

Article

An efficient deep learning-based detection and

classification system for cyber-attacks in IoT

communication networks

Qasem Abu Al-Haija * and Saleh Zein-Sabatto

Department of Electrical and Computer Engineering, Tennessee State University, Nashville, TN 37209.

* Correspondence: Qabualha@Tnstate.edu

Abstract: With the rapid expansion of intelligent resource-constrained devices and high-speed

communication technologies, Internet of Things (IoT) has earned a wide recognition as the primary

standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to

cyber-attacks due to the constraints in computation, storage, and communication capacity of the

endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by

slightly mutating formerly established cyber-attacks to produce a new attack tending to be treated

as a normal traffic through the IoT network. From the other side, the influence of coupling the deep

learning techniques with cybersecurity field has become a recent inclination of many security

applications due to their impressive performance. In this paper, we provide a comprehensive

development of a new intelligent and autonomous deep learning-based detection and classification

system for cyber-attacks in IoT communication networks leveraging the power of convolutional

neural networks, abbreviated as (IoT-IDCS-CNN). The proposed IoT-IDCS-CNN makes use of the

high-performance computing employing the robust CUDA based Nvidia GPUs and the parallel

processing employing the high-speed I9-Cores based Intel CPUs. In particular, the proposed system

is composed of three subsystems: Feature Engineering subsystem, Feature Learning subsystem and

Traffic classification subsystem. All subsystems are developed, verified, integrated, and validated

in this research. To evaluate the developed system, we employed the NSL-KDD dataset which

includes all the key attacks in the IoT computing. The simulation results demonstrated more than

99.3% and 98.2% of cyber-attacks’ classification accuracy for the binary-class classifier (normal vs

anomaly) and the multi-class classifier (five categories) respectively. The proposed system was

validated using K-fold cross-validation method and was evaluated using the confusion matrix

parameters (i.e., TN, TP, FN, FP) along with other classification performance metrics including

precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN

system outperformed many recent machine-learning based IDCS systems in the same area of study.

Keywords: Deep Learning, Convolutional Neural Network, IoT Networks, Cyber-attack Detection,

Classification.

1. Introduction

The Internet of Things (IoT) is comprised of a collection of heterogeneous resource-constrained

objects interconnected via different network architectures such as wireless sensor networks (WSN)

[1]. These objects or “things” are usually composed of sensors, actuators, and processors with the

ability to communicate with each other to achieve common goals/applications through unique

identifiers with respect to the Internet Protocol (IP) [2, 3]. Current IoT applications include smart

buildings; telecommunications; medical and pharmaceutical; aerospace and aviation; environmental

phenomenon monitoring; agriculture; industrial and manufacturing processes etc. The basic IoT

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics9122152

layered architecture is shown in Figure 1. It has three layers: the perception layer (consist of edge-

devices that interact with the environment to identify certain physical factors or other smart objects

in the environment), the network layer (consists of a number of networking-devices that discover and

connect devices over the IoT network to transmit and receive the sensed data), and the application

layer (consists of various IoT applications/services that are responsible for data processing and

storage). Indeed, most cyber-attacks target the application and network layers of the IoT system.

Figure 1. IoT Layered Architecture Considering the 3-layer Scheme of IoT [4].

IoT is a promising profound technology with tremendous expansion and effect. IoT

infrastructures are vulnerable to cyber-attacks in that within the network, simple endpoint devices

(e.g. thermostat, home appliance, etc.) are more constrained in computation, storage, and network

capacity compared with the more complex endpoint devices (e.g., smartphones, laptops, etc.) that

may reside within the IoT infrastructure [5, 6]. In fact, the privacy, authentication, key management,

trust management and the cyber-attacks identification are among the significant challenges of the

Internet of Things (IoT) and cloud based IoT [7, 8]. A number of studies were directed to address the

security issues and challenges of IoT and cloud computing using block chain techniques [9, 10], light-

weight authentication process [11,12], and the secure data sharing and searching of cloud based IoT

[13, 14]. Once the IoT infrastructure is breached, hackers have the ability to distribute the IoT data to

unauthorized parties and can manipulate the accuracy and consistency of IoT data over its entire life

cycle [15]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization. Consequently,

vast efforts to handle the security issues in the IoT model have been made in the recent years. Many

of the new cybersecurity technologies were developed by coupling the fields of machine learning

with cybersecurity. It should be noted that, the majority of IoT new attacks are slight deviations (i.e.

mutations) of earlier known cyberattacks [16]. Such slight mutations of these IoT attacks have been

demonstrated to be difficult to identify/classify using traditional machine learning techniques.

Promising state-of-art research has been conducted for cybersecurity using deep neural networks [17-

22]. Table 1 summarizes research of conventional and traditional machine learning approaches to

solve cybersecurity issues.

In this paper, a new intelligent system that can detect mutations of common IoT cyberattacks

using non-traditional machine learning techniques exploiting the power of Nvidia-Quad GPUs is

proposed. The proposed system employs the convolutional neural network (CNN) along its

associated machine learning algorithms to classify the NSL-KDD dataset records (we denote our

system using the acronym IoT-IDCS-CNN). The NSL-KDD dataset stores non-redundant records of

all the key attacks of IoT computing with different levels of difficulties. Specifically, the main

contributions of this paper can be summarized as follows:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

• We provide a comprehensive efficient detection/classification model that can classify the IoT
traffic records of NSL-KDD dataset into two (Binary-Classifier) or five (Multi-Classifier) classes.
Also, we present detailed preprocessing operations for the collected dataset records prior to its
use with deep learning algorithms.

• We provide an illustrated description of our system modules and the machine learning
algorithms. Furthermore, we demonstrate a comprehensive view of the computation process of
our IoT-IDCS-CNN.

• We provide an inclusive development, validation environment and configurations along with an
extensive simulation results to gain insight into the proposed model and the solution approach.
This includes simulation results related to the classification accuracy, classification time and
classification error rate for the system validation of both detection (Binary-Classifier) and
classification (Multi-Classifier).

• We provide a comprehensive performance analysis to gain more insight about the system
efficiency such as the confusion matrix to analyze the attacks’ detection True/False Positives and
the True/False Negatives and other evaluation metrics including Precision, Recall, F-Score Metric
and, False Alarm Rate.

• We benchmark study of our findings with other related state-of-art works employing the same
dataset as well as the comparison with other State-of-Art machine learning based intrusion
detection systems (ML-IDS) employing different dataset.

Table 1. Summary of related research for machine learning based IoT security.

Research Method Description

K. Taher et. al.
2019 [16]

Artificial Neural Network
(ANN) with Support Vector
Machine (SVM) Classifier

3-classes, with 2 hidden layers and used only
35-features

X. Gao et. al.
2019 [17]

Deep Neural Network (DNN)
with ensemble voting

5-classes, 3-methods: Decision Tree, Random
Forest, K-Nearest

S. Sapre, et. al.
2019 [18]

Different ML-IDS techniques 5-classes, with 2 hidden layers and Naïve
Bayes Classifier

S. Jan et.al

2019 [23]

ML-IDS based SVM System Only binary classification, used only 2 or 3
simple features

Roopak et. al.
2019 [24]

Deep Neural Network (DNN) Small representative sample, does not reflect a
realistic accuracy in actual IoT environments

Ioannou et. al
2019 [25]

ML-IDS based SVM System Only binary classification, used anonymous
sensor topology

Brun et. al,

2018 [26]

Deep Neural Network (DNN) System validation was poorly accomplished on
a testbed comprising of only three devices and
naive attacks were used to validate the system
using a real-time date with 50,000 samples

Thing et. al
2017 [27]

Deep Auto-Encoder (DAE) But not realistic, very small dataset (no DDos,
no Probe), 3HL (256/128/64), need significant
time for FE.

Shukla et. al
2017 [28]

Neural Network Hybrid
Learning (K_Means + Decision
Trees)

Only binary classification, small scale
simulated network (16 nodes) with different
topologies

Hodo et. al
2016 [29]

Multi-Perceptron Layer (MLP)
Neural Network

But not realistic, small dataset, binary classes

Kolias et. al
2016 [30]

Different ML-IDS Techniques Very time-consuming manual feature
selection, 4-classes

Y. Li et. al.

2015 [31]

Hybrid NN (Autoencoder +
Deep Belief NN)

Redundant dataset needs to be up to date to
reflect more rationale results.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

The rest of this paper is organized as follows: Section 2 introduces and justifies the dataset of IoT

cyberattacks employed by our system. Section 3 provides details of the proposed system architecture,

development, and detailed design steps. Section 4 presents the simulation environment for system

implementation, testing and validation. Section 5 discusses the details about experimental evaluation,

comparison, and discussion. Finally, Section 6 concludes the findings of the research.

2. Dataset of Cyberattacks

Data collection involves the gathering of information on variables of interest (VOS) within

a dataset in a documented organized manner that allows one to answer the defined research

enquiries, examine the stated hypotheses, and assess the output consequences. In this research,

the variables of interest are concerned with the intrusions/attacks data records in IoT computing

environments. Two global datasets of IoT attacks can be investigated including KDD'99 dataset

and NSL-KDD dataset. Indeed, KDD'99 has been developed by DARPA intrusion detection

evaluation program to build a network IDS able of differentiating amongst “bad” and “good”

connections [32]. This dataset includes a standard list of data to be inspected, which contains a

broad range of cyber-attacks modeled in a military communication platform. However, one of

the most important issues of this dataset is the enormous number of redundant data-samples in

the training and testing datasets. Such redundancy affects the accuracy of c lassifier which will

have a biased towards more frequent records [32].

Lately, KDD’99 has been re-investigated and updated to include more up-to-date and non-

redundant attack records with different levels of difficulties through the newer version called NSL-

KDD [33]. NSL-KDD [34] is a reduced version of the original KDD’99 dataset [35] and consists of the

same features as KDD’99. However, NSL-KDD includes more up-to-date and non-redundant attack

records with different levels of difficulties. Figure 2 shows sample records of original KDD-NSL

training dataset in CSV format but read by notepad in TXT format (prior to any processing technique).

In this research, the NSL-KDD dataset is employed for many reasons including:

(a) It can be efficiently imported, read, preprocessed, encoded, and programed to produce two- or

multi- class classification for IoT Cyber-attacks.

(b) It covers all key attacks of IoT computing including: Denial-of-Service (DoS) [36], Probe (side

channel) [37], Root to Local (R2L) [38], User to Root (U2R) [38].

(c) It is obtainable as TXT/CSV file type consisting of a reasonable number of non-redundant records

in the training and test sets. This improves the classification process by avoiding the bias towards

more frequent records.

(d) It correlates to high-level IoT traffic structures and cyberattacks as well as it can be customized,

expanded, and regenerated [34].

Figure 2. Sample records of KDD-NSL training dataset.

NSL-KDD dataset has been thoroughly developed with high-level diverse interpretations of the

training data covering normal and abnormal IoT network traffic data. The normal data samples

represent the legitimate data packets processed by the IoT network. The abnormal data samples

represent mutated data packets (i.e., attacks) achieved by slight mutations in the previously

developed attacks such as the small changes in the network packet header configurations. The

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

original dataset is available in two classification forms: two-class traffic dataset with binary labels and

multi-class traffic data set including attack-type labels and difficulty level. In both cases, it comprises

148,517 samples each with 43 attributes such as duration, protocol, service, and others [39]. The

statistics of traffic distribution of NSL-KDD dataset is summarized in Table 2.

Table 2. Statistics of traffic distribution of NSL-KDD dataset [35].

Two-Classes Dataset Multi-Classes Dataset

Normal Attack Normal DoS Probe R2L U2R

Training 67343 58630 67343 45927 11656 995 52

Testing 9711 12833 9711 7458 2754 2421 200

Total 77,054 71,463 77,054 53,385 14,410 3,416 252

3. System Modeling

In this research, the proposed system is partitioned into distinct subsystems each of which is

implemented with several modules. Specifically, the system is composed of three subsystems

including: Feature Engineering (FE), Feature Learning (FL), and Detection and Classification (DC),

as illustrated in Figure 3.

Figure 3. The three main subsystems composing the proposed system.

3.1. Implementation of Feature Engineering (FE) Subsystem

This subsystem is responsible for conversion of raw IoT traffic data records of NSL-KDD dataset

into a matrix of labeled features that can be fed and trained by the neural network’s part of the FL

subsystem. The implementation stages of this subsystem include:

Importing NSL-KDD dataset: In this stage, the collected dataset has been imported/read using

MATLAB in a tabulated format instead of raw data in the original dataset text files. All data

columns are assigned virtual names based on the nature of data in the cells. The imported dataset

includes 43 different features/columns. Figure 4 shows a sample of importing the NSL-KDD dataset

using table datatype. The illustrated sample shows only the first ten records along with five

features. All data columns were assigned virtual names based on the nature of data in the cells .

Figure 4. Importing NSL-KDD dataset: Samples from training dataset.

Renaming Categorical Features: Four of imported 43 features are categorical features that need to be

renamed prior the data encoding and sample labeling processes. These features are the target

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

protocol, the required service, the service flag, and the record category (e.g. normal or attack).

Therefore, the four categorical columns have been renamed accordingly in this stage. Figure 5

illustrates the four categorical features (columns) that have been renamed accordingly for the binary-

classes data records (the other columns are omitted for better readability). Also, note that the dataset

encompasses multi-class data records for different traffic categories.

Figure 5. Importing NSL-KDD dataset: Samples from training dataset.

One Hot Encoding of Categorical Features: This module is responsible for conversion of the
categorical data records into numerical data records in order to be employed by the neural network.
Therefore, three categorical features undergo through One Hot Encoding process (1-N encoding) [40].
These features are the protocol column, the service column, and the flag column. The class
feature/column is left for samples labeling process.

• For protocol feature, three different types of protocols are revealed from the dataset including:
{TCP, UDP and ICMP}. The one hot encoding for this feature will replace the categorical data of
‘Protocol column’ with the three numerical features as shown in Table 3.

Table 3. Scheme for Replacement of Categorical Data of Protocols

• For service feature, 69 different services are revealed from the dataset such as: {'AOL', 'AUTH',
'BGP', 'COURIER', 'CSNET_NS', …, 'UUCP_PATH', 'VMNET', 'WHOIS', 'X11', 'Z39_50'}. The one
hot encoding for this feature will replace the categorical data of ‘Service column’ with the 69
numerical features as shown in Table 4.

Table 4. Scheme for Replacement of Categorical Data of Services

• For flags feature, 11 different flags are revealed from the dataset including: { 'OTH', 'REJ', 'RSTO',

'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH' }. The one hot encoding for this feature will replace
the categorical data of ‘Flag column’ with the 11 numerical features as shown in Table 5.

Protocol

Equivalent

One-Hot

Encoding

TCP_Protocol UDP_Protocol ICMP_Protocol

TCP 1 0 0

UDP 0 1 0

ICMP 0 0 1

Service

Equivalent

One-Hot

Encoding

AOL _

Service

AUTH_

Service

BGP_

Service
. . .

Z39_50_

Service

'AOL' 1 0 0 . . . 0

'AUTH' 0 1 0 . . . 0

'BGP' 0 0 1 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

⋱

.

.

.

'Z39_50' 0 0 0 . . . 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Table 5. Scheme for Replacement of Categorical Data of Flags

Labeling the Target Feature: This stage concerns with the samples labeling using numerical (integer)
labels for the target classes. Therefore, the categorical ‘Class Column’ will be converted to numerical
classes according to the classification technique. In our system implementation, we are considering
two forms of traffic classifications: Binary classification (1: Normal vs. 2: Attack) and Multi
classification (1: Normal, 2: DoS, 3:Probe, 4: R2L, 5: U2R). After this stage, all data records are
available into numerical format (i.e. no categorical data exist anymore). As a result of 1-N encoding
and numerical labeling, we converted the dataset into 123 features and one data label. The results of
this stage, i.e. encoded form of the dataset table of 2-class records, is provided in Figure 6.

Figure 6. Encoded dataset with labeling: Sample from training set.

Converting Tables to Double Matrix: At the end of dataset importing, encoding, and labeling
processes, the dataset samples and targets should be provided to the neural network inputs of FL
subsystem as a matrix of all input numerical samples. Therefore, encoded dataset tables have been
converted to double matrix (148517 x 124). For instance, the following double matrix illustrates the
first five rows of dataset matrix.

Matrix Resizing with Padding Operation: This module is responsible to adjust the size of the dataset

matrix to accommodate the input size for the FL subsystem. This was performed by resizing the matrix

of the engineered dataset form 148517 x 124 to the new size of 148517 x 784, since the input size of every

individual sample processed at FL subsystem is 28 x 28 (= 784). Thereafter, the new empty records of

Flag

Equivalen

t One-Hot

Encoding

OTH_Flag REJ_Flag RSTO_Flag . . . SF_Flag

'OTH' 1 0 0 . . . 0

'REJ' 0 1 0 . . . 0

'RSTO' 0 0 1 . . . 0
.
.
.

.

.

.

.

.

.

.

.

.
⋱

.

.

.

'SH' 0 0 0 . . . 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

this matrix were padded with zero-padding technique [41]. To avoid any feature biasing in the samples

of the dataset, the padded records were distributed equally around the data samples. Figure 7 illustrates

an example of resizing with zero-padding operation used in this research. The new matrix size is

composed of 148517 sample attack each with 784 features.

Figure 7. Encoded dataset with labeling: Sample from training set.

Matrix Normalization with Min-Max Norm: Data normalization is performed to get all the data

points to be in the same range (scale) with equal significance for each of them. Otherwise, one of the

great value features might completely dominate the others in the dataset. Thus, this module is

responsible to normalize all integer numbers of the dataset matrix into a range between 0~1 using

Min-Max Normalization (MX-Norm) [42]. MX-Norm is well-known method to normalize data as it

is commonly used in machine learning applications. In this method, we scan all the values in every

feature, and then, the minimum value is converted into a 0 and the maximum value is converted into

a 1, while the other values are converted (normalized) into a fraction value from 0 to 1. The Min-Max

normalization (𝑋𝑖
𝑛𝑜𝑟𝑚) for data record (𝑋𝑖) at the (𝑖𝑡ℎ) position of matrix (X) is defined as follows:

 𝑋𝑖
𝑛𝑜𝑟𝑚 = [𝑋𝑖 − 𝑚𝑖𝑛(𝑋)] [𝑚𝑎𝑥(𝑋) − 𝑚𝑖 𝑛(𝑋)⁄] (1)

Also, Figure 8 illustrates an example of integer data features normalized using min-max normalization

(0 ~1). It can be clearly seen the effect of normalization as it ensures all features to be in the same scale.

Figure 8. Illustration of Min-Max Normalization Impact over data with different scales.

Reshaping the Double Matrix: This module is responsible to create the attack samples for the

𝐶𝑜𝑣𝑁𝑒𝑡 by reshaping the one-dimensional vectors of attack records into two-dimensional square

matrices to accommodate the input size for the developed 𝐶𝑜𝑣𝑁𝑒𝑡 network. Accordingly, every one-

dimensional vector sample (1 x 784) will be reshaped into two-dimensional matrix (28 x 28) using a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

raw-by-raw reshaping fashion. This operation should generate a square matrix for each data sample

as illustrated in Figure 9.

Figure 9. Illustration of Re-Shaping Operation of Dataset Samples: 1-D vector is reshaped into 2-D matric.

3.2 Implementation of Feature Learning (FL) Subsystem

So far, the FE subsystem has been developed and the next step is to process the encoded input

features using FL subsystem-based CNN. The deep learning network will to be trained with minimum

classification error and thus maximum accuracy. Generally, CNN involves various layers including

convolution, activation, pooling, flatten and others. Convolutional layers are the core component of

CNN network and they are hierarchically assembled to generate a number of feature-maps which

enable CNNs to learn complex features being a vital operation to recognize patterns in the classification

and detection tasks. Therefore, the developed FL subsystem is responsible for an appropriate 𝐶𝑁𝑁 that

can accept the encoded features from FE subsystem at the input layer and train on them with multiple

hidden layers as well as update the training parameters before classifying the IoT traffic dataset as

normal or anomaly (mutated). The implementation stages of this subsystem include:

Feature Mapping with 2D- Convolution Operations Layer: This module is responsible to generate

new matrices called feature maps that emphasizes the unique features of the original matrix [43]. These

feature-maps are produced by convolving (multiply and accumulate) the original matrix (𝑛𝑖𝑛 𝑥 𝑛𝑖𝑛)

using a number (𝑁) of (𝑘 𝑥 𝑘) convolution filters with padding size (𝑝) and stride size of (𝑠) which

yields the feature maps (𝑛𝑜𝑢𝑡 𝑥 𝑛𝑜𝑢𝑡). The size of the resultant feature maps can be evaluated as follows:

𝑛𝑜𝑢𝑡 = (𝑛𝑖𝑛 + 2 𝑝 − 𝑘)/𝑠 + 1 (2)

In this research, we have applied 20 convolution filters (9𝑥9) over the 28 𝑥 28 input samples with

(p=0, and 𝑠 = 1) which resulted in 20 feature map each (20x 20). Figure 10 illustrates our

convolutional layer, where the input is 28×28 matrix and a filter of size 9×9, this defines a space of

20×20 neurons in the first hidden layer. This is the case because we can only move the window 19

neurons to the right and 19 neurons to the bottom before hitting the right (or bottom) border of the

input matrix. Note that the filter moves forward 1 position away, both horizontally and vertically

when a new row starts. Also note that, Convolution layer goes through a backpropagation process to

determine the most accurate values of its trainable parameters (weights: k x k x N = 9 x 9 x 20).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Figure 10. Implementation of convolution layer of our CNN.

Feature Activation with ReLU Function: This module is responsible to activate all units of the feature

maps with non-linear rectification function namely known as ReLU. ReLU function is MAX (X,0) that

sets all negative values in the matrix X to zero while all other values are kept constant. The reason of

using ReLU is that training a deep network with ReLU tended to converge much more quickly and

reliably than training a deep network with other non-linear activation functions such sigmoid or tanh

activation functions [44]. Figure 11 illustrates the rectification layer of the convolved maps.

Figure 11. Implementation of ReLU activation Layer of our CNN.

Down-Sampling with Pooling Operations Layer: This module is responsible to generate new

matrices called pooled feature maps that reduces the spatial size of the rectified feature maps and

thus reduces the number of parameters and computation complexity in the network [43]. This can be

done by combining the neighboring points of a particular region of the matrix representation into a

single value that represent the selected region. The adjacent points are typically selected from a fixed

size-square matrix (determined according to the application). Among these points of the applied

matrix, one value is nominated as the maximum or mean of the selected points. In this research, we

have used the mean pooling technique to develop the pooling layer since it combines the contribution

of neighboring points instead of only selecting the maximum point. To produce the pooled feature-

maps (𝐿𝑜𝑢𝑡 𝑥 𝐿𝑜𝑢𝑡), the pooling filter (𝑓 𝑥 𝑓) is independently applied over the rectified feature-maps

(𝐿𝑖𝑛 𝑥 𝐿𝑖𝑛) with stride (𝑠) as follows:

𝐿𝑜𝑢𝑡 = (𝐿𝑖𝑛 − 𝑓)/𝑠 + 1 (3)

In this research, we have applied 20 pooling operation (2 𝑥 2) over the 20 𝑥 20 rectified feature-

maps with (𝑠 = 2) which resulted in 20 feature map each (10 𝑥 10). Figure 12 illustrates our pooling

layer, where the input from previous layer is 20×20 x 20 and the mean pooling filter of size 2×2. Note

that the stride value is 2 which means that the filter moves forward 2 positions away, both

horizontally and vertically when a new row starts. Thus, we end up with pooled maps of 10×10 x 20.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Figure 12. Implementation of pooling layer of our CNN.

3.3 Implementation of Detection and Classification (DC) Subsystem

DC subsystem is responsible for providing traffic classification for the input traffic data into

binary-class classification (2-Classes: normal vs. anomaly) or multi-class classification (5-Classes:

Normal, DoS, Probe, R2L, U2R). This subsystem is composed of three consecutive stages as follows:

Flattening Layer of Pooled Feature Maps: This module is responsible to linearize the output

dimension of the convolutional/pooling layers network to create a single long feature vector [43]. This

can be achieved by converting the 2D data of N- Pooled feature-maps into a 1-D array (or vector) to

be inputted to the next layer, which is connected to the final classification model, called a dense or

fully connected layer. Since flatten layer collapses the spatial dimensions of the input into the channel

dimension (array), this means that if the input to the flatten layer is (𝑁) feature maps each with a

dimension of (𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛) then the flattened output (𝐹𝑜𝑢𝑡) can be obtained by linear multiplication of

the input dimensions by the number of maps, that’s it:

𝐹𝑜𝑢𝑡 = 𝑁 𝑥 𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛 (4)

In this research, since we have 20 pooled feature maps (𝑁 = 20), each with dimension of 10 x 10

(𝐹𝑖𝑛 = 10), then, our flatten layer comprise of 2000 nodes. Figure 13 illustrates the flattening layer

development of our CNN.

Figure 13. Implementation of flattening layer of our CNN.

Fully Connected Layer with ReLU Function: Fully Connected (FC) layers- as name implies- are those

layers where all the inputs from one layer are connected to every activation unit of the next layer [43].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Commonly, FC layers are located as the last few layers of any CNN. Therefore, this module is

responsible to compile the high level features extracted by previous layers (convolutional and

pooling layers) into a reduced form of low level features in which they can be used by the classifier

located at the output layer to provide classification probabilities. In this research, we have developed

the FC layer with 200 neurons connected with 2000 nodes of the flattened (FL) layer which provide

a layer complexity reduction by10: 1. As the inputs pass from the units of FL layer through the

neurons of FC layer, their values are multiplied by the weights and then pass into the employed

activation function (normally ReLU function) just in the same way as in a the classical NN (i.e.

shallow NN). Thereafter, they are forwarded to the output classification layer where each neuron

expresses a class label. Note that, FC layer also goes through a backpropagation [43] process to

determine the most accurate values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐿 𝑥 𝑊𝐹𝐶 = 2000 𝑥 200).

Figure 14 illustrates the development for FC layer of our CNN.

Figure 14. Implementation of flattening layer of our CNN.

Output Layer with SoftMax Function: This module is responsible to provide/predict the correct

classification for each evaluated sample record of the utilized IoT attacks-dataset. Here we are

providing two types of classification including the binary-classifier (normal or anomaly) and the

multi-classifier (normal, DoS, Probe, R2L, U2R). The data points received from the 200 neurons of the

FC layer (𝐴1, 𝐴2, … , 𝐴200) are fully connected with the five neurons (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) of the output

classes (𝑗 = 5 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) through the transposed weight connections (𝑊𝑗
𝑇). This is illustrated in Figure

15 and can be achieved algebraically as follows:

𝐶 = 𝑊𝑗
𝑇 . 𝐴 =

[

𝑊1

𝑇

𝑊2
𝑇

𝑊3
𝑇

𝑊4
𝑇

𝑊5
𝑇]

[

𝐴1

𝐴2

𝐴3

⋮
⋮
⋮

𝐴198

𝐴199

𝐴200]

=

[

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5]

 𝑊ℎ𝑒𝑟𝑒: 𝑊1
𝑇 ,𝑊2

𝑇 ,𝑊3
𝑇 ,𝑊4

𝑇 ,𝑊5
𝑇 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 1 𝑥 200 (5)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Figure 15. Implementation of the output layer with SoftMax of our CNN.

Note that, the output layer also goes through a backpropagation process to determine the most accurate

values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐶 𝑥 𝑊𝑜𝑢𝑡 = 200 𝑥 5). The last layer of the neural network

is a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer which has similar number of nodes as the output layer. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 normalizes the

output into a probability distribution on classes [43]. Specifically, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 assigns numerical

probability values for every class at the output layer where these probabilities should sum up to 1.0

(following a probability distribution). Given an input a vector (𝑥) of (𝐾) real numbers and (𝑖) defines

the index for the input values, then, SoftMax function σ: ℝk ⟼ ℝk is defined as follows:

𝜎(𝑥)𝑖 = 𝑒𝑥𝑖 ∑ 𝑒𝑥𝑖𝐾
𝑗=1⁄ 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝐾 𝑎𝑛𝑑 𝑥 = (𝑥1, 𝑥1, … , 𝑥𝐾) ∈ ℝ𝑘 (6)

For example, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 might produce the following probabilities for an attack record:

Multi-Classes Dataset

Normal DoS Probe R2L U2R

 Label 1 2 3 4 5

 Probability 0.001 0.040 0.008 0.950 0.001

3.4 System Integration

In this section, we integrate all the aforementioned subsystems and modules by Putting-It-All-Together

to come up with complete system architecture of our IoT-IDCS-CNN. Figure 16 illustrates the top view

architecture of the integrated system as a feedforward 𝐶𝑜𝑣𝑁𝑒𝑡 network based IoT attack detection system.

Figure 16. Top view architecture of the proposed IoT-IDCS-CNN.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

According to the system architecture, after data preprocessing stages and using the 28 𝑥 28

input matrix, we constructed 784 (= 28 𝑥 28) input nodes. To extract features of the input data, the

network encompasses a deep convolutional layer involving a depth of 20 convolution filters of size

(9 𝑥 9). Thereafter, the results of the convolutional layer pass via ReLU activation function which

followed by the subsampling operation of the pooling layer. The pooling layer utilizes the average

pooling method with 2 𝑥 2 submatrices. The pooled features are then flattened to 2000 nodes. The

classification/detection neural network comprises the single hidden fully connected (FC) layer and

the output classification layer. This FC layer comprises 200 nodes along with ReLU activation

function. Since our system requires the classification of the data into 5 classes, therefore, the output

layer is implemented with 5 nodes with SoftMax activation function. The next table, Table 6, recaps

the final integrated 𝐶𝑜𝑣𝑁𝑒𝑡 based system for IoT attacks detection.

Table 6. Summary of the developed CovNet for IoT attacks detection/classification system.

Layer Comment Trainable Parameters

Preprocessing 148517 Sample each (28x28) -

Input 28 x 28 nodes (784 nodes) -

Convolution 20 convolution filters (9 x 9)+ReLU WCon(9 x 9 x 20)

Pooling Mean pooling (2 x 2) -

Flattening 2000 nodes -

Fully Connected 200 nodes + ReLU WFCL(2000 x 200)

Output 5 nodes (or 2 nodes) + SoftMax WOut(200 x 5)

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided in Figure

17 below. The input layer takes the encoded features generated from FE subsystem in order to be

trained at the CNN which update the training parameters and generate the least cost/loss value

(error) with optimal accuracy. The output layer employs the SoftMax classifier which is used to

classify the data using two classification techniques include: binary classification technique which

provides two categories (normal vs anomaly) and the multi-classification technique which provides

five categories (normal, DoS attack, Probe attack, R2L attack, U2R attack).

Figure 17. Comprehensive view of the Computation Process IoT-IDCS-CNN.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

4. Simulation Environment

To implement, verify, and validate the proposed IoT attacks detection and classification system,

the training and testing were performed on the NSL-KDD dataset involving the key attacks for IoT

communication. The classifier model was determined to have either two classes (binary attack

detection) or five classes (multi-attack classification). The proposed system was implemented in

MATLAB 2019a. To evaluate the system performance, experiments were performed using a high-

performance computing platform utilizing the power of central processing unit (CPU) and graphical

processing unit (GPU) with Multicore structure of NVIDIA GeForce® Quadro P2000 Graphic card. The

specifications for the workstation used in development, validation & verification are provided in Table 7.

Table 7. The system development and validation environment.

System Unit Specifications

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 Cores, @ 4900 MHz

Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5GB Mem, 1024 CUDA Cores

Cache Memory ($) 16 MB Cache @ 3192 MHz

Main Memory (RAM) 32 GB DDR4 @ 2666MHz

Operating System (OS) 64 bit, Windows 10 Pro.

Hard Disk Drive (HD) SATA 1TB Drive + 256 GB SSD

Besides, the experimental setup for training/testing model has been configured as follows:

• Dataset Distribution:

⎯ 85 % of the dataset used for training (i.e., ~ 128500 data sample records).

⎯ 15 % of the dataset used for testing (i.e., ~ 20000 data sample records).

• 𝑪𝒐𝒗𝑵𝒆𝒕 Configurations:

⎯ Input (Sample) Size = 28 x 28. ⎯ Number of Kernels = 20.

⎯ Conv. Kernel Size = 9 x 9. ⎯ Mean Pooling filter size = 2 x 2.

⎯ Activation function = ReLU. ⎯ Classifier function= SoftMax.

⎯ Number of Hidden Layers = 5. ⎯ Number of Output classes = 2 or 5.

• Model Optimization Configurations:

⎯ Optimization Algorithm = Mini Batch Gradient Descent (find minimum loss).

⎯ Mini_batch_size = 50, Momentum factor (β) =0.95, learning rate (α)=0.05.

⎯ Momentum updates= MomCon[9 x 9 x 20], MomFCL[2000x200], MomOut[200x5].

⎯ All Momentum updates were initialized using ZEROS matrices (zeros (size)).

• Training Model Configurations:

⎯ Training technique = back-propagation with momentum (to update weights).

⎯ Trainable weights = WCon[9 x 9 x 20] , WFCL[2000x200], WOut[200x5].

⎯ Backprop. Derivatives = dWCon[9 x 9 x 20], d WFCL[2000x200], dWOut[200x5].

⎯ The number of epochs = 100 and the number of iterations per epoch = ~2500.

⎯ All trainable weights were initialized using random number generator (rand).

⎯ All backpropagation derivatives were initialized using ZEROS matrices.

• Weight update policy:

― dWCon = dWCon Mini_batch_size⁄ , dWFCL = dWFCL Mini_batch_size⁄ , dWOut = dWOut Mini_batch_size⁄

― MomCon = α ∗ dWCon + β ∗ MomCon; ➔ WCon= WCon+ MomCon

― MomFCL = α ∗ dWFCL + β ∗ MomFCL; ➔ WFCL= WFCL+ MomFCL

― MomOut = α ∗ dWOut + β ∗ MomOut; ➔ WOut= WOut+ MomOut

5. Results and Discussion

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Verification and validation (V&V) are essential activities and quality control factors that are

performed independently to check the system compliance with requirements and specifications and

that it fulfills its intended purpose. Typically, the verification process is defined as a number of

activities used to examine the suitability of the system or component (i.e. are we building the product

right). On the other hand, the validation process is defined as a number of activities used to examine

the conformity of the system (or any of its elements) with its purpose and functions (i.e. are we

building the right product). Note that while system validation is distinct from verification, however,

the actions of both processes are integral and meant to be performed in coupling [45]. In this section,

we provide a comprehensive verification and validation to check the system compliance with its

intended objectives and purpose.

5.1 System Evlaution and Verification

To verify the effectiveness of the proposed system in compliance with its intended

functionalities and missions, we have evaluated the system performance using the recommended

testing dataset in terms of the classification accuracy, classification error percent and the classification

time as follows:

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100% (7)

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (%) =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100% (8)

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑚𝑠) = ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑖)

𝑁𝑜. 𝑅𝑢𝑛𝑠

𝑖 = 1

×
1000

𝑁𝑜. 𝑅𝑢𝑛𝑠
 (9)

The plot for the overall testing classification accuracy and overall classification loss

(classification error) comparing the performance of the binary-classifier (2-Classes) and the multi-

classifier (5-Classes) obtained during the validation process of NSL-KDD dataset are illustrated in

Figure 18. According to the figure, at the beginning and after one complete pass (epoch) of testing

process, both classifiers showed relatively low classification accuracy proportions with 85% and

79% registered for 2-Class classifier and 5-Class classifier, respectively. Thereafter, both

classification accuracy curves begin to roughly be increasing in a stable tendency while testing

epochs proceeds with faster and higher ceiling level obtained for the classification accuracy of 2-

Class classifier. After training the system for 100 epochs, the system was able to record an overall

testing accuracy proportions of 99.3% and 98.2% for 2-Classs classifier and 5-Classs classifier,

respectively, for the given testing dataset samples. Conversely, it can be clearly seen that both

classifiers showed relatively high classification error proportions at the beginning of the testing

process with 15% and 21% registered for 2-Class classifier and 5-Class classifier after one testing

epoch, respectively. Thereafter, both classification error rates started to systematically decline

while the binary classifier progresses with faster threshold achieving 0.7% of incorrect prediction

proportion (classification error percentage). However, the classification error rate proportion for

the multi-classifier has saturated with less than 2.0% of incorrect prediction. This range of

classification error of both classifiers (0.7% - 1.8%) is permitted to avoid underfitting or overfitting

from the training loss (~0.0%) and training accuracy (~100%) and thus provided high-accuracy

classification performance.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Figure 18. Testing Detection/Classification Accuracy/Error Rate vs. Number of Epochs.

Moreover, we have analyzed the time required to perform attack detection or classification for

one IoT traffic sample. To obtain accurate and precise results, we have run the validation test for 500

times and then computed the time statistics for detection and classification. Figure 19 shows the

detection/classification time performance for the proposed model (either 2-Class or 5-class classifier).

According to the figure, the time required to detect/classify one sample record ranges from (𝑀𝑖𝑛 ≈

 0.5662 𝑚𝑠) to (𝑀𝑎𝑥 ≈ 2.099 𝑚𝑠) with average time of (𝑀𝑒𝑎𝑛 ≈ 0.9439 𝑚𝑠) recorded for the 500

simulation runs. This average time (𝑎𝑟𝑜𝑢𝑛𝑑 1 𝑚𝑠) is very useful for the system to run in dynamical

environment such as the real time IDS applications.

Figure 19. Run time performance of IoT Traffic classification over 500 simulation runs.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Furthermore, even though the classification accuracy measurement is the key significant factor

used to evaluate the efficiency of the classification or detection system, we have evaluated the

validation (testing) dataset using a confusion matrix with clear identification of True Positive (TP),

True Negative (TN), False Positives (FP) and False Negatives (FN) analysis to provide more insight

about the performance of the proposed. Figure 20 shows the general confusion matrix of our system,

confusion Matrix results for 2-Class Classifier using the testing dataset, and the confusion matrix

results for 5-Class Classifier using the testing dataset.

Figure 20. Confusion Matrix Analysis for both classification models.

Therefore, the confusion matrix parameters (i.e., TN, TP, FN, FP) can be used to compute some

other performance evaluation metrics (has less importance than the accuracy metric) including: (a)

the classification precision (detection rate) which is defined as the percentage of relevant instances

(e.g. attacks) among the retrieved instances, (b) the classification recall (sensitivity) which is defined

as the percentage of positive instances that are correctly labeled, (c) F1-Score which is defined as the

average score involving precision and recall (i.e., utilizes both false negative and false positive), and

(d) False alarm rate which is defined as the percentage of misclassified normal instances detected by

the system [48]. These metrics can be calculated in the following equations while Table 8 summarizes

the results of the overall evaluation metrics for our proposed system.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100% (10)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100% (11)

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 × 100% (12)

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =
𝐹𝑃

 𝑇𝑁 + 𝐹𝑃
 × 100% (13)

Table8. Summary of the overall evaluation metrics results

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

 2-Class Classification 5-Class Classification

Correctly predicted samples 19860 19640

Incorrectly predicted samples 140 360

Classification Accuracy 99.3% 98.2%

Classification Error Rate 00.7% 01.8%

Classification Precision 99.04% 98.27%

Classification Recall 99.33% 98.23%

F-Score Metric 99.18% 98.22%

False Alarm Rate (FAR) 01.28% 1.73%

Average Classification time 0.9246 0.9439

5.2 System Validation and Benchmarking

To validate the proficiency of proposed system in compliance with system purpose and

specifications. To ensure high level of reliability of our system validation stage, we have conducted

a 5-fold cross-validation process [47] that encompasses 5 different experiments for each classification

model (total of 10 experiments) with different sets for training (~128,000 sample) and validation

(20,000 sample) nominated for each experiments as demonstrated in Figure 21 which shows the

distribution of the dataset across the folds for each conducted experiment.

Figure 21. Scheme for 5-fold cross-validation of the proposed system .

For each experiment, we have evaluated the validation accuracy and validation error for the

classification system models (2-Classes/5-Classes). Thereafter, the results obtained from the five

experiments are averaged to provide an overall validation accuracy and validation error values.

Consequently, the proposed system provided high level of stability and reliability across the dataset

folds which confirm the system robustness in the mission of attacks detection and classification for

IoT communications. The results of the 5-fold cross-validation are provided in Table 9 below.

Table 9. The results of 5-fold cross-validation of both classifiers (accuracy and error)

 2-Class 5-Class

 Accuracy Error Accuracy Error

Experiment 1 0.9930 0.0070 0.9820 0.0180

Experiment 2 0.9942 0.0058 0.9950 0.0050

Experiment 3 0.98750 0.01250 0.9907 0.0093

Experiment 4 0.99440 0.00560 0.9929 0.0071

Experiment 5 0.99320 0.00680 0.9966 0.0034

AVERAGE 99.25% 0.75% 99.14% 0.86%

Additionally, to gain more insight on the advantage of the proposed method, we benchmark

IoT-IDS-CNN classification system by comparing its performance with other state-of-art machine

learning based intrusion/attacks detection systems in terms in terms of classification accuracy metric.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

For better and more reasonable evaluation, we have selected the related researches that employs

machine learning techniques for intrusion/attacks detection/classification for the NSL-KDD dataset

(the same used by our system) to be compared with our proposed IoT-IDS-CNN. Therefore, we

summarize the classification accuracy metric values for related state-of-art research in the following

table, Table 10, in chronological order. Accordingly, it can be obviously noticed, that the proposed

IoT-IDS-CNN model has improved the cyber-attacks classification accuracy of other ML-IDS models

by an improvement factor (IF) of (~1.03 – 1.25).

Table 10. Comparison with State-of-Art ML-IDS Employing Same Dataset.

Research Data Accuracy IF %

K. Taher et. al. 2019 [16] NSL-KDD Dataset ≈ 83.7% 117.3%

X. Gao et. al. 2019 [17] NSL-KDD Dataset ≈ 85.2% 115.2%

S. Sapre, et. al. 2019 [18] NSL-KDD Dataset ≈ 78.5% 125.1%

Chowdhry, 2017 [19] NSL-KDD Dataset ≈ 94.6% 103.8%

Javaid et. al. 2016 [20] NSL-KDD Dataset ≈ 88.4% 112.3%

Yadigar, et. al. 2016 [21] NSL-KDD Dataset ≈ 91.7% 108.0%

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____

Finally, although the other existing related researches for machine learning based

intrusion/attack detection/classification use different cyber-attacks datasets, learning policies,

programming techniques, and computing platforms, we still can compare the classification system

performance in terms of testing accuracy metrics and the level of complexity for the developed

method. Therefore, for better readability, we summarize the classification accuracy metrics for the

other related state-of-art research in the following table, Table 11, in chronological order. According

to the comparison of the table, it can be seen that the proposed approach produces attractive results

in terms of classification accuracy showing superiority over all other compared methods.

Table 11. Comparison with State-of-Art ML-IDS Employing Different Dataset

Research Data Accuracy IF %

S.Jan et.al 2019 [23] CICIDS dataset ≈ 93.0% 106.7%

Roopak et. al. 2019 [24] CICIDS Dataset ≈ 92.0% 107.9%

Ioannou et. al 2019 [25] Simulated Dataset ≈ 81.0% 122.5%

Brun et al, 2018 [26] Real-Time Dataset ≈ 75.0% 132.4%

Thing et. al 2017 [27] AWID Dataset ≈ 98.0% 101.3%

Shukla et. al 2017 [28] Simulated Dataset ≈ 75.0% 132.4%

Hodo et. al 2016 [29] DoS Dataset ≈ 99.0% 100.3%

Kolias et. al 2016 [30] AWID Dataset ≈ 92.0% 107.9%

Y. Li et. al. 2015 [31] KDDCUP Dataset ≈ 92.0% 107.9%

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____

6. Conclusions and Future Directions

An efficient and intelligent deep learning-based detection and classification system for

cyberattacks in IoT communication networks (IoT-IDCS-CNN) was proposed, developed, tested, and

validated in this paper. The proposed IoT-IDCS-CNN makes use of the high-performance computing

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

employing the robust Nvidia GPUs (Quad-Cores, CUDA based) and the parallel processing

employing the high-speed Intel CPUs (N-Cores, I9 based). For the purpose of system development,

the proposed IoT-IDCS-CNN was decomposed into three subsystems including the Feature

Engineering (FE) subsystem, the Feature Learning (FL) subsystem and the Detection and

Classification (DC) subsystem. All subsystems were individually developed then, integrated,

verified, and validated in this research. Because of the use of CNN based design, the proposed system

was able to detect and classify the slightly mutated cyberattacks of IoT networks (represented

collectively by NSL-KDD dataset which includes all the key attacks in the IoT computing) with

detection accuracy of 99.3% of normal or anomaly traffic, and classify the IoT traffic into five

categories with classification accuracy of 98.2%. Also, to ensure high level of reliability for system

validation stage, we have conducted a 5-fold cross-validation process that encompasses 5 different

experiments for each classification model. Moreover, and to provide more insight about the

performance of the system, the proposed system was evaluated using the confusion matrix parameters

(i.e., TN, TP, FN, FP) and computed some other performance evaluation metrics including: the

classification precision, the classification recall, the F1-score of classification, and the false alarm rate.

Eventually, the experimental evaluation results of IoT-IDCS-CNN system surpassed the results of many

recent existing IDCS systems in the same area of study. Several recommendations for future research

works may be considered to extend this study. These further recommendations include:

a) Additional data collection by setting up a real-time IoT communication network with sufficient

number of nodes and gateways, incorporating nodes diversity. A future researcher can develop

a new software system that catch and investigate any data packet communicated through the IoT

environment (in-going and out-going) and come up with attacks to update an existing dataset or

to come up with a new dataset. Note that the packet collection and investigation should be

performed for a sufficient amount of time to provide more insights on the type of packets (normal

or anomaly) processed at IoT networking. This can provide different perceptions of the operation

of the device such as the utilization of processing unit, memory unit and the communication

traffic. The collected data can be then deemed as normal or anomaly based on their behavior. For

example, the normal data is related to the imitation of usual actions of local IoT devices, such as

surveillance cameras. The anomaly data concerns with botnets/probes actions such as the

communication with command & control units. At the end, the data can be labeled accordingly.

b) The proposed IoT-IDCS-CNN can be customized and used for intrusion detection incorporating

other cyberattacks datasets such as AWID Dataset [49], CICIDS Dataset [50], DDoS dataset [51],

UNSW-NB15 dataset [52] and others. This can be achieved by customizing the preprocessing and

output layers accordingly with fine-tuning for the hidden layers as well as the model parameters

and hyperparameters to obtain the maximum classification accuracy and least error rate.

c) The proposed IoT-IDCS-CNN can also be tuned and used to perform other real-life applications

requiring image recognition and classification such as medical, biomedical, handwritten

recognition applications and others.

d) Finally, the proposed system can be employed by IoT gateway device to provide intrusion detection

services for a network of IoT devices such as a network of ARM Cortex based nodes. More

investigation on the proposed IoT-IDCS-CNN can be reported including power consumption,

memory utilizations, communication, and computation complexity over low power IoT nodes with

tiny system components (such as the battery-operated/energy aware devices).

Author Contributions: Conceptualization, Q. A. Al-Haija; methodology, Q. A. Al-Haija; software, Q. A. Al-
Haija; validation, Q. A. Al-Haija, formal analysis, Q. A. Al-Haija and C.D. McCurry; investigation, Q. A. Al-Haija
and S. Z. Sabatto; resources, C. D. McCurry and S. Z. Sabatto; data curation, Q. A. Al-Haija; writing—original
draft preparation, Q. A. Al-Haija; writing—review and editing, C. D. McCurry and S. Z. Sabatto; visualization,
Q. A. Al-Haija; supervision, S. Z. Sabatto; project administration, C. D. McCurry; funding acquisition, C. D.
McCurry. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded under the National Science Foundation Target Infusion Project (NSF-TIP)
Program; titled “Targeted Infusion Project: Academic Enhancement of Electrical & Computer Engineering
Program at Tennessee State University through IoT Research and Integrated Learning Environment” Award #:
1912313, funding period 2019-2022

Acknowledgments: Authors would like to thank the Department of Electrical and Computer Engineering in the
College of Engineering at Tennessee State University for its administrative and technical support of this research.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog Computing for the Internet of Things: Security and

Privacy Issues. IEEE Internet Computing, 2017, vol. 21(2), pp. 34-42. DOI: 10.1109/MIC.2017.37.

2. F. Chiti, R. Fantacci, M. Loreti and R. Pugliese. Context-aware wireless mobile automatic computing and

communications: research trends & emerging applications. IEEE Wireless Communications, 2016, vol. 23(2):

pp. 86-92. DOI: 10.1109/MWC.2016.7462489

3. N. Silva, M. Khan, and K. Han. Internet of Things: A Comprehensive Review of Enabling Technologies,

Architecture, and Challenges. IETE Technical Review, 2017, vol. 35(2): pp. 1-16. DOI:

10.1080/02564602.2016.1276416

4. R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan. Internet of things (IoT) security: Current status, challenges

and prospective measures. Proceedings of the 10th International Conference for Internet Technology and

Secured Transactions (ICITST), London, 2015, pp. 336-341, DOI: 10.1109/ICITST.2015.7412116.

5. Q. Jing, A.V. Vasilakos, J. Wan, et al. Security of the Internet of Things: perspectives and challenges. Wireless

Network, Springer, 2014, Vol. 20, pp. 2481–2501. DOI: 10.1007/s11276-014-0761-7

6. J. Zhou, Z. Cao, X. Dong and A. V. Vasilakos. Security and Privacy for Cloud-Based IoT: Challenges. IEEE

Communications Magazine, 2017, Vol. 55(1), pp. 26-33. DOI: 10.1109/MCOM.2017.1600363CM.

7. Z. Yan, P. Zhang, A.V. Vasilakos. A survey on trust management for Internet of Things. Journal of network

and computer applications, 2014, Vol. 42, pp. 120-134. DOI: 10.1016/j.jnca.2014.01.014

8. P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov and A. V. Vasilakos. The quest for privacy in

the internet of things. IEEE Cloud Computing, 2016, Vol 3 (2), pp. 36-45,2016. DOI: 10.1109/MCC.2016.28.

9. C. Lin, D. He, X. Huang, K.R. Choo, A.V. Vasilakos. BSeIn: A blockchain-based secure mutual authentication

with fine-grained access control system for industry 4.0. Journal of Network and Computer Applications, 2018,

Vol. 116, pp. 42-52. DOI: 10.1016/j.jnca.2018.05.005

10. S. Jangirala, A. K. Das and A. V. Vasilakos. Designing Secure Lightweight Blockchain-Enabled RFID-Based

Authentication Protocol for Supply Chains in 5G Mobile Edge Computing Environment. IEEE Transactions

on Industrial Informatics, 2020, Vol. 16(11), pp. 7081-7093, DOI: 10.1109/TII.2019.2942389.

11. M. Wazid, A. K. Das, V. BhBat, A.V. Vasilakos. LAM-CIoT: Lightweight authentication mechanism in cloud-

based IoT environment. Journal of Network and Computer Applications. 2020, Vol. 150. DOI:

10.1016/j.jnca.2019.102496

12. M. Wazid, A. K. Das, N. Kumar, A.V. Vasilakos and J. J. P. C. Rodrigues. Design and Analysis of Secure

Lightweight Remote User Authentication and Key Agreement Scheme in Internet of Drones Deployment.

IEEE Internet of Things Journal, 2019, Vol. 6 (2), pp. 3572-3584. DOI: 10.1109/JIOT.2018.2888821.

13. M. Wazid, A.K. Das, N. Kumar, A.V. Vasilakos. Design of secure key management and user authentication

scheme for fog computing services. Future Generation Computer Systems. 2019, Vol. 91, pp. 475-492. DOI:

10.1016/j.future.2018.09.017.

14. M. B. Mollah, M. A. K. Azad and A. Vasilakos. Secure Data Sharing and Searching at the Edge of Cloud-

Assisted Internet of Things. IEEE Cloud Computing, 2017, Vol. 4 (1), pp. 34-42. DOI: 10.1109/MCC.2017.9.

15. Paar, J. Pelzl. Understanding Cryptography. Springer-Verlag Berlin Heidelberg Publisher, Germany, 2010,

pp. 1–87. DOI: 10.1007/978-3-642-04101-3.

16. G. Caspi. Introducing Deep Learning: Boosting Cybersecurity with An Artificial Brain. Informa Tech, Dark

Reading, Analytics, http://www.darkreading.com/analytics. 2016.

17. K. A. Taher, B. M.Y. Jisan and M. M. Rahman. Network Intrusion Detection using Supervised Machine

Learning Technique with Feature Selection. Proceedings of the International Conference on Robotics,

Electrical and Signal Processing Techniques (ICREST), Bangladesh, 2019, pp. 643-646, DOI:

10.1109/ICREST.2019.8644161.

18. X. Gao, C. Shan, C. Hu, Z. Niu and Z. Liu. An Adaptive Ensemble Machine Learning Model for Intrusion

Detection. IEEE Access, 2019, vol. 7, pp. 82512-82521, DOI: 10.1109/ACCESS.2019.2923640.

19. S. Sapre, P. Ahmadi, K. Islam. A Robust Comparison of the KDDCup99 and NSL-KDD IoT Network Intrusion

Detection Datasets Through Various Machine Learning Algorithms. 2019. arXiv:1912.13204v1 [cs.LG].

20. M. Chowdhury, et. al. A few-shot deep learning approach for improved intrusion detection. Proceedings of

the IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference

(UEMCON), New York, 2017, pp. 456-462, 10.1109/UEMCON.2017.8249084.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

21. Q. Niyaz, W. Sun, A.Y Javaid, and M. Alam. Deep Learning Approach for Network Intrusion Detection

System. Proceedings of the ACM 9th EAI International Conference on Bio-inspired Information and

Communications Technologies, New York, 2016, pp. 1-6. DOI: 10.4108/eai.3-12-2015.2262516

22. A. R. Yusof, et.al. Adaptive feature selection for denial of services (DoS) attack. Proceedings of the IEEE

Conference on Application, Information and Network Security (AINS), Miri, 2017, pp. 81-84,

10.1109/AINS.2017.8270429.

23. S.U. Jan, S. Ahmed, V. Shakhov, I. Koo. Toward a Lightweight Intrusion Detection System for the Internet

of Things. IEEE Access, 2019, Vol.7, pp. 42450- 42471. DOI: 10.1109/ACCESS.2019.2907965.

24. M. Roopak, G. Yun Tian and J. Chambers. Deep Learning Models for Cyber Security in IoT Networks.

Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),

USA, 2019, pp. 0452-0457. DOI: 10.1109/CCWC.2019.8666588.

25. C. Ioannou and V. Vassiliou. Classifying Security Attacks in IoT Networks Using Supervised Learning.

Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (DCOSS),

Greece, 2019, pp. 652-658. DOI: 10.1109/DCOSS.2019.00118.

26. O. Brun, Y. Yin, and E. Gelenbe. Deep learning with dense random neural network for detecting attacks

against IoT-connected home environments. Procedia Computer. Sci., 2018, vol. 134, pp. 458–463. DOI:

10.1016/j.procs.2018.07.183

27. V. L. L. Thing. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning

Approach. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), USA,

2017, pp. 1-6. DOI: 10.1109/WCNC.2017.7925567.

28. P. Shukla. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things.

Proceedings of the Intelligent Systems Conference (IntelliSys), London, 2017, pp. 234-240. doi:

10.1109/IntelliSys.2017.8324298.

29. E. Hodo et al. Threat analysis of IoT networks using artificial neural network intrusion detection system.

Proceedings of the International Symposium of Network Computer Communication (ISNCC), 2016. pp. 1–

6. DOI: 10.1109/ISNCC.2016.7746067

30. C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion detection in 802.11 networks: Empirical

evaluation of threats and a public dataset. IEEE Communications Surveys and Tutorials, 2016. Vol. 18 (1), pp.

184-208. DOI: 10.1109/COMST.2015.2402161

31. Y. Li, R. Ma, and R. Jiao. A hybrid malicious code detection method based on deep learning. International

Journal of Security and Its Applications, 2015, Vol. 9, pp 205–216. DOI: 10.14257/ijseia.2015.9.5.21

32. A. Ozgur and H. Erdem. A review of KDD99 dataset usage in intrusion detection and machine learning

between 2010 and 2015. PeerJ Preprints, 2016, Vol. 4:e1954v1. DOI: 10.7287/PEERJ.PREPRINTS.1954

33. S. Revathi, Dr. A. Malathi. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning

Techniques for Intrusion Detection. International Journal of Engineering Research & Technology (IJERT), 2013,

Vol. 2(2), pp. 1848- 1853.

34. Canadian Institute for Cybersecurity (CIS). NSL-KDD Dataset. https://www.unb.ca/cic/datasets/nsl.html.

Retrieved on. 2019.

35. S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis and P. K. Chan. Cost-based modeling for fraud and

intrusion detection: results from the JAM project. Proceedings of the DARPA Information Survivability

Conference and Exposition. DISCEX'00, Hilton Head, SC, USA, 2000, pp. 130-144 vol.2, DOI:

10.1109/DISCEX.2000.821515.

36. C. Kolias, G. Kambourakis, A. Stavrou and J. Voas. DDoS in the IoT: Mirai and Other Botnets. Journal of

Computers, 2017. vol. 50 (7), pp. 80-84, DOI: 10.1109/MC.2017.201.

37. Ambedkar, V. Kishore Babu. Detection of Probe Attacks Using Machine Learning Techniques. International

Journal of Research Studies in Computer Science and Engineering (IJRSCSE), 2015, Vol.2(3), pp. 25-29.

38. P. Pongle and G. Chavan. A survey: Attacks on RPL and 6LoWPAN in IoT. Proceedings of the International

Conference on Pervasive Computing (ICPC), Pune, 2015. pp. 1-6. DOI: 10.1109/PERVASIVE.2015.7087034.

39. Y. Bengio; A. Courville; P. Vincent. Representation Learning: A Review and New Perspectives. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2013, Vol.35 (8): 1798–1828. arXiv:1206.5538.

doi:10.1109/tpami.2013.50. PMID 23787338.

40. D.J. Sarkar. Understanding Feature Engineering. Towards Data Science. Medium.

https://towardsdatascience.com/tagged/tds-feature-engineering. 2018.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

41. J. Brownlee. A Gentle Introduction to Padding and Stride for Convolutional Neural Networks. Deep

Learning for Computer Vision, Machine Learning Mastery. https://machinelearningmastery.com/padding-

and-stride-for-convolutional-neural-networks. 2019.

42. Kalay. Preprocessing for Neural Networks - Normalization Techniques. Machine Learning, Github.IO.

https://alfurka.github.io/2018-11-10-preprocessing-for-nn. 2018.

43. Fei-Fei Li. CS231n: Convolutional Neural Networks for Visual Recognition. Computer Science, Stanford

University, http://cs231n.stanford.edu. 2019.

44. J. Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). Deep Learning for Computer Vision,

Machine Learning Master. https://machinelearningmastery.com. 2019.

45. INCOSE. INCOSE Systems Engineering Handbook, version 3.2.2. San Diego, CA, USA: International

Council on Systems Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2, 2012.

46. P. Gupta. Cross-Validation in Machine Learning. Medium: Towards data science.

https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f. 2017.

47. S. Narkhede. Understanding Confusion Matrix. Medium: Towards data science.

https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62. 2018.

48. Phill Kim. MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence.

Apress, 2017.

49. C. Kolias, G. Kambourakis, S. Gritzalis. Attacks and countermeasures on 802.16: Analysis & assessment.

IEEE Communications Surveys Tuts., 2013, Vol. 15(1), pp. 487–514. DOI: 10.1109/SURV.2012.021312.00138.

50. CICIDS Dataset. DS-0917: Intrusion Detection Evaluation Dataset.

https://www.impactcybertrust.org/dataset_view?idDataset=917

51. DDoS Dataset. Distributed Denial of Service (DDoS) attack Evaluation Dataset.

https://www.unb.ca/cic/datasets/ddos-2019.html

52. N. Moustafa and J. Slay. UNSW-NB15: a comprehensive data set for network intrusion detection systems

(UNSW-NB15 network data set). Proceedings of the Military Communications and Information Systems

Conference (MilCIS), Canberra, ACT, 2015, pp. 1-6, DOI: 10.1109/MilCIS.2015.7348942.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 December 2020 doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152

