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Abstract: Background: Phylogroup B2 Escherichia coli have been associated with Ulcerative Colitis 

(UC). In this study, we aimed to compare colonization with the UC-associated E. coli p19A in 

different mice strains, to investigate the role of alpha hemolysin in a UC mouse model. Methods: In 

this study, Sigirr -/- and C57BL/6 mice were chosen, and UC was induced by adding Dextran Sulfate 

Sodium (DSS) to the drinking water. The mice were pre-treated with ciprofloxacin. p19A expressing 

luminescence and GFP, alpha-hemolysin knock out p19A-∆hlyI II, and non-pathogenic lab E. coli 

DH10B were cultured in LB broth, and orally gavaged into the mice. Colonization with p19A WT 

was visualized using an in-vivo imaging system. Results: p19A WT colonized the colon, ileum, 

Peyer’s patches, liver, and spleen of infected C57BL/6 and Sigirr -/- mice. A total of 99% of the p19A 

WT infected C57BL/6 mice and 29% of the p19A WT infected Sigirr -/- mice survived to the 4th post 

infection day. Conclusion: UC-associated E. coli p19A WT colonized the intestines of DSS-treated 

mice and caused extra-intestinal infection. Hemolysin is an important factor in this pathogenesis, 

since isogenic hemolysin mutants did not cause the same inflammation. 
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1. Introduction 

Inflammatory bowel diseases (IBD) can be divided into Ulcerative Colitis (UC) and Crohn’s 

disease (CD). CD can affect any part of the gastrointestinal tract, while UC is restricted to the colon 

and, during flares of the disease, is characterized by bloody diarrhea [(Baumgart and Sandborn, 

2007)]. The etiology of IBD is unknown, but immunological investigations of animal models have 

shown that intestinal inflammation is derived from changes in the intestinal microbiota [(Png et al., 

2010)], triggering an abnormal immune response [(Bouma and Strober, 2003)]. These abnormal 

immune responses to intestinal microbiota changes in IBD cause activation of innate immune 

receptors such as Toll-like receptors (TLRs), which leads to upregulation of antimicrobial factors, and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 November 2020                   doi:10.20944/preprints202011.0526.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:pas@ssi.dk
https://doi.org/10.20944/preprints202011.0526.v1
http://creativecommons.org/licenses/by/4.0/


 

secretion of cytokines and chemokines [(Kinnebrew and Pamer, 2012)]. Sigirr is an IgG IL-1-related 

receptor suspected to play a role in the pathogenesis of IBD [(Sartor et al., 2008)]. Sigirr is a negative 

regulator of TLRs expressed by intestinal epithelial cells, and regulates inflammation and mucosal 

homeostasis; in a mouse model, deletion of the Sigirr gene has been used to enhance chemical colitis 

[(Xiao et al., 2007; Stahl et al., 2014)]. 

There are five different categories of IBD animal models: (1) antigen-induced colitis and colitis 

induced by microbiota, (2) adaptive infection models, (3) chemically induced colitis, (4) genetically 

modified colitis models (5), and spontaneous colitis models [(Mirsepasi-Lauridsen et al., 2019)]. 

However, studies have indicated that germfree animals generally do not develop intestinal 

inflammation, and that spontaneous gut inflammation requires a certain genetic background 

[(Hoffmann et al., 2008)]. This suggests that the nexus of IBD pathogenesis lies in the interaction 

between predisposing host genetic factors and the host immune response to intestinal bacteria. 

Roland Bücker et al., 2019 (Bücker et al., 2019), showed that colitis-susceptible IL 10 -/- mice 

colonized with an HlyA-expressing Escherichia coli (E. coli) had elevated inflammation scores and an 

increased epithelial permeability compared with mice colonized with an HlyA-deficient mutant. 

Placebo-controlled studies have shown that antibiotic treatment can induce remission in UC 

patients [(Sartor, 2004; Feller et al., 2010)]. E. coli has been suspected since the 1970s as the reason for 

relapses in UC [(Keighley et al., 1978)]. Many studies have demonstrated an increased prevalence of 

E. coli with virulence properties in UC patients, especially within UC disease relapses [(Giaffer, 

Holdsworth and Duerden, 1992; Ilnyckyj et al., 1997; Mirsepasi-Lauridsen et al., 2016)]. Bacteriological 

analysis of biopsies and fecal samples from UC patients tends to show an increased prevalence of E. 

coli species belonging to the B2 phylogenetic groups, harboring extra-intestinal pathogenic E. coli 

(ExPEC) genes [(Kotlowski et al., 2007; Petersen et al., 2009)]. Diffusely adherent E. coli has been linked 

to UC [(Satterwhite et al., 1978)], while adherent invasive E. coli has been linked to CD [(Meconi et al., 

2007)]. 

Previous studies have shown that the UC-associated E. coli p19A WT from the B2 phylogenetic 

group, harboring 2 alpha-hemolysins, induces cell death in dendritic cells (DC) and stimulates TNF-

α, IL-6, and IL-23 [(Jensen et al., 2015)]. UC-associated E. coli p19A WT has been shown to dissolve 

occludin, and thereby disrupt tight junctions in Caco-2 cells in vitro and increase barrier permeability 

[(Mirsepasi-Lauridsen et al., 2016)]. In this study, the aim was to compare colonization with p19A WT 

in DSS-treated Sigirr -/- and C57BL/6 mice, and to evaluate the pathogenic features of UC-associated 

E. coli p19A WT in the intestines of infected mice in comparison to mice colonized with the non-

pathogenic E. coli DH10B. The second aim of this study was to investigate the role of the E. coli alpha 

hemolysin gene in an IBD mouse model, by colonizing the mice with double alpha hemolysin gene 

knock out p19A (p19A ∆hlyI, II). 

2. Results  

2.1. Course of Infection of Ecoli in a DSS mouce model   

The first trial was performed to find optimal dosage of ciprofloxacin and DSS and amount of  

inoculation of the bacteria in experimental mice. In this study, we performed 5 experiments in total 

(Figure 1). The second and fourth trial was performed to discover the pathogenesis of p19A WT and 

p19A ∆hlyI, II colonisation in the Dextran Sulfate Sodium (DSS) treated C57BL/6 mice. The third and 

the fifth trial was performed to discover the pathogenesis of p19A WT colonisation in DSS treated 

Sigirr -/- mice (Figure 1).In all the trials, after first post-infection day , mice infected with p19A WT 

showed signs of being hunched, sometimes with a “round” appearance, and reluctance to move, with 

ruffled fur and squinted eyes.  
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Figure 1. The picture shows a flow diagram of the infection course in Sigirr -/- and C57BL6 mice. The 

first trial with C57BL/6 mice was performed to optimize the dosage of antibiotic, DSS, and amount of 

bacteria used to colonize the mice in the experimental group. The second and fourth trial was same 

experiment performed twice, to control the outcome in the C57BL/6 mice model. Trial 3 and 5 were 

same experiment performed twice, to control the outcome in the Sigirr -/- mice model. 

 

From day 1 until 5 days post-infection, p19A WT was found in stool of infected C57BL/6 and 

Sigirr -/- mice at ≈107 CFU (Figure 2C). Some Sigirr -/- mice became very sick after p19A WT 

inoculation and died after ≈3 days; 86% of the 10 Sigirr -/- mice infected with p19A WT  survived at 

day 2, 64% survived at day 3, and 29% survived at day 4 post-infection (Figure 2D). However, 99% 

of the p19A WT infected C57BL/6 mice survived to the 5th post-infection day, p <0.0001 ****. Sigirr -/- 

mice infected with p19A WT had ≤13.7% (mean value) body weight loss and had a mean DAI of 2.3 

at the 5th post-infection day (Figure 2B, E). DH10B and p19A ∆hlyI, II infected Sigirr -/- mice had ≤ 6% 

and ≤8% (mean value) body weight loss, respectively, p < 0.0037**. C57BL/6 mice infected with p19A 

WT had a ≤10% (mean value) body weight loss (Figure 2A). C57BL/6 mice infected with DH10B and 

p19A ∆hlyI, II had ≤ 4% and ≤6% (mean value) body weight loss, respectively. The experiment was 

ended at the 5th post-infection day. The CFU of the systemic organs showed that p19A WT colonized 

the livers and spleens of infected Sigirr -/- and C57BL/6 mice (Figure 2F). However, the colonization 

of p19A WT in the livers and spleens of Sigirr -/- mice was much greater (liver and spleen-median ≈ 

1.1 × 108) than in C57BL/6 mice (liver ≈ 1.4 × 106, spleen-median ≈ 1.1 × 105) (Figure 2F). p19A WT also 
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colonized the colon and metastatic lymph nodes (MLN) of Sigirr -/- mice and C57BL/6 mice (Figure 

2F). However, the Sigirr -/- mice infected with DH10B and p19A ∆hlyI, II survived (100%), and had a 

mean DAI of 1.2 at the 5th post-infection day (Figure 2E). 

The CFU of C57BL/6 mice infected with p19A ∆hlyI, II showed ≈106 shedding in the stool at the 

4th post-infection day (Figure 2C). C57BL/6 mice infected with non-pathogenic E. coli, DH10B, and 

p19A ∆hlyI, II had a ≤5% body weight loss (Figure 1A). 

 

 

Figure 2. p19A WT infected mice: colonization and the course of infection. (A) p19A WT infected 

C57BL/6 mice show ≤10% body weight loss, while the p19A ∆hlyI, II and DH10B infected group had 

≤5% body weight loss at day 5 post-infection, p < 0.05. (B) p19A WT infected Sigirr -/- mice showed 

≤13.7% (mean value) body weight loss, while DH10B and p19A ∆hlyI, II infected mice had ≤ 6% and 

≤8% (mean value) body weight loss, respectively at day 5 post-infection, p < 0.0037**. (C) There were 

no differences in shedding of p19A WT and p19A ∆hlyI, II in the stool of infected C57BL/6 and Sigirr 

-/- mice at the 5th day post-infection (Kruskal-Wallis non-parametric test). (D) Survival analysis of 

p19A WT infected Sigirr -/- mice showed that 29% of the infected mice survived at 4th day post-
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infection, while 100% of the Sigirr -/- mice infected with p19A ∆hlyI, II and DH10B survived until the 

5th day post infection. (E) Disease activity index (DAI) for Sigirr -/- mice infected with p19A WT (DAI, 

mean ≈2.3), p19A ∆hlyI, II and DH10B (DAI, mean ≈1.2), and C57BL/6 mice infected with p19A WT 

(DAI, mean ≈2.5), at the 5th day post-infection. (F) Liver, spleen, MLN and colon of p19A WT infected 

C57BL/6 1.4 × 106–1.1 × 105) and Sigirr -/- mice, 1.1 × 108, were colonized with p19A WT at day 5 post-

infection. The CFU in the liver and spleen, mean value 1.1 × 105–6.3 × 105 and 4.3 × 103–4.3 × 105, 

respectively. 

2.2. Macroscopic and In-Vivo Imaging System 

After anesthesia of the infected Sigirr -/- and C57BL/6 mice, IVIS imaging was performed. IVIS 

images of infected mice showed p19A WT in the intestine (Figure 3A, B, D, E), while uninfected mice, 

as expected, showed no signals. Infected Sigirr -/- mice showed up to 50 × greater luminescent signals 

in the ileum, jejunum and duodenum, before and after washing in PBS (Figure 3A,B), in comparison 

to p19A WT infected C57BL/6 mice, in which signals only occurred in the colon and ileum (Figure 

3D,E). Macroscopic pictures of the intestine of p19A WT infected Sigirr -/- mice showed a thickened 

and yellowish/swollen ileum and jejunum (Figure 3C). p19A ∆hlyI, II, DH10B, and non-infected Sigirr 

-/- and C57BL/6 mice showed no similar macroscopic changes (Figure 3F). 

 

Figure 3. IVIS evaluation of experimental mice. (A) p19AWT Infected Sigirr -/- mouse on the 3rd day 

post-infection, expressing 50 × greater luminescent signals from the gastrointestinal-tract before wash 

(B) and after washing in PBS. (C) Macroscopic picture of the gastrointestinal tract of the same mouse 

from Figure 3A, showing the area of inflammation as thickened, swollen tissues marked with red. (D) 

p19A WT infected C57BL/6 mouse on the 4th day post-infection, expressing luminescent signals from 

the colon, cecum and ileum before wash (E) and after washing in PBS. (F) Macroscopic picture of the 

gastrointestinal tract of a DH10B infected mouse, showing no signs of inflammation or thickened or 

swollen tissues. 

IVS imaging showed increased colonization with p19A WT in Peyer’s patches of Sigirr -/- and 

C57BL/6 mice before and after washing, respectively (Figure 4A–D).  
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Figure 4. Macroscopic evaluation of the tissues. (A) p19A WT infected Sigirr -/- mouse on the 4th day 

post-infection, expressing luminescent signals from the gastrointestinal tract. (B) p19A WT infected 

Sigirr -/- mouse on the 4th day post-infection, after washing in PBS, expressing luminescent signals 

from Peyer’s patches, shown with the red arrow. (C) p19A WT infected C57BL/6 mouse on the 3rd day 

post-infection, expressing luminescent signals from the ileum. (D) p19A WT infected C57BL/6 mouse 

on the 3rd day post-infection, after washing in PBS, expressing luminescent signals from Peyer’s 

patches, shown with the red arrow. 

2.3. Histology 

Immunofluorescence staining showed that p19A WT, in red, colonized the mucus layer of the 

jejenum, duodenum and ileum, and attached to epithelial cells along the ileal crypt-villus (Figure 5A–

D) and in the Peyer’s patches of infected Sigirr -/- mice (Figure 5E). However, p19A WT (in red) was 

mostly attached to the colon and cecum of infected C57BL/6 mice (Figure 5F). 
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Figure 5. Immunofluorescence staining of the experimental mouse intestinal tissues. (A) p19A WT (in 

red) is shown in the duodenum of a p19A WT infected Sigirr -/- mouse. (B) p19A WT (in red) is shown 

in the jejunum of an infected Sigirr -/- mouse. (C) p19A WT (in red) is shown in the ileum of an infected 

Sigirr -/- mouse. (D) p19A WT (in red) is attached to epithelial cells along the ileal crypt/villus in an 

infected Sigirr -/- mouse. (E) Immunofluorescence staining of the Peyer patches of a p19A WT infected 

Sigirr -/- mouse, showing p19A WT in red attached to the Payer’s patches. (F) p19A WT in red, shown 

in the cecum of an infected C57BL/6 mouse. 

HE-staining of p19A WT infected Sigirr -/- and C57BL/6 mice showed increased 

inflammation/increased leucocytes, thickness of smooth muscles, and initiation to ulcerative 

formation in the ileum and cecum of the infected mice, to a higher degree in Sigirr -/- mice than in 

C57BL/6 mice (Figure 6C,E ,F). Non-pathogenic E. coli DH10B (Figure 6A) and p19A ∆hlyI, II infected 

C57BL/6 (Figure 6B, D) and Sigirr -/- mice showed no sign of inflammation in their intestine.  

 

 

Figure 6. The histology/HE staining of the intestinal tissue of colonized mice. (A) DH10B infected 

Sigirr -/-mouse, showing no signs of tissue damage in the ileum. (B) p19A ∆hlyI, II infected Sigirr -/- 

mouse showing no signs of tissue damage in the colon. (C) p19A WT infected C57BL/6 mouse 

showing inflammation/ increased leucocytes and thickness of smooth muscle and ulcer formation in 

the ileum. (D) p19A ∆hlyI, II infected Sigirr -/-mouse showing no signs of tissue damage or 

inflammation in the cecum. (E) p19A WT infected Sigirr -/- mouse showing inflammation/increased 

leukocytes in the Peyer patches, and tissue damage. (F) p19A WT infected Sigirr -/- mouse showing 

inflammation/increased leucocytes and initiation to ulcerative formation in the cecum. 

3. Discussion 

E. coli harboring extra pathogenic E. coli (ExPEC) genes, such as alpha hemolysin, has been 

associated with IBD patients with active disease [(Jensen et al., 2015; Mirsepasi-Lauridsen et al.  

2019)]. E. coli strain p19A, harboring ExPEC genes such as alpha hemolysin, was isolated from a fecal 

sample of an IBD patient with active disease. In the present study, the goal was to investigate if E. 

coli p19A would be able to colonize the gastro-intestinal tract and extra intestinal tissue of infected 

mice in a UC mouse model.  
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As described previously, IBD animal models are divided into five categories, however 

chemically induced colitis using DSS is widely used to study UC, wherein inflammation occurs in 

the colon of the mice [(Goyal et al., 2014)]. Some studies suggest using Ghrelin in mice-treated DSS, 

since it has protective and therapeutic effects in the gut of DSS treated mice and limits tissue damage 

[(Maduzia et al., 2015)]. However, it was not necessary in our DSS-mouse model, since the control 

group, which was treated with commensal E. coli DH10B, did not show any signs of sickness/stress 

and the histology pictures of their tissues showed no signs of inflammation. This might be due to 

experiment duration, which was only 5 days.  

Gene knock-out models are also widely used, such as the IL-10 -/- model, where inflammation 

occurs in the colon of the mice. IL-10 is a pivotal cytokine that maintains a check on pro-inflammatory 

responses to normal antigens and beneficial bacteria. Deficiencies in IL-10 are suspected to play a role 

in IBD pathogenesis. 

In this study, we used C57BL/6 and Sigirr -/- mice, and UC was induced by adding Dextran 

Sulfate Sodium (DSS) to their drinking water. Sigirr -/- mice, deficient in SIGIRR, belonging to the 

interleukin-1 receptor family [(Sartor, 2008)], were chosen since SIGIRR is suspected to play a role in 

IBD [(Sham et al., 2013; Stahl et al., 2014)]. To achieve optimal colonization with p19A WT in the UC 

mouse model, with reduced competition from already existing mouse-intestinal-bacteria, pre-

treatment with antibiotics was necessary.  

Sigirr -/- and C57BL/6 mice infected with p19A WT showed signs of sickness, to a higher degree 

in the Sigirr -/- mice than in the C57BL/6 mice. This was confirmed by IVIS, wherein p19A WT infected 

Sigirr -/-mice showed up to 50 × greater luminescent signals from intestinal tissues in comparison to 

C57BL/6 mice. The macroscopic pictures of the intestines of Sigirr -/- mice infected with p19A WT 

showed heavily thickened and inflamed/swollen ileums and jejunums. These results indicate that 

p19A WT colonizes the intestines of both UC mouse phenotypes, and causes disease/infection and 

ulceration of the intestinal tissue, as is characteristic for IBD. However, it is still uncertain if disease 

relapses in UC are caused by infection with E. coli species harboring ExPEC genes.  

It is well known that inflammation causes increased release of nonfermentable nitrate, which 

serves as a substrate for E. coli nitrate respiration, enabling overgrowth of “commensal” E. coli species 

in the lumen of an inflamed gut [(Winter et al., 2013)]. IBD animal models have clarified that gut 

bacteria play an essential role in development of intestinal inflammation, since germfree animals do 

not generally develop intestinal inflammation [(Hoffmann et al., 2008)]. Bacterial colonization in 

Sigirr -/- mice indicates small intestinal bacterial overgrowth (SIBO), which is often linked to Crohn’s 

disease (CD), where increased E. coli colonization was shown in the jejunum and decreased E. coli 

colonization was observed in the colon. However, these changes were followed by changes in 

gastrointestinal PH, which create an optimal environment for species such as E. coli to colonize and 

overgrow [(Hua et al., 2015)]. Another way of looking at this phenomenon is by considering oxidative 

stress, which is linked to IBD. Reactive oxygen species (ROS) such as H2O2 are distributed in the 

human liver and kidney. An alteration of body antioxidant defense mechanisms has been linked to 

some pathogenic bacteria, such as Escherichia coli, Shigella, Salmonella, Campylobacter jejuni and 

Helicobacter pylori. However, reduced occurrence of antioxidant defense mechanisms, such as 

catalase, is linked to CD and colon cancer [(Seaver and Imlay, 2004; Tian, Wang and Zhang, 2017)]. 

More investigation is needed to clarify the reduced occurrence of antioxidant defense mechanisms in 

IBD, and if there is a link between increased ROS and prevalence of intestinal bacterial dysbiosis in 

IBD patients.  

CD is a chronic, segmental, localized granulomatous disease that can affect all parts of the 

gastrointestinal tract [(Baumgart and Sandborn, 2007)], and is linked to an immunologic and genetic 

defect [(Newman and Siminovitch, 2003; Nuding et al., 2007)]. Our results indicate that DSS treated 

Sigirr -/- mice, which are deficient in SIGIRR/in interleukin-1 receptor, serve as a good model for CD, 

where inflammation/infection occurs in the small intestine and Peyer’s patches, in comparison to the 

other IBD in-vivo model, where inflammation occurs only in the colon. However, C57BL/6 mice 

would seem a better model for UC, where inflammation is mostly restricted to the colon and cecum. 

Immunofluorescence staining of p19A WT infected Sigirr -/- mice showed increased colonization of 

Peyer’s patches, a phenomenon linked to CD. Benoit Chassaing et al., 2011 [(Chassaing et al., 2011)], 
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showed that AIEC via long polar fimbriae (lpf) expressing type 1 pili colonize the Peyer’s patches of 

infected mice. Previous studies have shown that E. coli p19A WT does not harbor lpf/lpf2 genes 

[(Vejborg et al., 2011)]. Julien Matricon reported increased inflammation/infection of Peyer’s patches 

in CD patients, caused by bacterial translocation of E. coli species [(Matricon, Barnich, et al., 2010)]. 

This result suggests that lpf is not the only pathway used by E. coli to adhere to and colonize Peyer’s 

patches in mice.  

Sigirr -/- mice infected with p19A WT only had a survival of 64% at 3 days post-infection, which 

indicates blood poisoning followed by septic shock of the infected mice, p < 0.0001 ***. The CFU of 

the extra-intestinal tissues of p19A WT infected Sigirr -/- and C57BL/6 mice showed p19A WT 

colonized the MLN, liver and spleen of the infected mice. These results indicate that p19A WT 

behaves like ExPEC [(Bortolussi et al., 1978)] and infects intestinal and extra-intestinal tissues. P19A 

WT harbors two alpha-hemolysin genes, which disrupt tight junctions in the intestinal epithelial cells, 

leading to increased epithelial permeability and bacterial translocation to extra-intestinal tissues. This 

was confirmed by mice infected with p19A ∆hlyI, II, where both alpha-hemolysin genes were 

knocked out. Histology of intestinal tissues of p19A ∆hlyI, II infected mice showed no signs of 

inflammation. 

This study indicates that the Sigirr -/- mouse is a good model to study CD, as the inflammation 

occurs in entire gastrointestinal and Peyer’s patches, as in humans. We also show that IBD associated 

E. coli, p19A WT harboring alpha hemolysin genes causes intestinal and extraintestinal inflammation 

and promotes IBD characteristic pathogenesis in an infected IBD-mouse-model. This finding suggests 

that IBD associated E. coli might play a role in IBD disease relapses. 

 

4. Conclusions 

UC-associated E. coli p19A WT colonizes the intestines of DSS-treated mice and causes extra-

intestinal infection especially in the Sigirr -/- mouse. Hemolysin is an important factor in the 

pathogenesis, since isogenic hemolysin mutants did not cause the same degree of inflammation. The 

Sigirr -/- mouse is a better model than the C57BL/6 mouse to study CD, where infection/inflammation 

occurs in the ileum/small intestine and Peyer’s patches. However, the DSS-treated C57BL/6 mouse is 

a good model to study UC, with infection/inflammation in the cecum and colon. 

 

5. Materials and Methods 

5.1. Clinical Isolate and Generated Mutants Used  

In this study we use a clinical fecal E. coli from the B2 phylogenetic group, isolated from a patient 

with UC [(Petersen, Eva M Nielsen, et al., 2009)]. The parental p19A WT and its derivative strain, p19 

∆hlyI, II, lacking both alpha hemolysin genes, have both been described previously [(Mirsepasi-

Lauridsen et al., 2016)]. 

To facilitate the recovery of p19A from tissues or feces, we generated a p19A derivative strain 

expressing chloramphenicol resistance on the chromosome of p19A WT, as described previously. 

p19A WT, E. coli MFDλpir containing pMAC5 (a chloramphenicol-marked Tn7 delivery vector) 

[(Ferrieres et al., 2010; Sham et al., 2011)], and MFDλpir containing a helper plasmid pTNS2 [(Choi 

KH et al., 2005)], were conjugated on LB agar containing diaminopimelic acid (DAP). After 24 h, the 

conjugation mixture was eluted and plated onto LB agar containing chloramphenicol but lacking 

DAP. The p19A WT containing the proper Tn7 transposition was checked as before [(Choi KH et al.,  

2005)], and a p19A WT-lux strain was generated expressing the Photorhabdus luminescens lux operon 

[(Robinson et al., 2011)]. The lux operon was expressed under the control of the promoter PLtetO 

[(Lutz and Bujard, 1997)]. 

To create a p19A WT expressing green fluorescent protein (GFP), an EPEC strain harboring GFP 

expressing plasmid (PFVP25, 4764 bp, resistance to streptomycin) was used.  
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All bacterial strains were grown from single colonies on LB plates, and cultured in LB broth with 

chloramphenicol (30 μg/mL) or streptomycin (50 μg/mL) at 37 °C overnight with shaking. 

5.2. Infection Course in DSS mouse model 

Six-to-ten-week-old male C57BL/6 (WT) and Sigirr -/- mice (Charles River Laboratories breeders: 

Wilmington, MA, USA) were bred in-house. The experiment was repeated with 2–7 mice in each 

group, which were separated in different cages. In total 44 mice were used for this experiment, of 

which 17 were Sigirr -/- mice and 27 were C57BL/6 mice. All mice were housed individually in a 

temperature-controlled (22 ± 2 °C) animal facility, with a 12 h light-dark cycle. The mice were 

maintained under specific pathogen-free conditions at the Child and Family Research Institute. 

 

 On the first day of the experiment, at 9:00 a.m. and 3:00 p.m., the mice were pre-treated with 

ciprofloxacin (0.30 mg per mouse) and 4% DSS was added to their drinking water at 9:00 a.m. On the 

second and third day of the experiment, at 9:00 am and at 3:00 pm each mouse was orally gavaged 

with ≈2.5 × 108 colony forming unit (CFU) p19A WT-lux, p19A WT -GFP, p19A ∆hlyI, II and non-

pathogenic lab-E. coli DH10B (Figure 1). The mice were euthanized on the 5th post-infection day. 

Colonization was monitored using an in-vivo imaging system (before and after washing the luminal 

contents). Tissues were collected in formalin and 4% PFA for histology, and in phosphate-buffered 

saline (PBS) for CFU analysis.  

In total 5 different trial was performed. The first trial was performed with B57BL/6 mice to 

discover the optimal dosage of DSS, ciprofloxacin and the amount of bacteria used to colonize the 

mouse. First trial helped us to discover that the experiment has to end at the 5th day post-infection, 

since the mouse become very sick. The second and fourth trial was performed to discover the effect/ 

pathogenesis of p19A WT and p19A ∆hlyI, II colonization in the C57BL/6 mice. The third and the fifth 

trail was performed to discover the effect/ pathogenesis of p19A WT colonization in Sigirr -/- mice 

(Figure 1). 

Disease activity index (DAI) scores were recorded according to the following criteria: Score 0—

no weight loss, hard stool; Score 1—less than 10% body weight loss, hard stool; Score 2—10–15% 

body weight loss, loose stool and fecal occult blood; Score 3—15–20% body weight loss, loose stool 

and fecal occult blood; Score 4—>20% body weight loss, diarrhea, and gross blood. 

5.3. Ethics Statement 

The mice were fed a standard sterile chow (Laboratory Rodent Diet 5001, Purina Mills, MO, 

USA) as well as tap water ad libitum throughout the experiment. All procedures involving care and 

handling of the mice were performed according to protocol number A15-0206, approved by the 

University of British Columbia Animal Care Committee and in direct accordance with the Canadian 

Council of Animal Care (CCAC) guidelines. The mice were monitored daily for mortality and 

morbidity throughout their infection, and euthanized if they showed signs of extreme distress or 

body weight loss (>20%). All surgeries were performed under anesthesia (2% isofluorane carried by 

2% O2), and all efforts were made to minimize suffering. 

5.4. Imaging 

In-Vivo Imaging System (IVIS) (Xenogen; Almeda, CA, USA) Greyscale reference images taken 

under low illumination were collected and overlaid with images capturing the emission of photons 

from the lux-expressing bioluminescent IBD-associated E. coli p19A WT, using LIVING IMAGE 

software (X enogen) and Igor (Wavemetrics; Seattle, WA, USA). The images were taken after the 

mice were euthanized and stomach-intestinal organs were removed, emptied, and washed in PBS. 

5.5. Tissue Collection 

Tissue collection and CFU were performed as described by Khan et al., 2008 [(Gibson et al., 

2008)]. The mice were euthanized, dissected, and the intestines were collected in 10% neutral buffered 
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formalin (Fisher) for histology. The liver and spleen were collected and weighed immediately, 

homogenized in PBS pH 7.4, plated on chloramphenicol resistance LB agar plates, and incubated 

overnight at 37 °C and 5% CO2 for CFU analysis. 

5.6. Histological and Immunofluorescence Staining 

Histological analysis was performed as described by Khan et al., 2006 [(Khan et al., 2006)]. 

Immunofluorescence staining of not infected and infected mouse intestinal tissues was performed in 

10% formalin. Peyer’s patches were fixed in 4% PFA, washed in PBS, and embedded in an optimal 

cutting template compound, before being frozen with isopentane and liquid N2. Serial sections of six 

µm in thickness were cut for immunofluorescence staining. 

Formalin-fixed tissues were deparaffinized. Both formalin and PFA-fixed tissues were 

rehydrated, before antigen retrieval using preheated buffer (8.0 mm sodium citrate, 0.05% Tween 20, 

pH 6.0) and being steamed for 30 min. Sections were cooled down for 30 min, then washed in water 

for 3 min. Two percent goat serum was used to block cells for 1 h at room temperature. Thereafter, 

sections were incubated in primary antibody ((cytokeratin 19 green, goat antibody, cat PM 007-05008, 

Canada) (E. coli LPS O6 antibody red, 85002 (SS) Statens Serum Institut, Denmark)) overnight at 4 °C 

in the dark. The next day, the sections were washed three times for five 5 min each time in PBS, 

incubated for 1 h at room temperature in a secondary antibody ((Donkey anti goat, Alexa fluor 488 

Invitrogen, USA) (Donkey anti-rabbit IgG antibodies, Alexa fluor 568, Life technologies, USA)), then 

washed two times for 5 min each time in PBS followed by 5 min in water. Then, the liquid mountant 

was applied directly to fluorescently labeled tissue samples on microscope slides (Prolong Gold 

antifade regent containing 42, 62-diamidino-2-phenylindole (DAPI) (Invitrogen). Tissues were 

visualized at 350 and 594 nm using a Lecia DM 4000B microscope equipped with a Retiga 1300i Ast 

camera (Olmaging, Burnaby, BC, Canada), operating through Open Laboratory software 4.0.2. 

Hematoxylin and Eosin (HE) staining was used for evaluating the tissues/histology. 

 

5.7. Statistical analysis 

Statistical analysis: For this study, GraphPad Prism version 8.4.3. was used. CFU comparison 

analysis was performed using the Kruskal-Wallis non-parametric test with mean values and standard 

deviations for each time point/group. A two way ANOVA test was used to compare the body weight 

loss and CFU from extraintestinal tissue, with mean values and standard deviations for each time 

point/group. For survival analysis, the Gehan-Breslow-Wilcoxon test was used. p < 0.05 was 

considered significant.  
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GIT Gastrointestinal Tract  

UC Ulcerative colitis  

CD Crohn’s disease 

ExPEC Extra-intestinal pathogenic E. coli  

AIEC Adherent-invasive E. coli 

DC Dendritic cells 

DSS Dextran sodium sulfate 

E. coli Escherichia coli 
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