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Abstract: Identifying fake news on the media has been an important issue. This is especially true1

considering the wide spread of rumors on the popular social networks such as Twitter. Various kinds2

of techniques have been proposed to detect rumors. In this work, we study the application of graph3

neural networks for the task of rumor detection, and present a simplified new architecture to classify4

rumors. Numerical experiments show that the proposed simple network has comparable to or even5

better performance than state-of-the art graph convolutional networks, while having significantly6

reduced the computational complexity.7
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0. Introduction9

Rumors are messages which have not been verified. False rumors are those which communicate10

fabricated news. Identifying false rumors has now become a major concern for effective use of social11

media like Twitter and Instagram because of the wide availability of these social media platforms.12

Rumors can propagate very fast and might have big negative impacts on the society. However, it is a13

complicated matter to identify rumours from massive amounts of online information. Therefore, it is14

necessary and highly desirable to develop automatic approaches to detect rumors at an early stage in15

order to mitigate their damages.16

Early studies on automatically detecting rumors mainly focused on designing effective features17

from various information sources, including text content, publisher’s profiles, and propagation18

patterns [1],[2]. However, these feature-based methods are extremely time-consuming, biased,19

and labor-intensive. Furthermore, if one or several types of hand-crafted features are unavailable,20

inadequate or manipulated, the effectiveness of these approaches will be affected.21

Motivated by the success of deep learning, many recent studies apply various neural networks22

for rumor detection. For example, recurrent neural network [3]] is applied to learn a representation of23

tweet text over post time.24

Latest efforts focus on applying graph learning techniques for rumor detection [4], [5], [6], due25

to the development of graph neural networks and the fact that posts on social media are naturally26

structured as graphs.27

The rest of the paper is organized as follows. First, we review the related rumor detection28

algorithms and graph convolutional networks in Section 1. Then the proposed simple aggregation29
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Figure 1. Classical GCN convolution layer

network architecture is presented, along with the learning procedure. Next, we give experiment results30

of applying the SAGNN architecture to two publicly available datasets. Finally, some conclusions are31

drawn about the simple aggregation network and its possible applications32

1. Related work33

1.1. Existing rumor detection methods34

As suggested in the introduction, rumor detection related work can be divided into following35

categories [5]: (1) feature-based methods; (2) propagation tree related methods; (3) deep learning36

methods.37

A: Feature-based methods38

Early rumor detection studies were based on hand-crafted features extracted from text content39

and users’ profile information. Features based on the text contents, users, topics and propagation40

patterns of messages were examined in [7] to measure the credibility of news on Twitter. Temporal41

characteristics of the features were explored in [1] to incorporate various social context information,42

based on the time series of rumor’s life cycle.43

B: Propagation tree related methods Different from the previous methods that focus on the text44

information, the propagation of trees related methods focuses on the differences in the characteristics45

of real and false information transmission. These include a kernel-based method called propagation46

tree kernel was proposed in [2] to capture high-order patterns differentiating different types of rumors47

by evaluating the similarities between their propagation tree structures.48

See [2], [5] for a more detailed review of other feature-based and propagation tree related methods.49

C: Deep learning methods50

To address the difficulties with hand-crafted features, deep learning models have been applied to51

automatically learn efficient features for rumor detection in recent years. A recurrent neural networks52

(RNN) based model was proposed in [3] to learn text representations of relevant posts over time. It53

is the first study to introduce the deep learning methods into rumor detection. Later on, Ma et al.54

proposed a recursive network architecture for rumor detection[8]. Another development along this55

line was [9], in which a GAN based architecture was proposed.56

Yu et al. proposed a convolutional method for misinformation identification based on57

Convolutional Neural Network (CNN), which can capture high-level interactions among significant58

features [10].59

In [11], a multi-module deep learning model was proposed to capture text and user characteristics60

of messages. Liu et al. modeled the propagation path as multivariate time series, and applied61

both recurrent and convolutional networks to capture the variations of user characteristics along the62

propagation path [12].63

A global-local attention network (GLAN) was proposed in [5] for rumor detection, which jointly64

encodes the local semantic and global structural information. A bidirectional graph convolutional65

network architecture was proposed in [6] to further enhance the rumor detection performance.66
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Figure 2. Interaction between parents and children

1.2. Review of graph convolutional network67

Consider a network defined by a graph G = {V , E}. A classical graph convolutional layer is given
by

Z = σ(Â · X ·W) (1)

as shown in Fig.1 [13], where68

Â = D̃−
1
2 ÃD̃−

1
2 (2)

with
Ã = A + I, (3)

where A ∈ R|V|×|V| is the adjacent matrix of the graph, and

D̃ =


d̃1

. . .
d̃|V|

 (4)

with

d̃i =
|V|

∑
j=1

Ãij (5)

2. Simplified aggregation graph neural networks69

Given a source twitter r, let us call the responses or retweets (ti)
M0
i=1 associated with r the children70

of r, where M0 is the total number of the responses or retweets to r. Then the set of twitters/responses71

associated with r and its children and grand children and so on form a tree rooted at r, see Fig. 2, with72

each post represented by a node. Let V be the set of vertices of the tree.73

The responses to true rumors and false rumors display different characteristics: When a post74

denies the false rumor, it tends to spark supportive or affirmative replies confirming the denial; in75

contrast, denial to a true rumor tends to trigger question or denial in its replies [8]. This observation76

suggests that it might be possible to distinguish true rumors and false rumors by considering the77

interaction between the twitters and their responses or retweets.78

Recently, network representation learning has recently aroused a lot of research interest [14],79

[15], [16]. Graph neural networks (GNN) are promising architectures for this task. In particular for80

our rumor detection task, GNN provides an efficient solution, since a tree representing a twitter is a81

particular case of graphs [4], [5], and the recent [6].82

To further improve rumor detection efficiency, we propose a simplified graph neural network83

architecture in this work, using the inherent aggregation mechanism of the graph neural network to84

calculate the interaction between a twitter and its children. The overall architecture is shown in Fig. 3.85
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Figure 3. Simplified aggregation graph convolutional network

2.1. Simplified graph network architecture86

2.1.1. Embedding layer87

Let N0 be the size of the vocabulary containing all words in the considered twitters. E ∈ RN0×N

be a matrix. In our experiments, N0 = 5000. The embedding layer can then be represented as

Z = σ(X · E) (6)

where X = (xij) ∈ R|V|×N0 is the input features, σ is a nonlinear function, which is taken to be the88

ReLU function as is usually done in neural networks. N is a super-parameter, and will become the89

number of output features from the embedding layer.90

2.1.2. Aggregation layers91

The heart of the network is the aggregation layers, which are to implement the aggregation92

operations so as to capture the node information and characteristics of the interactions between nodes.93

Recall that each node represents a post.94

A aggregation layer can be represented as

Y1 = σ((I + uA1 + vA2) · Z) (7)

where Z is the output of the embedding layer of previous aggregation layer.95

Compared to classical graph convolutional layer as shown in Fig.1 [13], our simplified GNN does
not contain the weight matrix W. This can also be interpreted as fixing W to be an identity matrix,
to put things in the framework of graph convolutional networks. Moreover, in classical GNNs, Â is
defined by Eq. 2, while in our model, the matrix is given by

Ǎ = I + uA1 + vA2 (8)

where A1 = (pij) ∈ R|V|×|V| and A2 = (cij) ∈ R|V|×|V| are parent adjacent matrix and children
adjacent matrix, respectively. More specifically,

pij =

{
1, if node i is the parent of node j

0, else;
(9)

and

cij =

{
1, if node i is a child of node j

0, else.
(10)

While Â in traditional GCN is fixed, the matrix Ǎ in our SAGNN contains two learnable96

parameters u and v, to distinguish the interactions from a node to its children and those from a97

node to its parent.98
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2.1.3. Output layer99

Y2 = Mean(Y1) (11)

O = FC(Y2) (12)

where Y1 ∈ R|V|×N is the output of the last aggregation layer, Mean represents an mean operation over100

the rows of Y1, and FC is a fully connected linear layer of neural network.101

2.2. Learning algorithm102

As mentioned above, the SAGNN contains two learnable parameters u and v for each aggregation103

layer. Furthermore, the embedding layer contains a matrix E, and the output layer is fully connected104

layer, which is essentially a matrix. These constitute the learnable parameters of the SAGNN network.105

To determine these parameters, an optimization procedure is applied on a properly chosen loss106

function.107

2.2.1. Cross entropy loss function108

For classification problem, the cross entropy loss function is usually taken as the optimization
objective function. In other words, we try to minimize

L(ŷ, y) = −
C

∑
i

yi log(ŷi) (13)

where C is the number of classes, y = (y1, . . . , yC) is the label vector with the only nonzero element
being 1 at the i’th position if the sample is drawn from class i, ŷ is the estimation given by

ŷ = So f tmax(O) (14)

where O is the output of the network shown in Fig. 3.109

3. Experiments110

3.1. Datasets111

The datasets used in the experiment are the publicly available datasets Twitter15 and Twitter16 [3].112

Each of these two datasets is divided into five groups of subsets. More specifically, Twitter15 is divided113

into five subsets denoted by it Twitter150,. . . , Twitter154 respectively, with each subset further divided114

into a train dataset and a test dataset.Twitter16 is divided in a similar manner.115

3.2. Network setup116

We apply SAGNN to the ten subsets of Twitter15 and Twitter16 to evaluate its performance. The117

GCNII network [17] serves as the baseline to assess the proposed algorithm. In this experiment,118

SAGNN has two aggregation layers, unlike the one shown in Fig. 3, in which only a single aggregation119

layer is displayed for clarity . Correspondingly, GCNII has two convolutional layers.120

For the loss function, a square regularization term is applied for both the SAGNN network and121

the GCNII network. Meanwhile, dropout layers are applied to both networks to overcome possible122

overfitting.123

3.3. Results124

The results are shown in Table 1 and Table 2.125
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Dataset Method Acc F1
NR FR TR UR

T150 SAGNN 0.857 0.851 0.892 0.867 0.826
GCNII 0.823 0.796 0.85 0.864 0.786

T151 SAGNN 0.845 0.844 0.857 0.895 0.784
GCNII 0.813 0.810 0.829 0.896 0.725

T152 SAGNN 0.796 0.846 0.817 0.810 0.706
GCNII 0.773 0.775 0.790 0.834 0.698

T153 SAGNN 0.792 0.75 0.790 0.907 0.718
GCNII 0.768 0.703 0.763 0.884 0.723

T154 SAGNN 0.802 0.8 0.771 0.824 0.813
GCNII 0.769 0.761 0.719 0.861 0.742
Table 1. Results for dataset Twitter 15

Dataset Method Acc F1
NR FR TR UR

T160 SAGNN 0.764 0.526 0.783 0.877 0.791
GCNII 0.802 0.718 0.849 0.873 0.731

T161 SAGNN 0.869 0.769 0.881 0.974 0.846
GCNII 0.841 0.732 0.875 0.974 0.778

T162 SAGNN 0.816 0.817 0.836 0.919 0.698
GCNII 0.847 0.824 0.853 0.947 0.769

T163 SAGNN 0.726 0.636 0.737 0.867 0.7
GCNII 0.790 0.776 0.794 0.879 0.762

T164 SAGNN 0.802 0.769 0.771 0.9 0.8
GCNII 0.753 0.625 0.788 0.872 0.735
Table 2. Results for dataset Twitter 16

Comparing these results, we see that the proposed SAGNN architecture and the more complicated126

GCNII give comparable results. For datasets like T150, T154, SAGNN even gives better results. Of127

course, for datasets like T160, the Acc score is lower for SAGNN than GCNII. However, the overall128

performance of SAGNN is better than GCNII.129

It is also interesting to note the variations of the weights u and v during the training process, see130

Fig. WeightCurveT153 and Fig. WeightCurveT160. It can been seen, these curves converge in the131

training process. The variations of these weights show the same pattern for the two distinct datasets,132

though having different values. This demonstrates that it is indeed necessary to learn the matrix hatA133

for better rumor detection performance, instead of keeping them fixed. This might explain why the134

simple SAGNN networks can compete the more complicated GCNII network.135

4. Conclusion136

Observing that different types of rumors trigger different interactions between source twitters137

and their responses, we suggest it is possible to classify rumors by aggregating the information around138

nodes representing twitters through simplified aggregation operations. Based on this observation,139

we claim that it is possible to simplify traditional graph convolutional neural networks for rumor140

detection applications. The proposed simplified aggregation neural network gives comparable to or141

even better results than the complicated GCNII architecture. This suggests that it is the aggregation142

operation which can capture different characteristics of distinct rumors.143

The proposed simple aggregation layers can be further applied in more complicated architecture144

as in [4],[6]. What is essential is that it is possible to improve the rumor detection performance through145

capturing the interactions between nodes in a twitter tree by learning the combination coefficients of146

node feature vectors.147
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Figure 4. Weights u and v variations during the training process for the dataset T153
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Figure 5. Weights u and v variations during the training process for the dataset T160
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