ratio zo/h. For h � zo the upper row is suitable for all z,
whereas for zo � h the lower row becomes suitable for sufficiently large z, as indicated in Fig. 1(b).

The depth/frequency interpretation of transfer function regimes may not be practically useful,
because a transfer function is generally needed for all resolved frequencies, not just for a particular
depth and frequency range. Nevertheless, it is helpful to conceptually organize the different regimes
in terms of where they occur on the depth/frequency plane.
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4.5. Impluse response functions

Of all the transfer function forms listed in Tables 1 and 2, only a few appear to have corresponding
analytic expressions for the impulse response function: form III, due to Gonella [5,6]; form VII, due to
Madsen [8]; form IV, which will have an analytic solution that is very similar to that for form VII; and
the depth-modified Ekman solution in III-h, the impulse response function for which was shown by
Krauss [7] to involve a Jacobi theta function. Here we will present the impulse response functions only
for the Ekman and Madsen solutions, which are found to be, respectively,

gE(t, z) = U(t)

√
2
π

1
ρδ
√
| f |t

exp
(
− 1

2| f |t
z2

δ2 − i f t
)

(38)

gM(t, z) = U(t)
2

ρµ| f |t exp
(
− 2
| f |t

z
µ
− i f t

)
(39)

with U(t) again being the unit step function. These impulse response functions correspond,
respectively, to the transfer functions

GE(ω, z) =
√

2
ρδ
√
| f |

1√
i(ω + f )

exp

(
−
√

2
z
δ

√
i(ω + f )
| f |

)
(40)

GM(ω, z) =
4

ρ| f |µK0

(
2
√

2
√

i(ω + f )
z

µ| f |

)
(41)

which have been rewritten from Table 1 for easier comparison.
When the wind stress forcing τ(t) consists of a Dirac delta function in time, δ(t), then from

Equation (1) the current response is simply the impulse response function ξ(t, z) = g(t, z). It is
straightforward to verify that gE(t, z) and gM(t, z) are in fact valid solutions for an impulsive forcing
with τ(t) = δ(t). That the time-domain momentum equation, Equation (8), is satisfied can be readily
shown by differentiating gE(t, z) and gM(t, z). The upper boundary condition is then best examined
through the vertically integrated momentum equation, Equation (11), with h set to a value of infinity.
Noting first that

∫ ∞
0 gE(t, z)dz =

∫ ∞
0 gM(t, z)dz = ρ−1U(t)e−i f t, differentiation shows that[

d
dt

+ i f
] ∫ ∞

0
g(t, z)dz = ρ−1δ(t)e−i f t = ρ−1δ(t) (42)

for both gE(t, z) and gM(t, z), using the fact that d
dt U(t) = δ(t). This matches the right-hand-side of

Equation (11) emerging from the upper boundary condition for τ(t) = δ(t). The lower boundary
condition of vanishing flow at infinite depths is clearly satisfied.

While gE(t, z) and GE(ω, z) have both been verified to be solutions to the relevant equations of
motion, establishing that they are a Fourier transform pair is more difficult due to a subtlety involving
the relevant integral formula. The same is true for gM(t, z) and GM(ω, z). In Appendix G, we show
that gE(t, z) and GE(ω, z), and similarly gM(t, z) and GM(ω, z), are in fact Fourier transform pairs in
the limit that an artificially introduced damping parameter tends to zero.

These two impulse response functions possess a similar structure. In addition to rotating on the
complex plane in the anticyclonic sense at frequency | f |, both functions are zero for negative times and
decay for both large times and large depths. For z > 0, both impulse response functions rise to obtain
a maximum modulus at intermediate times that grows with increasing depth, since differentiating
shows that |gE(t, z)| is maximized at time t = 4(z/δ)2/| f | while |gM(t, z)| is maximized at time
t = 2(z/µ)/| f |. The decay of the Madsen’s impulse response function for large times is somewhat
faster on account of an additional

√
t in the denominator, which also makes the initial growth to the

maximum somewhat slower. The depth scale is controlled by δ for the Ekman case and µ for the
Madsen case, as expected. The former decays more rapidly with nondimensional depth on account of
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the z2 appearing in the exponential, compared with the linear decay in the latter case. Qualitatively
these behaviors match those for the numerically computed transfer function presented earlier in Fig. 3.

5. Discussion

This paper has examined the unsteady response of the near-surface ocean currents to a surface
wind stress, which we refer to as the unsteady Ekman problem. The frequency-domain solution for
a general linear eddy viscosity profile of K(z) = K0 + K1z with currents vanishing at the bottom of
a boundary layer of a finite depth h was considered. It was shown that the fundamental quantity
involved in the frequency-domain solution, the transfer function, allows the solution for general
wind forcing to be readily expressed, and also encompasses the solutions to related problems such as
the switch-on problem and the steady response. This general linear transfer function, first derived
by Elipot and Gille [12], was shown to include as asymptotic limits five other transfer functions
derived by those authors as special cases, thereby unifying the results of numerous earlier studies
including Ekman [4], Krauss [7], Madsen [8], and Lewis and Belcher [11], and amounting to the most
general expression for the transfer function yet produced. This unification is the main result of the
paper. As discussed in the Introduction, establishing a nested family of transfer function forms is an
important prerequisite to being able to determine which range of parameters provides the best fit
against observations, and thus improve predictions of the near-surface velocity given the winds.

Examining the dependence of the transfer function on its parameters, we showed how taking
two self-similarities into account allows one to more clearly see the range of its possible forms. The
roughness length zo emerged as the primary parameter controlling the transfer function shape for
a fixed boundary layer depth h, while the choice of boundary layer depth h was seen to determine
the strength of the inertial peak, which becomes singular as h tends to infinity. A numerical issue
was uncovered that prevents the evaluation of the transfer function from leading to sensible results, a
problem that was solved in Appendix E through the use of series expansions for the Bessel functions.

An important question concerns the realism of the linear model for the eddy viscosity. It has
long been known that the constant eddy viscosity employed by Ekman [4] is an oversimplification.
Krishna [35] cites a study by Ellison more than sixty years ago as the first use of a linear viscosity
profile, K(z) = K1z, to a planetary boundary layer study, while the first uses of a quadratic profile
in that context appears to be those of Yokoyama et al. [36] and Baker and Jordan [37]. Numerical
modeling studies [e.g. 20,38] confirm that the general shape of the effective eddy viscosity is to initially
increase with depth, and then to decrease again. This suggests that the use of a near-surface linear
profile is justifiable. More generally, the linear profile could be seen as containing the first two terms
in a Taylor-series approximation to an arbitrary eddy viscosity profile K(z). One might conjecture,
therefore, that the transfer function examined here could be taken as an approximation to that arising
from a more general profile K(z), suitable for the near-surface regime in which K(z) is roughly linear. A
question mark, however, is the physical realism of setting the flow to vanish at the base of the boundary
layer, where the eddy viscosity has its maximum, and whether this may lead to differences in the
transfer function compared with the linear regime of a more general viscosity profile. Understanding
the relevance and limitations of the linear viscosity profile is a promising topic for future work.

Recently, several important papers have examined the near-surface currents under the assumption
of more realistic or general eddy viscosity profiles. Shrira and Almelah [15] examined the unsteady
Ekman problem for a more general eddy viscosity profile than that employed here, equivalent to
K(z) = K0(t) [1 + K1(t)/K0(t)z]

α in our notation for some power α, and with K0(t) and K1(t) having
the potential to be functions of time. Solutions were found for currents vanishing at an infinite depth.
For the α = 1 case, using a different transformation from that employed here, those authors obtain an
equivalent Bessel function equation in the Laplace transform domain to our Equation (13), see their
Equation (3.13). The close similarity between their expressions and ours suggests that it should be
straightforward to modify their results to account for the effect of a finite boundary layer depth h, thus
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encompassing a broader range of solutions. Whether these more general solutions could be written in
the form of a transfer function operating on the wind field is not immediately clear.

Recently, a solution to the wave-modified unsteady Ekman using the cubic eddy viscosity profile
K(z) = (z/h)(1 + z/h)2K0—a form used in KPP-type one-dimensional modeling [39,40]—was found
by Song and Xu [14]. Their closed-form solution, given in terms of the Gaussian hypergeometric
function, does not, however, appear to be of the transfer function type because it involves an integral
over the forcing. Inspired by their results, one may consider the quadratic eddy viscosity profile

K(z) = K0 + K1z− K2z2 =
1
2

δ2| f |
(

1 +
z
zo
− z2

ε2

)
(43)

with ε ≡
√

K2/K0. This eddy viscosity has the advantage of a more realistic profile that increases
and then decreases again, while also subsuming all of the previously considered constant and linear
forms, which the cubic profile K(z) = (z/h)(1 + z/h)2K0 does not accomplish. Then re-deriving our
Equation (13) for the transfer function but for the quadratic viscosity profile, and with the substitutions

x =
z− z+

z− − z+
, z± =

ε2

2zo
±

√
ε2 +

(
ε2

2zo

)2

(44)

one obtains Euler’s hypergeometric equation for the transfer function{
[x(1− x)]

∂2

∂x2 + (1− 2x)
∂

∂x
− 2siε2

δ2

∣∣∣∣1 + ω

f

∣∣∣∣}G(ω, x) = 0 (45)

the solutions of which are known in terms of the Gaussian hypergeometric function 2F1. The
examination of these solutions for the quadratic family of eddy viscosity profiles would be another
important step towards a unified solution of the unsteady Ekman problem.

Finally, several relevant recent studies have investigated solutions to the steady Ekman problem.
In a simplifying work, Dritschel et al. [16] find analytic solutions to the steady Ekman spiral for a
piecewise linear eddy viscosity profile, while Bressan and Constantin [41] and Constantin [42] solve for
the steady Ekman currents for a eddy viscosity profile that consists of a depth-dependent perturbation
about a constant value. It is possible that the methods employed in those works could be extended to
the unsteady problem considered here.

6. Materials and Methods

Numerical code relevant to this paper is released as a part of a freely-available open-source
toolbox for Matlab maintained by the first author. The toolbox, called jLab, is available for
download from https://github.com/jonathanlilly/jLab with installation instructions and detailed
online documentation available at http://www.jmlilly.net/software.html. The primary function
related to this paper is called windtrans. This implements the general no-slip transfer function of
Equation (23), as well all of the boxed forms in Tables 1 and 2. The default formulation uses the
tilde-function approach developed in Appendix E to avoid numerical overflow. All figures are created
with the script makefigs_transfer.
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Appendix A. The transfer function relation

In this appendix we show that the wind-driven currents can be expressed through the Fourier
domain form presented in Equation (5). Firstly we rewrite the spectral representation for τ(t),
Equation (2), bringing the mean wind stress τ inside the integral to yield

τ(t) =
1

2π

∫ ∞

−∞
eiωtdT (ω) + τ =

1
2π

∫ ∞

−∞
eiωt [dT (ω) + 2πτδ(ω)dω] (A1)

and we similarly rewrite the spectral representation for ξ(t, z). Then substituting these, together with
g(t, z) expressed in terms of its Fourier transform as in Equation (4), into Equation (1), we obtain

ξ(t, z) =
1

2π

∫ ∞

−∞
eiωt [dΞ(ω, z) + 2πξ(z)δ(ω)dω

]
=

(
1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eiν(t−s)+iωsG(ν, z) [dT (ω) + 2πτδ(ω)dω] dν ds

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
eiνtδ(ν−ω)G(ν, z) [dT (ω) + 2πτδ(ω)dω] dν

=
1

2π

∫ ∞

−∞
eiωtG(ω, z) [dT (ω) + 2πτδ(ω)dω] (A2)

after making use of
∫ ∞
−∞ e−iωtdt = 2πδ(ω). This reduces to Equation (5) as claimed.

Appendix B. Derivation of the modified Bessel’s equation

In this appendix we derive the modified Bessel’s equation for the transfer function given in
Equation (21). To do this we first rewrite Equation (13) for G(ω, z) in terms of δ and zo as{(

1 +
z
zo

)
∂2

∂z2 +
1
zo

∂

∂z
− 2si

δ2

∣∣∣∣1 + ω

f

∣∣∣∣}G(ω, z) = 0 (A3)

and then observe that the first two z-derivatives of ζz(ω) satisfy

1
zo

∂

∂z
ζz(ω) =

1
ζz

4si
δ2

∣∣∣∣1 + ω

f

∣∣∣∣ (A4)(
1 +

z
zo

) [
∂

∂z
ζz(ω)

]2
=

2si
δ2

∣∣∣∣1 + ω

f

∣∣∣∣ (A5)(
1 +

z
zo

)
∂2

∂z2 ζz(ω) = − 1
ζz

2si
δ2

∣∣∣∣1 + ω

f

∣∣∣∣ . (A6)

Applying the change of variable relations

∂G
∂z

=
∂G?

∂ζz

∂ζz

∂z
,

∂2G
∂z2 =

∂2G?

∂ζ2
z

(
∂ζz

∂z

)2
+

∂G?

∂ζz

∂2ζz

∂z2 (A7)

one obtains Equation (21) after a few lines of algebra.

Appendix C. Verification of the boundary conditions

In this appendix we verify that the general no-slip transfer function given in Equation (23) does
indeed satisfy the specified boundary conditions. For notational convenience, we let Iz

η ≡ Iη (ζz(ω))
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and Kz
η ≡ Kη (ζz(ω)) in this and following appendices, with the superscript denoting the z-argument

of ζz(ω) inside the Bessel functions. Using this notation, Equation (23) becomes

G(ω, z) =
√

2
ρ| f |δ

1√
i (ω + f ) /| f |

Ih
0Kz

0 − Iz
0Kh

0

Ih
0K0

1 + I0
1Kh

0
(A8)

where we have also noted that esiπ/4
√
|1 + ω/ f | =

√
si|1 + ω/ f | =

√
i(ω + f )/| f |. To verify the

upper boundary condition, Equation (14), we compute the partial derivative with respect to depth,

∂

∂z
G(ω, z) = −

√
2

ρ| f |δ
1√

i (ω + f ) /| f |
Ih

0Kz
1 + Iz

1Kh
0

Ih
0K0

1 + I0
1Kh

0

∂

∂z
ζz(ω) (A9)

in which we have made use of Equation 9.6.27 of Abramowitz and Stegun [33] for the derivatives of
the zeroth-order Bessel functions, namely

d
dx

I0(x) = I1(x),
d

dx
K0(x) = −K1(x). (A10)

The z-derivative of ζz(ω) is found from Equation (18) to be

∂

∂z
ζz(ω) =

√
2

δ

√
i (ω + f ) /| f |
(1 + z/zo)

. (A11)

Evaluated at z = 0, the ratio of Bessel functions in Equation (A9) becomes unity, and the vertical
derivative of the transfer function evaluated at the surface thus becomes

∂

∂z
G(ω, 0) = − 2

ρ| f |δ2 = − 1
ρK0

(A12)

as required for the upper boundary condition. It is clear from inspection of Equation (A8) that G(ω, h)
vanishes, satisfying the lower boundary condition.

Appendix D. The free-slip transfer function

The transfer function with a linearly varying eddy viscosity, K(z) = K0 + K1z, and a free-slip
lower boundary condition at the bottom of the boundary layer, z = h, is

G(ω, z) =
√

2 e−siπ/4

ρ| f |δ
1√

|1 + ω/ f |
I0 (ζz(ω))K1 (ζh(ω)) + I1 (ζh(ω))K0 (ζz(ω))

I1 (ζh(ω))K1 (ζ0(ω))− I1 (ζ0(ω))K1 (ζh(ω))
(A13)

which corrects a typographic error in Elipot and Gille [12]. This has the form given in Equation (22)
and therefore satisfies the differential equation for G(ω, z) in Equation (21). Its first z-derivative is

∂

∂z
G(ω, z) =

√
2

ρ| f |δ
1√

i (ω + f ) /| f |
Iz

1Kh
1 − Ih

1Kz
1

Ih
1K0

1 − I0
1Kh

1

∂

∂z
ζz(ω) (A14)

which vanishes at z = h and reduces to Equation (A12) at z = 0, thus satisfying both boundary
conditions. The near-inertial asymptotic behavior of the free-slip transfer function is found to be

G(ω, z) ∼ −si
ρ| f |h

1
|1 + ω/ f | , ω → − f (A15)

which contrasts with Equation (24) for the no-slip case. In addition to a singularity at ω = − f ,
the free-slip transfer function exhibits a ninety-degree discontinuous phase jump across the inertial
frequency on account of the sign function s ≡ sgn( f ) sgn(1 + ω/ f ). This is in opposition to the
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Figure A1. An illustration of overflow problems in computing the transfer function, and their solution.
The transfer function G(ω, z) at frequency ω = 2 f and depth z = 15 m is computed on the δ vs. µ

plane with h = 100 m using (a) Equation (23) directly or (b) using the tilde-function formation of
Equation (A20) for Bessel function ratio. In the latter case, 30 terms are used to compute Ĩη (z) and
K̃η (z) via Equations (A21) and (A22). The same color scale is used in both (a) and (b). Panel (c) is a
comparison of the asymptotic or one-term expansions of Equations (A16) and (A17) versus the 30-term
expansions. The quantity shown in panel (c) is the fractional error, defined as the magnitude of the
asymptotic version minus the 30-term version, all divided by the 30-term version. The gray diagonal
line marks the location on the δ vs. µ plane where 2

√
2(zo/δ)

√
|1 + ω/ f | = 2

√
2
√

3(δ/µ) = 102.9, and
is the location where I0(ζ0(2 f )) begins to overflow.

observations, which show a phase that smoothly approaches zero near the inertial frequency [12].
Thus, this transfer function does not appear to be realistic, and it need not be investigated any further.

Appendix E. Numerical computation of the transfer function

In this appendix a difficulty in computing the transfer function, Equation (23), arising from
numerical overflow is identified and solved. The problem is illustrated in Fig. A1(a). With h = 100 m,
the transfer function G(ω, z) is computed at frequency ω = 2 f and depth z = 15 m over a broad range
of parameter space on the δ vs. µ plane. The transfer function evaluation fails around the location of
the gray line, which marks the location where |ζ0(ω)| = 102.9 for ω = 2 f . Below this line, some terms
in Equation (23) exceed the largest representable number in double-precision format, about 1.8× 10308.

This numerical overflow arises as consequence of the exponential behavior of the modified Bessel
functions for large arguments, see 9.7.1 and 9.7.2 of Abramowitz and Stegun [33],

Iη(x) ∼ 1√
2πx

ex, |x| � 1, | arg x| < π

2
(A16)

Kη(x) ∼
√

π

2x
e−x, |x| � 1, | arg x| < 3π

2
(A17)

and may be traced to two different sources. The first problem occurs if one lets h become large with
the ratio zo/δ held fixed, while considering a fixed depth z and a fixed off-inertial frequency ω 6= − f .
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Examining the form of ζz(ω) in Equation (20), we see that as h becomes large, the magnitude of ζh(ω)

becomes large while ζz(ω) or ζ0(ω) remain fixed. The problem of large ζh(ω) is handled simply by
rewriting the Bessel function ratio in Equation (23) as

Ih
0Kz

0 − Iz
0Kh

0

Ih
0K0

1 + I0
1Kh

0
=
Kz

0 − (Kh
0/Ih

0 )Iz
0

K0
1 + (Kh

0/Ih
0 )I0

1
(A18)

using Iz
η ≡ Iη (ζz(ω)) andKz

η ≡ Kη (ζz(ω)) for notational convenience. Now, as ζh(ω) becomes large,
rather than causing numerical overflow from the exponentially growing I0 (ζh(ω)) Bessel functions,
the terms in the parentheses in the numerator and denominator of Equation (A18) will tend to zero.
Then as h increases, the transfer function will smoothly approach the form for an infinitely deep layer,
as presented in regime V of Table 1.

The second problem occurs as the ratio zo/δ becomes large with other parameters held fixed. As
this ratio increases, the mangitudes of ζh(ω), ζz(ω), and ζ0(ω) all become large provided ω 6= − f . To
overcome this problem, we define variants of the Bessel functions that have the leading exponential
dependence explicitly removed,

Ĩη (x) ≡ e−x Iη (x) , K̃η (x) ≡ ex Kη (x) . (A19)

The Bessel function ratio in Equation (23) then becomes, with Ĩz
η ≡ Ĩη (ζz(ω)) and K̃z

η ≡ K̃η (ζz(ω)),

Ih
0Kz

0 − Iz
0Kh

0

Ih
0K0

1 + I0
1Kh

0
=

eζh(ω)−ζz(ω) Ĩh
0 K̃z

0 − eζz(ω)−ζh(ω) Ĩz
0K̃h

0

eζh(ω)−ζ0(ω) Ĩh
0 K̃0

1 + eζ0(ω)−ζh(ω) Ĩ0
1 K̃h

0

=
eζ0(ω)−ζz(ω) Ĩh

0 K̃z
0 − eζ0(ω)+ζz(ω)−2ζh(ω) Ĩz

0K̃h
0

Ĩh
0 K̃0

1 + e2ζ0(ω)−2ζh(ω) Ĩ0
1 K̃h

0

(A20)

after rearranging the exponential terms to prevent overflow from large ζh(ω) discussed previously. In
this form, the exponential growth from the modified Bessel functions of the first kind Iη(x), and the
decay from the modified Bessel functions of the second kind Kη(x), are arranged to partly cancel.

The Ĩη (x) and K̃η (x) functions can then be expanded as the power series. With ε being a small
number, these have the expansions

Ĩη (x) =
1√
2πx

∞

∑
n=0

an(η)

(−x)n , | arg x| < π

2
− ε (A21)

K̃η (x) =
√

π

2x

∞

∑
n=0

an(η)

xn , | arg x| < 3π

2
− ε (A22)

provided that the indicated phase conditions are satisfied, which is the case here as the arguments of
the Bessel functions will have | arg x| ≤ π/4. The coefficient an(η) is defined as

an(η) ≡
(
4η2 − 1

) (
4η2 − 32) . . .

(
4η2 − (2n− 1)2)

n!8n . (A23)

The series expansions in Equations (A21) and (A22) are given in 9.7.1 and 9.7.2 of Abramowitz and
Stegun [33], or more explicitly in 10.40.1 and 10.40.2 of NIST [43]. Note that the first term in both series
is unity, in agreement with the asymptotic behaviors in Equations (A16) and (A17).

The accuracy of these approximations for complex-valued arguments like those occurring in the
transfer function is assessed as follows. For a fixed number of terms, we compute Ĩη

(
x
√
±i
)

with
real-valued x using Equation (A21) and also as e−x

√
±i Iη

(
x
√
±i
)

using Matlab’s built-in besseli

function. The latter will be taken as the true value. Using 30 terms in Equation (A21), the approximation
minus the true value, all divided by the true value, has a magnitude less than 10−14 with x > 23
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and for η = 0 or 1. The same applies for K̃η

(
x
√
±i
)

in Equation (A22) compared with besselk with
x > 15. Thus, these series offer a high degree of numerical precision after 30 terms for even relatively
small values of the argument. Because the Ĩη (x) and K̃η (x) functions can be represented accurately,
while the exponential growth terms have been arranged to cancel, we can now evaluate the transfer
function for large values of zo/δ with very high accuracy.

Employing this tilde-function approach to computing the Bessel function ratio in the transfer
function, as in Equation (A20), is an order of magnitude slower than directly calling besseli and
besselk, and therefore we do not wish to use it for all parameter values. However, as the overflow due
to large ζh(ω) is already handled simply by rewriting the Bessel function ratio as in Equation (A18),
the tilde-function approach only need be used when the second-largest Bessel function argument,
ζz(ω), also leads to overflow. In implementation, we switch to computing the Bessel function ratio
using Equation (A20) whenever the magnitude of ζz(ω) exceeds 102.9, a threshold that is slightly below
where Iη (ζz(ω)) begins to overflow. In Fig. A1(b), the computation of the transfer function with the
same parameter values as in panel (a) is accomplished by switching to the tilde-function version in
this way. The transfer function can now be accurately computed over a wide parameter space.

By contrast, simply using the asymptotic behaviors in Equations (A16) and (A17) instead of the
power series in Equation (A21) and (A22) offers unsatisfactory performance. Fig. A1(c) shows that the
difference between the asymptotic or one-term expansion and the 30-term expansion is non-negligible,
with the fractional error approaching 10−3 over much of the domain. This error is largest at the location
where the algorithm switch is implemented. Recall that one goal of this work is to be able to use the
transfer function in an optimization scheme to identify the parameters giving currents that best match
the observations. Such optimizations are highly sensitive to the texture of the optimization function,
such that discontinuity seen in Fig. A1(c) would be expected to lead to an obvious numerical artifact.

Appendix F. Derivation of the asymptotic forms

In this appendix we discuss the derivation of the asymptotic expressions in Tables 1 and 2.
Firstly, we note that when taking a limit such as δ ←< zo, the other parameters are considered
indeterminate rather than fixed. Thus, for example, if we take zo ←< δ, this does not mean that
the product (zo/δ)2(z/zo) tends to zero, because we may later consider the opposing limit zo ←< z.

The derivation of the asymptotic expressions is primarily a matter of applying the asymptotic
properties of the modified Bessel functions for large arguments, Equations (A16) and (A17), together
with those for small arguments,

I0(x) ∼ 1, I1(x) ∼ 1
2

x, |x| � 1 (A24)

K0(x) ∼ − ln(x), K1(x) ∼ 1
x

, |x| � 1 (A25)

see Equations 9.6.7—9.6.9 of Abramowitz and Stegun [33]. We have also made use of the Taylor series

(1 + x)n = 1 + nx + O
(

x2
)

, ln (1 + x) = x + O
(

x2
)

(A26)

as well as the relations

eAe−B − eBe−A = 2 sinh(A− B), eAe−B + eBe−A = 2 cosh(A− B). (A27)

The latter, which combine the subtraction formulas for hyperbolic functions with their definitions in
terms of exponentials, are used in moving from the central column of Table 2 to the right-hand column.
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A relatively subtle case arises in moving from the central finite depth column, regimes II-h, V-h,
and VIII-h, to the left column. In the case of V-h, applying the limit zo ←< δ gives

I0 (ζh(ω))K1 (ζ0(ω)) + I1 (ζ0(ω))K0 (ζh(ω)) ∼ ζ−1
0

[
I0 (ζh(ω)) +

1
2

ζ2
0K0 (ζh(ω))

]
(A28)

for the denominator of the Bessel function ratio, using Equations (A24) and (A25) for the quantities
containing ζ0(ω). Since zo ←< δ implies ζ0(ω) → 0, it would seem that the second term in square
brackets is negligible relative to the first; however we should also consider possible asymptotic
behavior of ζh(ω). In the large argument limit, as occurs for zo ←< h, we see that 1

2 ζ2
0K0 (ζh(ω)) is

negligible relative to I0 (ζh(ω)). If instead h is considered fixed, then we have for zo ←< δ that

I0 (ζh(ω)) +
1
2

ζ2
0K0 (ζh(ω)) ∼ 1− 1

2
ζ2

0 ln

(
ζ0(ω)

√
1 +

h
zo

)
(A29)

again using Equations (A24) and (A25). The second term on the right-hand side is of the form x2 ln(x),
which vanishes in the limit of small x by l’Hôpital’s rule because

lim
x→0

[
x2 ln(x)

]
= lim

x→0

[
ln(x)/x−2

]
= lim

x→0

[
−1

2
x2
]
= 0. (A30)

Thus regardless of whether h is fixed or tending to infinity, we have for zo ←< δ that

I0 (ζh(ω))K1 (ζ0(ω)) + I1 (ζ0(ω))K0 (ζh(ω)) ∼ ζ−1
0 I0 (ζh(ω)) (A31)

and using this, we obtain IV-h from V-h. The same argument gives I-h from II-h and VII-h from VIII-h.
To derive the Ekman and depth-modified Ekman solutions, presented in forms III and III-h

respectively, as limits of more general expressions in the central columns, the inertial frequency must
be considered separately. This is because the asymptotic behaviors based on the limit δ←< zo, used in
moving from the central column of each table to the right-hand column, do not hold at exactly the
inertial frequency. Nevertheless, forms III and III-h do indeed have the correct behaviors at ω = − f ,
as can readily be verified. At ω = − f , the depth-modified Ekman transfer function III-h reduces to I-h,
as is shown with the help of the asymptotic behaviors sinh(x) ∼ x and cosh(x) ∼ 1 for x → 0. This
matches the behavior of the more general form II-h at ω = − f , and is the same as the behavior of the
full transfer function V-h at ω = − f , given by Equation (24), in the limit z < h ←< zo. Considering
form III, the non-depth-modified Ekman solution, we see that it is, correctly, unbounded at the inertial
frequency. Thus forms III and III-h do give the correct behaviors at the inertial frequency.

Appendix G. The Ekman and Madsen impulse response functions

In this appendix it is shown that the Ekman and Madsen impulse response functions, gE(t, z) and
gM(t, z) in Equations (38) and (39) respectively, are, in a certain limiting sense, the inverse Fourier
transforms of the corresponding transfer functions GE(ω, z) and GM(ω, z) from Equations (40) and
(41). For the Ekman case, we begin with Equation 3.471.15 of Gradshteyn and Ryzhik [44]

∫ ∞

0

e−β/t−γt
√

t
dt =

√
π

γ
e−2
√

βγ, < {β} ≥ 0, < {γ} > 0 (A32)

which becomes, choosing γ = α + iω for real-valued α and ω with α > 0,√
π

α + iω
e−2
√

(α+iω)β =
∫ ∞

−∞

[
U(t)

e−αt−β/t
√

t

]
e−iωtdt. (A33)
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Next we define a modified version of the Ekman infinite-depth transfer function from Equation (40)

Gα
E(ω, z) ≡

√
2

ρδ
√
| f |

1√
α + i(ω + f )

exp

(
−
√

2
z
δ

√
α + i(ω + f )

| f |

)
(A34)

which has as its inverse Fourier transform

gα
E(t, z) = U(t)

√
2
π

1
ρδ
√
| f |t

exp
(
− 1

2| f |t
z2

δ2 − i f t− αt
)

(A35)

as follows from Equation (A33) with β set to β = 1
2 z2/(δ2| f |). Here α plays the role of a damping

which is necessary only to ensure the validity of the integral relating gα
E(t, z) and Gα

E(ω, z). Letting this
quantity become infinitesimally small, we define gE(t, z) ≡ limα−→0 gα

E(t, z), and obtain Equation (38).
For the Madsen impulse response function, Equation 10.32.10 of NIST [43] gives, for the case of

the Bessel function Kη(z) of order η = 0, the integral representation

K0(z) =
∫ ∞

0

1
2u

e−u− 1
4 z2/udu, <

{
z2
}
> 0 (A36)

the history of which is discussed in Watson [45, p. 183]. With the substitutions t = γ/(4u) and
z2 = (α + iω)γ for real-valued α, ω, and γ, and with α > 0 and γ > 0, this becomes

K0

(√
(α + iω)γ

)
=
∫ ∞

−∞

[
U(t)

1
2t

e−
1
4 γ/t−αt

]
e−iωtdt. (A37)

As before we define a modified version Madsen transfer function from Equation (41) as

Gα
M(ω, z) ≡ 4

ρ| f |µK0

(
2
√

2
√
[α + i(ω + f )]

z
µ| f |

)
(A38)

which has as its inverse Fourier transform, using Equation (A37) with γ set to γ = 8z/(µ| f |),

gα
M(t, z) = U(t)

2
ρµ

1
| f |t exp

(
− z

µ

2
| f |t − i f t− αt

)
(A39)

and again taking the limit as the damping parameter α tends to zero, we obtain Equation (39).
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