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Abstract: With the rapid expansion of intelligent resource-constrained devices and high-speed 

communication technologies, Internet of Things (IoT) has earned a wide recognition as the primary 

standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to 

cyber-attacks due to the constraints in computation, storage, and communication capacity of the 

endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by 

slightly mutating formerly established cyber-attacks to produce a new attack tending to be treated 

as a normal traffic through the IoT network. From the other side, the influence of coupling the deep 

learning techniques with cybersecurity field has become a recent inclination of many security 

applications due to their impressive performance. In this paper, we provide a comprehensive 

development of a new intelligent and autonomous deep learning-based detection and classification 

system for cyber-attacks in IoT communication networks leveraging the power of convolutional 

neural networks, abbreviated as (IoT-IDCS-CNN). The proposed IoT-IDCS-CNN makes use of the 

high-performance computing employing the robust CUDA based Nvidia GPUs and the parallel 

processing employing the high-speed I9-Cores based Intel CPUs. In particular, the proposed system 

is composed of three subsystems: Feature Engineering subsystem, Feature Learning subsystem and 

Traffic classification subsystem. All subsystems are developed, verified, integrated, and validated 

in this research. To evaluate the developed system, we employed the NSL-KDD dataset which 

includes all the key attacks in the IoT computing. The simulation results demonstrated more than 

99.3% and 98.2% of cyber-attacks’ classification accuracy for the binary-class classifier (normal vs 

anomaly) and the multi-class classifier (five categories) respectively. The proposed system was 

validated using K-fold cross-validation method and was evaluated using the confusion matrix 

parameters (i.e., TN, TP, FN, FP) along with other classification performance metrics including 

precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN 

system outperformed many recent machine-learning based IDCS systems in the same area of study. 

Keywords: Deep Learning, Convolutional Neural Network, IoT Networks, Cyber-attack Detection, 

Classification. 

 

1. Introduction 

The Internet of Things (IoT) is comprised of a collection of heterogeneous resource-constrained 

objects interconnected via different network architectures such as wireless sensor networks (WSN) 

[1]. These objects or “things” are usually composed of sensors, actuators, and processors with the 

ability to communicate with each other to achieve common goals/applications through unique 

identifiers with respect to the Internet Protocol (IP) [2, 3]. Current IoT applications include smart 

buildings; telecommunications; medical and pharmaceutical; aerospace and aviation; environmental 

phenomenon monitoring; agriculture; industrial and manufacturing processes etc. The basic IoT 
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layered architecture is shown in Figure 1. It has three layers: the perception layer (consist of edge-

devices that interact with the environment to identify certain physical factors or other smart objects 

in the environment), the network layer (consists of a number of networking-devices that discover and 

connect devices over the IoT network to transmit and receive the sensed data), and the application 

layer (consists of various IoT applications/services that are responsible for data processing and 

storage). Indeed, most cyber-attacks target the application and network layers of the IoT system. 

 

 

Figure 1. IoT Layered Architecture Considering the 3-layer Scheme of IoT [4]. 

IoT is a promising profound technology with tremendous expansion and effect. IoT 

infrastructures are vulnerable to cyber-attacks in that within the network, simple endpoint devices 

(e.g. thermostat, home appliance, etc.) are more constrained in computation, storage, and network 

capacity compared with the more complex endpoint devices (e.g., smartphones, laptops, etc.) that 

may reside within the IoT infrastructure [5, 6]. In fact, the privacy, authentication, key management, 

trust management and the cyber-attacks identification are among the significant challenges of the 

Internet of Things (IoT) and cloud based IoT [7, 8]. A number of studies were directed to address the 

security issues and challenges of IoT and cloud computing using block chain techniques [9, 10], light-

weight authentication process [11,12], and the secure data sharing and searching of cloud based IoT 

[13, 14]. Once the IoT infrastructure is breached, hackers have the ability to distribute the IoT data to 

unauthorized parties and can manipulate the accuracy and consistency of IoT data over its entire life 

cycle [15]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization. Consequently, 

vast efforts to handle the security issues in the IoT model have been made in the recent years. Many 

of the new cybersecurity technologies were developed by coupling the fields of machine learning 

with cybersecurity. It should be noted that, the majority of IoT new attacks are slight deviations (i.e. 

mutations) of earlier known cyberattacks [16]. Such slight mutations of these IoT attacks have been 

demonstrated to be difficult to identify/classify using traditional machine learning techniques. 

Promising state-of-art research has been conducted for cybersecurity using deep neural networks [17-

22]. Table 1 summarizes research of conventional and traditional machine learning approaches to 

solve cybersecurity issues. 

In this paper, a new intelligent system that can detect mutations of common IoT cyberattacks 

using non-traditional machine learning techniques exploiting the power of Nvidia-Quad GPUs is 

proposed. The proposed system employs the convolutional neural network (CNN) along its 

associated machine learning algorithms to classify the NSL-KDD dataset records (we denote our 

system using the acronym IoT-IDCS-CNN). The NSL-KDD dataset stores non-redundant records of 

all the key attacks of IoT computing with different levels of difficulties. Specifically, the main 

contributions of this paper can be summarized as follows: 
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• We provide a comprehensive efficient detection/classification model that can classify the IoT 
traffic records of NSL-KDD dataset into two (Binary-Classifier) or five (Multi-Classifier) classes. 
Also, we present detailed preprocessing operations for the collected dataset records prior to its 
use with deep learning algorithms. 

• We provide an illustrated description of our system modules and the machine learning 
algorithms. Furthermore, we demonstrate a comprehensive view of the computation process of 
our IoT-IDCS-CNN. 

• We provide an inclusive development, validation environment and configurations along with an 
extensive simulation results to gain insight into the proposed model and the solution approach. 
This includes simulation results related to the classification accuracy, classification time and 
classification error rate for the system validation of both detection (Binary-Classifier) and 
classification (Multi-Classifier). 

• We provide a comprehensive performance analysis to gain more insight about the system 
efficiency such as the confusion matrix to analyze the attacks’ detection True/False Positives and 
the True/False Negatives and other evaluation metrics including Precision, Recall, F-Score Metric 
and, False Alarm Rate. 

• We benchmark study of our findings with other related state-of-art works employing the same 
dataset as well as the comparison with other State-of-Art machine learning based intrusion 
detection systems (ML-IDS) employing different dataset. 

Table 1. Summary of related research for machine learning based IoT security. 

Research  Method Description 

K. Taher et. al. 
2019 [16] 

Artificial Neural Network 
(ANN) with Support Vector 
Machine (SVM) Classifier  

3-classes, with 2 hidden layers and used only 
35-features 

X. Gao et. al. 
2019 [17] 

Deep Neural Network (DNN) 
with ensemble voting 

5-classes, 3-methods: Decision Tree, Random 
Forest, K-Nearest 

S. Sapre, et. al. 
2019 [18] 

Different ML-IDS techniques 5-classes, with 2 hidden layers and Naïve 
Bayes Classifier 

S. Jan et.al  

2019 [23] 

ML-IDS based SVM System Only binary classification, used only 2 or 3 
simple features 

Roopak et. al. 
2019 [24] 

Deep Neural Network (DNN) Small representative sample, does not reflect a 
realistic accuracy in actual IoT environments 

Ioannou  et. al 
2019 [25] 

ML-IDS based SVM System Only binary classification, used anonymous 
sensor topology 

Brun et. al,  

2018 [26] 

Deep Neural Network (DNN) System validation was poorly accomplished on 
a testbed comprising of only three devices and 
naive attacks were used to validate the system 
using a real-time date with 50,000 samples 

Thing et. al 
2017 [27] 

Deep Auto-Encoder (DAE) But not realistic, very small dataset (no DDos, 
no Probe), 3HL (256/128/64), need significant 
time for FE. 

Shukla et. al 
2017 [28] 

Neural Network Hybrid 
Learning (K_Means + Decision 
Trees) 

Only binary classification, small scale 
simulated network (16 nodes) with different 
topologies 

Hodo et. al 
2016 [29] 

Multi-Perceptron Layer (MLP) 
Neural Network 

But not realistic, small dataset, binary classes 

Kolias et. al 
2016 [30] 

Different ML-IDS Techniques Very time-consuming manual feature 
selection, 4-classes 

Y. Li et. al.  

2015 [31] 

Hybrid NN (Autoencoder + 
Deep Belief NN) 

Redundant dataset needs to be up to date to 
reflect more rationale results. 
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The rest of this paper is organized as follows: Section 2 introduces and justifies the dataset of IoT 

cyberattacks employed by our system. Section 3 provides details of the proposed system architecture, 

development, and detailed design steps. Section 4 presents the simulation environment for system 

implementation, testing and validation. Section 5 discusses the details about experimental evaluation, 

comparison, and discussion. Finally, Section 6 concludes the findings of the research. 

2. Dataset of Cyberattacks 

Data collection involves the gathering of information on variables of interest (VOS) within 

a dataset in a documented organized manner that allows one to answer the defined research 

enquiries, examine the stated hypotheses, and assess the output consequences. In this research, 

the variables of interest are concerned with the intrusions/attacks data records in IoT computing 

environments. Two global datasets of IoT attacks can be investigated including KDD'99 dataset 

and NSL-KDD dataset. Indeed, KDD'99 has been developed by DARPA intrusion detection 

evaluation program to build a network IDS able of differentiating amongst “bad” and “good” 

connections [32]. This dataset includes a standard list of data to be inspected, which contains a 

broad range of cyber-attacks modeled in a military communication platform. However, one of 

the most important issues of this dataset is the enormous number of redundant data-samples in 

the training and testing datasets. Such redundancy affects the accuracy of c lassifier which will 

have a biased towards more frequent records [32].  

Lately, KDD’99 has been re-investigated and updated to include more up-to-date and non-

redundant attack records with different levels of difficulties through the newer version called NSL-

KDD [33]. NSL-KDD [34] is a reduced version of the original KDD’99 dataset [35] and consists of the 

same features as KDD’99. However, NSL-KDD includes more up-to-date and non-redundant attack 

records with different levels of difficulties. Figure 2 shows sample records of original KDD-NSL 

training dataset in CSV format but read by notepad in TXT format (prior to any processing technique). 

In this research, the NSL-KDD dataset is employed for many reasons including: 

(a) It can be efficiently imported, read, preprocessed, encoded, and programed to produce two- or 

multi- class classification for IoT Cyber-attacks. 

(b) It covers all key attacks of IoT computing including: Denial-of-Service (DoS) [36], Probe (side 

channel) [37], Root to Local (R2L) [38], User to Root (U2R) [38]. 

(c) It is obtainable as TXT/CSV file type consisting of a reasonable number of non-redundant records 

in the training and test sets. This improves the classification process by avoiding the bias towards 

more frequent records. 

(d) It correlates to high-level IoT traffic structures and cyberattacks as well as it can be customized, 

expanded, and regenerated [34]. 

 

 

Figure 2. Sample records of KDD-NSL training dataset. 

NSL-KDD dataset has been thoroughly developed with high-level diverse interpretations of the 

training data covering normal and abnormal IoT network traffic data. The normal data samples 

represent the legitimate data packets processed by the IoT network. The abnormal data samples 

represent mutated data packets (i.e., attacks) achieved by slight mutations in the previously 

developed attacks such as the small changes in the network packet header configurations. The 
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original dataset is available in two classification forms: two-class traffic dataset with binary labels and 

multi-class traffic data set including attack-type labels and difficulty level. In both cases, it comprises 

148,517 samples each with 43 attributes such as duration, protocol, service, and others [39]. The 

statistics of traffic distribution of NSL-KDD dataset is summarized in Table 2. 

Table 2. Statistics of traffic distribution of NSL-KDD dataset [35]. 

 
Two-Classes Dataset Multi-Classes Dataset 

Normal Attack Normal DoS Probe R2L U2R 

Training 67343 58630 67343 45927 11656 995 52 

Testing 9711 12833 9711 7458 2754 2421 200 

Total 77,054 71,463 77,054 53,385 14,410 3,416 252 

3. System Modeling 

In this research, the proposed system is partitioned into distinct subsystems each of which is 

implemented with several modules. Specifically, the system is composed of three subsystems 

including: Feature Engineering (FE), Feature Learning (FL), and Detection and Classification (DC), 

as illustrated in Figure 3. 

 

Figure 3. The three main subsystems composing the proposed system. 

3.1. Implementation of Feature Engineering (FE) Subsystem  

This subsystem is responsible for conversion of raw IoT traffic data records of NSL-KDD dataset 

into a matrix of labeled features that can be fed and trained by the neural network’s part of the FL 

subsystem. The implementation stages of this subsystem include: 

Importing NSL-KDD dataset: In this stage, the collected dataset has been imported/read using 

MATLAB in a tabulated format instead of raw data in the original dataset text files. All data 

columns are assigned virtual names based on the nature of data in the cells. The imported dataset 

includes 43 different features/columns. Figure 4 shows a sample of importing the NSL-KDD dataset 

using table datatype. The illustrated sample shows only the first ten records along with five 

features. All data columns were assigned virtual names based on the nature of data in the cells . 
 

 

Figure 4. Importing NSL-KDD dataset: Samples from training dataset. 

Renaming Categorical Features: Four of imported 43 features are categorical features that need to be 

renamed prior the data encoding and sample labeling processes. These features are the target 
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protocol, the required service, the service flag, and the record category (e.g. normal or attack). 

Therefore, the four categorical columns have been renamed accordingly in this stage. Figure 5 

illustrates the four categorical features (columns) that have been renamed accordingly for the binary-

classes data records (the other columns are omitted for better readability). Also, note that the dataset 

encompasses multi-class data records for different traffic categories. 

 

 

Figure 5. Importing NSL-KDD dataset: Samples from training dataset. 

One Hot Encoding of Categorical Features: This module is responsible for conversion of the 
categorical data records into numerical data records in order to be employed by the neural network. 
Therefore, three categorical features undergo through One Hot Encoding process (1-N encoding) [40]. 
These features are the protocol column, the service column, and the flag column. The class 
feature/column is left for samples labeling process.  

• For protocol feature, three different types of protocols are revealed from the dataset including: 
{TCP, UDP and ICMP}. The one hot encoding for this feature will replace the categorical data of 
‘Protocol column’ with the three numerical features as shown in Table 3. 

Table 3.  Scheme for Replacement of Categorical Data of Protocols 

 

• For service feature, 69 different services are revealed from the dataset such as: {'AOL', 'AUTH', 
'BGP', 'COURIER', 'CSNET_NS', …, 'UUCP_PATH', 'VMNET', 'WHOIS', 'X11', 'Z39_50'}. The one 
hot encoding for this feature will replace the categorical data of ‘Service column’ with the 69 
numerical features as shown in Table 4. 

Table 4.  Scheme for Replacement of Categorical Data of Services 

• For flags feature, 11 different flags are revealed from the dataset including: { 'OTH', 'REJ', 'RSTO', 

'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH' }. The one hot encoding for this feature will replace 
the categorical data of ‘Flag column’ with the 11 numerical features as shown in Table 5. 

Protocol    

 

 

Equivalent 

One-Hot 

Encoding  

TCP_Protocol UDP_Protocol ICMP_Protocol 

TCP 1 0 0 

UDP 0 1 0 

ICMP 0 0 1 

Service   

 

 

Equivalent 

One-Hot 

Encoding  

AOL _ 

Service   

AUTH_   

Service   

BGP_ 

Service   
. . . 

Z39_50_ 

Service   

'AOL' 1 0 0 . . . 0 

'AUTH' 0 1 0 . . . 0 

'BGP' 0 0 1 . . . 0 
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. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

 
⋱ 

. 

. 

. 

'Z39_50' 0 0 0 . . . 1 
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Table 5.  Scheme for Replacement of Categorical Data of Flags 

 

Labeling the Target Feature: This stage concerns with the samples labeling using numerical (integer) 
labels for the target classes. Therefore, the categorical ‘Class Column’ will be converted to numerical 
classes according to the classification technique. In our system implementation, we are considering 
two forms of traffic classifications: Binary classification (1: Normal vs. 2: Attack) and Multi 
classification (1: Normal, 2: DoS, 3:Probe, 4: R2L, 5: U2R). After this stage, all data records are 
available into numerical format (i.e. no categorical data exist anymore). As a result of 1-N encoding 
and numerical labeling, we converted the dataset into 123 features and one data label. The results of 
this stage, i.e. encoded form of the dataset table of 2-class records, is provided in Figure 6. 

 

 
Figure 6. Encoded dataset with labeling: Sample from training set. 

Converting Tables to Double Matrix: At the end of dataset importing, encoding, and labeling 
processes, the dataset samples and targets should be provided to the neural network inputs of FL 
subsystem as a matrix of all input numerical samples. Therefore, encoded dataset tables have been 
converted to double matrix (148517 x 124). For instance, the following double matrix illustrates the 
first five rows of dataset matrix. 
 

 
Matrix Resizing with Padding Operation: This module is responsible to adjust the size of the dataset 

matrix to accommodate the input size for the FL subsystem. This was performed by resizing the matrix 

of the engineered dataset form 148517 x 124 to the new size of 148517 x 784, since the input size of every 

individual sample processed at FL subsystem is 28 x 28 (= 784). Thereafter, the new empty records of 

Flag   

 

 

 

Equivalen

t One-Hot 

Encoding  

OTH_Flag   REJ_Flag   RSTO_Flag   . . . SF_Flag   

'OTH' 1 0 0 . . . 0 

'REJ' 0 1 0 . . . 0 

'RSTO' 0 0 1 . . . 0 
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. 
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⋱ 
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. 

'SH' 0 0 0 . . . 1 
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this matrix were padded with zero-padding technique [41]. To avoid any feature biasing in the samples 

of the dataset, the padded records were distributed equally around the data samples. Figure 7 illustrates 

an example of resizing with zero-padding operation used in this research. The new matrix size is 

composed of 148517 sample attack each with 784 features. 
 

 
Figure 7. Encoded dataset with labeling: Sample from training set. 

Matrix Normalization with Min-Max Norm: Data normalization is performed to get all the data 

points to be in the same range (scale) with equal significance for each of them. Otherwise, one of the 

great value features might completely dominate the others in the dataset. Thus, this module is 

responsible to normalize all integer numbers of the dataset matrix into a range between 0~1 using 

Min-Max Normalization (MX-Norm) [42]. MX-Norm is well-known method to normalize data as it 

is commonly used in machine learning applications. In this method, we scan all the values in every 

feature, and then, the minimum value is converted into a 0 and the maximum value is converted into 

a 1, while the other values are converted (normalized) into a fraction value from 0 to 1. The Min-Max 

normalization (𝑋𝑖
𝑛𝑜𝑟𝑚) for data record (𝑋𝑖 ) at the (𝑖𝑡ℎ) position of matrix (X) is defined as follows: 

              𝑋𝑖
𝑛𝑜𝑟𝑚 = [𝑋𝑖  −   𝑚𝑖𝑛(𝑋)] [𝑚𝑎𝑥(𝑋)  −  𝑚𝑖 𝑛(𝑋)⁄ ]                (1) 

Also, Figure 8 illustrates an example of integer data features normalized using min-max normalization 

(0 ~1). It can be clearly seen the effect of normalization as it ensures all features to be in the same scale. 
 

 
Figure 8. Illustration of Min-Max Normalization Impact over data with different scales. 

Reshaping the Double Matrix: This module is responsible to create the attack samples for the 

𝐶𝑜𝑣𝑁𝑒𝑡 by reshaping the one-dimensional vectors of attack records into two-dimensional square 

matrices to accommodate the input size for the developed 𝐶𝑜𝑣𝑁𝑒𝑡 network. Accordingly, every one-

dimensional vector sample (1 x 784) will be reshaped into two-dimensional matrix (28 x 28) using a 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 December 2020                   doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152


 

raw-by-raw reshaping fashion. This operation should generate a square matrix for each data sample 

as illustrated in Figure 9. 
  

 
Figure 9. Illustration of Re-Shaping Operation of Dataset Samples: 1-D vector is reshaped into 2-D matric. 

3.2 Implementation of Feature Learning (FL) Subsystem  

So far, the FE subsystem has been developed and the next step is to process the encoded input 

features using FL subsystem-based CNN. The deep learning network will to be trained with minimum 

classification error and thus maximum accuracy. Generally, CNN involves various layers including 

convolution, activation, pooling, flatten and others. Convolutional layers are the core component of 

CNN network and they are hierarchically assembled to generate a number of feature-maps which 

enable CNNs to learn complex features being a vital operation to recognize patterns in the classification 

and detection tasks. Therefore, the developed FL subsystem is responsible for an appropriate 𝐶𝑁𝑁 that 

can accept the encoded features from FE subsystem at the input layer and train on them with multiple 

hidden layers as well as update the training parameters before classifying the IoT traffic dataset as 

normal or anomaly (mutated). The implementation stages of this subsystem include: 

Feature Mapping with 2D- Convolution Operations Layer: This module is responsible to generate 

new matrices called feature maps that emphasizes the unique features of the original matrix [43]. These 

feature-maps are produced by convolving (multiply and accumulate) the original matrix (𝑛𝑖𝑛 𝑥 𝑛𝑖𝑛) 

using a number (𝑁) of (𝑘 𝑥 𝑘) convolution filters with padding size (𝑝) and stride size of (𝑠)  which 

yields the feature maps (𝑛𝑜𝑢𝑡  𝑥 𝑛𝑜𝑢𝑡). The size of the resultant feature maps can be evaluated as follows: 

𝑛𝑜𝑢𝑡  =       (𝑛𝑖𝑛   +   2 𝑝   −   𝑘)/𝑠    +    1                                                (2) 

In this research, we have applied 20 convolution filters (9𝑥9) over the 28 𝑥 28  input samples with 

(p=0, and 𝑠 = 1 ) which resulted in 20  feature map each (20x 20 ). Figure 10 illustrates our 

convolutional layer, where the input is 28×28 matrix and a filter of size 9×9, this defines a space of 

20×20 neurons in the first hidden layer. This is the case because we can only move the window 19 

neurons to the right and 19 neurons to the bottom before hitting the right (or bottom) border of the 

input matrix. Note that the filter moves forward 1 position away, both horizontally and vertically 

when a new row starts. Also note that, Convolution layer goes through a backpropagation process to 

determine the most accurate values of its trainable parameters (weights: k x k x  N = 9 x 9 x 20 ). 
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Figure 10. Implementation of convolution layer of our CNN. 

Feature Activation with ReLU Function: This module is responsible to activate all units of the feature 

maps with non-linear rectification function namely known as ReLU. ReLU function is MAX (X,0) that 

sets all negative values in the matrix X to zero while all other values are kept constant. The reason of 

using ReLU is that training a deep network with ReLU tended to converge much more quickly and 

reliably than training a deep network with other non-linear activation functions such sigmoid or tanh 

activation functions [44]. Figure 11 illustrates the rectification layer of the convolved maps. 

 

 

Figure 11. Implementation of ReLU activation Layer of our CNN. 

Down-Sampling with Pooling Operations Layer: This module is responsible to generate new 

matrices called pooled feature maps that reduces the spatial size of the rectified feature maps and 

thus reduces the number of parameters and computation complexity in the network [43]. This can be 

done by combining the neighboring points of a particular region of the matrix representation into a 

single value that represent the selected region. The adjacent points are typically selected from a fixed 

size-square matrix (determined according to the application). Among these points of the applied 

matrix, one value is nominated as the maximum or mean of the selected points. In this research, we 

have used the mean pooling technique to develop the pooling layer since it combines the contribution 

of neighboring points instead of only selecting the maximum point. To produce the pooled feature-

maps (𝐿𝑜𝑢𝑡  𝑥 𝐿𝑜𝑢𝑡), the pooling filter (𝑓 𝑥 𝑓) is independently applied over the rectified feature-maps 

(𝐿𝑖𝑛 𝑥 𝐿𝑖𝑛) with stride (𝑠) as follows: 

𝐿𝑜𝑢𝑡   =       (𝐿𝑖𝑛   −   𝑓)/𝑠    +    1                                                       (3) 

In this research, we have applied 20 pooling operation (2 𝑥 2) over the 20 𝑥 20  rectified feature-

maps with (𝑠 = 2) which resulted in 20 feature map each (10 𝑥 10). Figure 12 illustrates our pooling 

layer, where the input from previous layer is 20×20 x 20 and the mean pooling filter of size 2×2. Note 

that the stride value is 2 which means that the filter moves forward 2 positions away, both 

horizontally and vertically when a new row starts. Thus, we end up with pooled maps of 10×10 x 20. 
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Figure 12. Implementation of pooling layer of our CNN. 

3.3 Implementation of Detection and Classification (DC) Subsystem 

DC subsystem is responsible for providing traffic classification for the input traffic data into 

binary-class classification (2-Classes: normal vs. anomaly) or multi-class classification (5-Classes: 

Normal, DoS, Probe, R2L, U2R). This subsystem is composed of three consecutive stages as follows:  

Flattening Layer of Pooled Feature Maps: This module is responsible to linearize the output 

dimension of the convolutional/pooling layers network to create a single long feature vector [43]. This 

can be achieved by converting the 2D data of N- Pooled feature-maps into a 1-D array (or vector) to 

be inputted to the next layer, which is connected to the final classification model, called a dense or 

fully connected layer. Since flatten layer collapses the spatial dimensions of the input into the channel 

dimension (array), this means that if the input to the flatten layer  is (𝑁)  feature maps each with a 

dimension of (𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛) then the flattened output (𝐹𝑜𝑢𝑡) can be obtained by linear multiplication of 

the input dimensions by the number of maps, that’s it:  

𝐹𝑜𝑢𝑡 = 𝑁 𝑥 𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛                                                                                      (4) 

In this research, since we have 20 pooled feature maps (𝑁 =  20), each with dimension of 10 x 10 

(𝐹𝑖𝑛 = 10), then, our flatten layer comprise of 2000 nodes. Figure 13 illustrates the flattening layer 

development of our CNN. 

 

Figure 13. Implementation of flattening layer of our CNN. 

Fully Connected Layer with ReLU Function: Fully Connected (FC) layers- as name implies- are those 

layers where all the inputs from one layer are connected to every activation unit of the next layer [43]. 
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Commonly, FC layers are located as the last few layers of any CNN. Therefore, this module is 

responsible to compile the high level features extracted by previous layers (convolutional and 

pooling layers) into a reduced form of low level features in which they can be used by the classifier 

located at the output layer to provide classification probabilities. In this research, we have developed 

the FC layer with 200 neurons connected with 2000 nodes of the flattened (FL) layer which provide 

a layer complexity reduction by10: 1. As the inputs pass from the units of FL layer through the 

neurons of FC layer, their values are multiplied by the weights and then pass into the employed 

activation function  (normally ReLU function) just in the same way as in a the classical NN (i.e. 

shallow NN). Thereafter, they are forwarded to the output classification layer where each neuron 

expresses a class label. Note that, FC layer also goes through a backpropagation [43] process to 

determine the most accurate values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐿 𝑥 𝑊𝐹𝐶  = 2000 𝑥 200). 

Figure 14 illustrates the development for FC layer of our CNN. 

 

 

Figure 14. Implementation of flattening layer of our CNN. 

Output Layer with SoftMax Function: This module is responsible to provide/predict the correct 

classification for each evaluated sample record of the utilized IoT attacks-dataset. Here we are 

providing two types of classification including the binary-classifier (normal or anomaly) and the 

multi-classifier (normal, DoS, Probe, R2L, U2R). The data points received from the 200 neurons of the 

FC layer (𝐴1, 𝐴2, … , 𝐴200) are fully connected with the five neurons (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) of the output 

classes (𝑗 =  5 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) through the transposed weight connections (𝑊𝑗
𝑇). This is illustrated in Figure 

15 and can be achieved algebraically as follows: 

𝐶 = 𝑊𝑗
𝑇 . 𝐴 =  

[
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𝑇

𝑊3
𝑇

𝑊4
𝑇

𝑊5
𝑇]
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 

𝐴1

𝐴2

𝐴3

⋮
⋮
⋮

𝐴198

𝐴199

𝐴200]
 
 
 
 
 
 
 
 

=
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  𝑊ℎ𝑒𝑟𝑒: 𝑊1
𝑇 ,𝑊2

𝑇 ,𝑊3
𝑇 ,𝑊4

𝑇 ,𝑊5
𝑇 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 1 𝑥 200                   (5) 
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Figure 15. Implementation of the output layer with SoftMax of our CNN. 

Note that, the output layer also goes through a backpropagation process to determine the most accurate 

values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐶  𝑥 𝑊𝑜𝑢𝑡  = 200 𝑥 5). The last layer of the neural network 

is a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer which has similar number of nodes as the output layer. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 normalizes the 

output into a probability distribution on classes [43]. Specifically, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  assigns numerical 

probability values for every class at the output layer where these probabilities should sum up to 1.0 

(following a probability distribution). Given an input a vector (𝑥) of (𝐾) real numbers and (𝑖) defines 

the index for the input values, then, SoftMax function σ: ℝk ⟼ ℝk is defined as follows: 

𝜎(𝑥)𝑖 = 𝑒𝑥𝑖 ∑ 𝑒𝑥𝑖𝐾
𝑗=1⁄     𝑓𝑜𝑟 𝑖 =  1, 2, 3, … , 𝐾 𝑎𝑛𝑑 𝑥 =  (𝑥1, 𝑥1, … , 𝑥𝐾) ∈ ℝ𝑘             (6) 

For example, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 might produce the following probabilities for an attack record: 
 

 
Multi-Classes Dataset  

Normal DoS Probe R2L U2R 

  Label  1 2  3 4 5 

  Probability  0.001 0.040 0.008 0.950 0.001 

3.4 System Integration 

In this section, we integrate all the aforementioned subsystems and modules by Putting-It-All-Together 

to come up with complete system architecture of our IoT-IDCS-CNN. Figure 16 illustrates the top view 

architecture of the integrated system as a feedforward 𝐶𝑜𝑣𝑁𝑒𝑡 network based IoT attack detection system.   

 
Figure 16. Top view architecture of the proposed IoT-IDCS-CNN. 
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According to the system architecture, after data preprocessing stages and using the 28 𝑥 28 

input matrix, we constructed 784 (= 28 𝑥 28) input nodes. To extract features of the input data, the 

network encompasses a deep convolutional layer involving a depth of 20 convolution filters of size 

(9 𝑥 9). Thereafter, the results of the convolutional layer pass via ReLU activation function which 

followed by the subsampling operation of the pooling layer. The pooling layer utilizes the average 

pooling method with 2 𝑥 2 submatrices. The pooled features are then flattened to 2000 nodes. The 

classification/detection neural network comprises the single hidden fully connected (FC) layer and 

the output classification layer. This FC layer comprises 200 nodes along with ReLU  activation 

function. Since our system requires the classification of the data into 5 classes, therefore, the output 

layer is implemented with 5 nodes with SoftMax activation function. The next table, Table 6, recaps 

the final integrated 𝐶𝑜𝑣𝑁𝑒𝑡 based system for IoT attacks detection.  

Table 6. Summary of the developed CovNet for IoT attacks detection/classification system. 

Layer Comment Trainable Parameters  

Preprocessing 148517 Sample each (28x28) - 

Input 28 x 28 nodes (784 nodes) - 

Convolution 20 convolution filters (9 x 9)+ReLU WCon(9 x 9 x 20) 

Pooling Mean pooling ( 2 x 2 ) - 

Flattening 2000 nodes - 

Fully Connected 200 nodes + ReLU WFCL(2000 x 200) 

Output 5 nodes (or 2 nodes) + SoftMax WOut(200 x 5) 
 

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided in Figure 

17 below. The input layer takes the encoded features generated from FE subsystem in order to be 

trained at the CNN which update the training parameters and generate the least cost/loss value 

(error) with optimal accuracy. The output layer employs the SoftMax classifier which is used to 

classify the data using two classification techniques include: binary classification technique which 

provides two categories (normal vs anomaly) and the multi-classification technique which provides 

five categories (normal, DoS attack, Probe attack, R2L attack, U2R attack). 

 
Figure 17. Comprehensive view of the Computation Process  IoT-IDCS-CNN. 
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4. Simulation Environment  

To implement, verify, and validate the proposed IoT attacks detection and classification system, 

the training and testing were performed on the NSL-KDD dataset involving the key attacks for IoT 

communication. The classifier model was determined to have either two classes (binary attack 

detection) or five classes (multi-attack classification). The proposed system was implemented in 

MATLAB 2019a. To evaluate the system performance, experiments were performed using a high-

performance computing platform utilizing the power of central processing unit (CPU) and graphical 

processing unit (GPU) with Multicore structure of NVIDIA GeForce® Quadro P2000 Graphic card. The 

specifications for the workstation used in development, validation & verification are provided in Table 7. 

Table 7. The system development and validation environment. 

System Unit Specifications  

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 Cores, @ 4900 MHz 

Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5GB Mem, 1024 CUDA Cores 

Cache Memory ($) 16 MB Cache @ 3192 MHz 

Main Memory (RAM) 32 GB DDR4 @ 2666MHz 

Operating System (OS) 64 bit, Windows 10 Pro. 

Hard Disk Drive (HD) SATA 1TB Drive + 256 GB SSD 

Besides, the experimental setup for training/testing model has been configured as follows: 

• Dataset Distribution: 

⎯ 85 % of the dataset used for training (i.e., ~ 128500 data sample records). 

⎯ 15 % of the dataset used for testing (i.e., ~    20000 data sample records). 

• 𝑪𝒐𝒗𝑵𝒆𝒕 Configurations: 

⎯ Input (Sample) Size = 28 x 28. ⎯ Number of Kernels = 20. 

⎯ Conv. Kernel Size = 9 x 9. ⎯ Mean Pooling filter size = 2 x 2. 

⎯ Activation function = ReLU. ⎯ Classifier function= SoftMax. 

⎯ Number of Hidden Layers = 5. ⎯ Number of Output classes = 2 or 5. 

• Model Optimization Configurations:  

⎯ Optimization Algorithm = Mini Batch Gradient Descent (find minimum loss). 

⎯ Mini_batch_size = 50, Momentum factor (β) =0.95, learning rate (α)=0.05. 

⎯ Momentum updates=  MomCon[9 x 9 x 20],  MomFCL[2000x200],  MomOut[200x5]. 

⎯ All Momentum updates were initialized using ZEROS matrices (zeros (size)). 

• Training Model Configurations: 

⎯ Training technique = back-propagation with momentum (to update weights). 

⎯ Trainable weights  =  WCon[9 x 9 x 20] ,  WFCL[2000x200],  WOut[200x5]. 

⎯ Backprop. Derivatives =  dWCon[9 x 9 x 20], d WFCL[2000x200],  dWOut[200x5]. 

⎯ The number of epochs = 100 and the number of iterations per epoch = ~2500. 

⎯ All trainable weights were initialized using random number generator (rand). 

⎯ All backpropagation derivatives were initialized using ZEROS matrices. 

• Weight update policy: 

― dWCon = dWCon Mini_batch_size⁄ ,  dWFCL =  dWFCL Mini_batch_size⁄ ,   dWOut = dWOut Mini_batch_size⁄  

― MomCon =  α ∗ dWCon +  β ∗ MomCon;            ➔        WCon= WCon+ MomCon 

― MomFCL =  α ∗ dWFCL +  β ∗ MomFCL;            ➔        WFCL= WFCL+ MomFCL 

― MomOut =  α ∗ dWOut +  β ∗ MomOut;          ➔        WOut= WOut+ MomOut 

5. Results and Discussion 
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Verification and validation (V&V) are essential activities and quality control factors that are 

performed independently to check the system compliance with requirements and specifications and 

that it fulfills its intended purpose. Typically, the verification process is defined as a number of 

activities used to examine the suitability of the system or component (i.e. are we building the product 

right). On the other hand, the validation process is defined as a number of activities used to examine 

the conformity of the system (or any of its elements) with its purpose and functions (i.e. are we 

building the right product). Note that while system validation is distinct from verification, however, 

the actions of both processes are integral and meant to be performed in coupling [45]. In this section, 

we provide a comprehensive verification and validation to check the system compliance with its 

intended objectives and purpose.  

5.1 System Evlaution and Verification   

To verify the effectiveness of the proposed system in compliance with its intended 

functionalities and missions, we have evaluated the system performance using the recommended 

testing dataset in terms of the classification accuracy, classification error percent and the classification 

time as follows: 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  (%) =   
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 ×  100%                (7) 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (%)           =    
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 ×  100%            (8) 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑚𝑠)        =    ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑖)

𝑁𝑜.  𝑅𝑢𝑛𝑠

𝑖 = 1

× 
1000 

𝑁𝑜.  𝑅𝑢𝑛𝑠 
                  (9) 

The plot for the overall testing classification accuracy and overall classification loss 

(classification error) comparing the performance of the binary-classifier (2-Classes) and the multi-

classifier (5-Classes) obtained during the validation process of NSL-KDD dataset are illustrated in 

Figure 18. According to the figure, at the beginning and after one complete pass (epoch) of testing 

process, both classifiers showed relatively low classification accuracy proportions with 85% and 

79%  registered for 2-Class classifier and 5-Class classifier, respectively. Thereafter, both 

classification accuracy curves begin to roughly be increasing in a stable tendency while testing 

epochs proceeds with faster and higher ceiling level obtained for the classification accuracy of 2-

Class classifier. After training the system for 100 epochs, the system was able to record an overall 

testing accuracy proportions of 99.3% and 98.2% for 2-Classs classifier and 5-Classs classifier, 

respectively, for the given testing dataset samples. Conversely, it can be clearly seen that both 

classifiers showed relatively high classification error proportions at the beginning of the testing 

process with 15% and 21% registered for 2-Class classifier and 5-Class classifier after one testing 

epoch, respectively. Thereafter, both classification error rates started to systematically decline 

while the binary classifier progresses with faster threshold achieving 0.7% of incorrect prediction 

proportion (classification error percentage). However, the classification error rate proportion for 

the multi-classifier has saturated with less than 2.0% of incorrect prediction. This range of 

classification error of both classifiers (0.7% - 1.8%) is permitted to avoid underfitting or overfitting 

from the training loss (~0.0%) and training accuracy (~100%) and thus provided high-accuracy 

classification performance.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 December 2020                   doi:10.20944/preprints202011.0508.v2

Peer-reviewed version available at Electronics 2020, 9, 2152; doi:10.3390/electronics9122152

https://doi.org/10.20944/preprints202011.0508.v2
https://doi.org/10.3390/electronics9122152


 

 

Figure 18. Testing Detection/Classification Accuracy/Error Rate vs. Number of Epochs. 

Moreover, we have analyzed the time required to perform attack detection or classification for 

one IoT traffic sample. To obtain accurate and precise results, we have run the validation test for 500 

times and then computed the time statistics for detection and classification. Figure 19 shows the 

detection/classification time performance for the proposed model (either 2-Class or 5-class classifier). 

According to the figure, the time required to detect/classify one sample record ranges from (𝑀𝑖𝑛 ≈

 0.5662 𝑚𝑠) to  (𝑀𝑎𝑥 ≈ 2.099 𝑚𝑠) with average time of (𝑀𝑒𝑎𝑛 ≈  0.9439 𝑚𝑠) recorded for the 500 

simulation runs. This average time (𝑎𝑟𝑜𝑢𝑛𝑑 1 𝑚𝑠) is very useful for the system to run in dynamical 

environment such as the real time IDS applications. 
 

 

Figure 19. Run time performance of IoT Traffic classification over 500 simulation runs. 
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Furthermore, even though the classification accuracy measurement is the key significant factor 

used to evaluate the efficiency of the classification or detection system, we have evaluated the 

validation (testing) dataset using a confusion matrix with clear identification of True Positive (TP), 

True Negative (TN), False Positives (FP) and False Negatives (FN) analysis to provide more insight 

about the performance of the proposed. Figure 20 shows the general confusion matrix of our system, 

confusion Matrix results for 2-Class Classifier using the testing dataset, and the confusion matrix 

results for 5-Class Classifier using the testing dataset. 

 

   

Figure 20. Confusion Matrix Analysis for both classification models. 

Therefore, the confusion matrix parameters (i.e., TN, TP, FN, FP) can be used to compute some 

other performance evaluation metrics (has less importance than the accuracy metric) including: (a) 

the classification precision (detection rate) which is defined as the percentage of relevant instances 

(e.g. attacks) among the retrieved instances, (b) the classification recall (sensitivity) which is defined 

as the percentage of positive instances that are correctly labeled, (c) F1-Score which is defined as the 

average score involving  precision and recall (i.e., utilizes both false negative and false positive), and 

(d) False alarm rate which is defined as the percentage of misclassified normal instances detected by 

the system [48]. These metrics can be calculated in the following equations while Table 8 summarizes 

the results of the overall evaluation metrics for our proposed system. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ×  100%                                                         (10) 

𝑅𝑒𝑐𝑎𝑙𝑙         =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ×  100%                                                         (11) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 ×  100%                                (12) 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =   
𝐹𝑃

 𝑇𝑁 + 𝐹𝑃
 ×  100%                                        (13) 

Table8. Summary of the overall evaluation metrics results 
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 2-Class Classification 5-Class Classification 

Correctly predicted samples 19860 19640 

Incorrectly predicted samples 140 360 

Classification Accuracy 99.3% 98.2% 

Classification Error Rate 00.7% 01.8% 

Classification Precision  99.04% 98.27% 

Classification Recall  99.33% 98.23% 

F-Score Metric 99.18% 98.22% 

False Alarm Rate (FAR) 01.28% 1.73% 

Average Classification time 0.9246 0.9439 

5.2 System Validation and Benchmarking   

To validate the proficiency of proposed system in compliance with system purpose and 

specifications. To ensure high level of reliability of our system validation stage, we have conducted 

a 5-fold cross-validation process [47] that encompasses 5 different experiments for each classification 

model (total of 10 experiments) with different sets for training (~128,000 sample) and validation 

(20,000 sample) nominated for each experiments as demonstrated in Figure 21 which shows the 

distribution of the dataset across the folds for each conducted experiment. 

 
Figure 21. Scheme for 5-fold cross-validation of the proposed system . 

For each experiment, we have evaluated the validation accuracy and validation error for the 

classification system models (2-Classes/5-Classes). Thereafter, the results obtained from the five 

experiments are averaged to provide an overall validation accuracy and validation error values. 

Consequently, the proposed system provided high level of stability and reliability across the dataset 

folds which confirm the system robustness in the mission of attacks detection and classification for 

IoT communications. The results of the 5-fold cross-validation are provided in Table 9 below. 

Table 9. The results of 5-fold cross-validation of both classifiers (accuracy and error) 

 2-Class 5-Class 

 Accuracy Error Accuracy Error 

Experiment 1 0.9930 0.0070 0.9820 0.0180 

Experiment 2 0.9942 0.0058 0.9950 0.0050 

Experiment 3 0.98750 0.01250 0.9907 0.0093 

Experiment 4 0.99440 0.00560 0.9929 0.0071 

Experiment 5 0.99320 0.00680 0.9966 0.0034 

AVERAGE 99.25% 0.75% 99.14% 0.86% 

Additionally, to gain more insight on the advantage of the proposed method, we benchmark 

IoT-IDS-CNN classification system by comparing its performance with other state-of-art machine 

learning based intrusion/attacks detection systems in terms in terms of classification accuracy metric. 
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For better and more reasonable evaluation, we have selected the related researches that employs 

machine learning techniques for intrusion/attacks detection/classification for the NSL-KDD dataset 

(the same used by our system) to be compared with our proposed IoT-IDS-CNN. Therefore, we 

summarize the classification accuracy metric values for related state-of-art research in the following 

table, Table 10, in chronological order. Accordingly, it can be obviously noticed, that the proposed 

IoT-IDS-CNN model has improved the cyber-attacks classification accuracy of other ML-IDS models 

by an improvement factor (IF) of (~1.03 – 1.25). 

Table 10. Comparison with State-of-Art ML-IDS Employing Same Dataset. 

Research  Data Accuracy IF % 

K. Taher et. al. 2019 [16] NSL-KDD Dataset ≈ 83.7% 117.3%  

X. Gao et. al. 2019 [17] NSL-KDD Dataset ≈ 85.2%   115.2%  

S. Sapre, et. al. 2019 [18] NSL-KDD Dataset ≈ 78.5% 125.1%  

Chowdhry,  2017 [19] NSL-KDD Dataset ≈ 94.6% 103.8%  

Javaid et. al. 2016 [20] NSL-KDD Dataset ≈ 88.4%  112.3%  

Yadigar, et. al. 2016 [21] NSL-KDD Dataset ≈ 91.7% 108.0% 

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3%  ____ 

 

Finally, although the other existing related researches for machine learning based 

intrusion/attack detection/classification use different cyber-attacks datasets, learning policies, 

programming techniques, and computing platforms, we still can compare the classification system 

performance in terms of testing accuracy metrics and the level of complexity for the developed 

method. Therefore, for better readability, we summarize the classification accuracy metrics for the 

other related state-of-art research in the following table, Table 11, in chronological order. According 

to the comparison of the table, it can be seen that the proposed approach produces attractive results 

in terms of classification accuracy showing superiority over all other compared methods. 

Table 11. Comparison with State-of-Art ML-IDS Employing Different Dataset 

Research  Data Accuracy IF % 

S.Jan et.al 2019 [23] CICIDS dataset ≈ 93.0% 106.7%  

Roopak et. al. 2019 [24] CICIDS Dataset ≈ 92.0%  107.9%  

Ioannou  et. al 2019 [25] Simulated Dataset ≈ 81.0% 122.5%  

Brun et al, 2018 [26] Real-Time Dataset ≈ 75.0% 132.4%  

Thing et. al 2017 [27] AWID Dataset ≈ 98.0%  101.3%  

Shukla et. al 2017 [28] Simulated Dataset ≈ 75.0%   132.4%  

Hodo et. al 2016 [29] DoS Dataset ≈ 99.0% 100.3%  

Kolias et. al 2016 [30] AWID Dataset ≈ 92.0% 107.9%  

Y. Li et. al. 2015 [31] KDDCUP Dataset ≈ 92.0%  107.9%  

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____ 

6. Conclusions and Future Directions 

An efficient and intelligent deep learning-based detection and classification system for 

cyberattacks in IoT communication networks (IoT-IDCS-CNN) was proposed, developed, tested, and 

validated in this paper. The proposed IoT-IDCS-CNN makes use of the high-performance computing 
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employing the robust Nvidia GPUs (Quad-Cores, CUDA based) and the parallel processing 

employing the high-speed Intel CPUs (N-Cores, I9 based). For the purpose of system development, 

the proposed IoT-IDCS-CNN was decomposed into three subsystems including the Feature 

Engineering (FE) subsystem, the Feature Learning (FL) subsystem and the Detection and 

Classification (DC) subsystem. All subsystems were individually developed then, integrated, 

verified, and validated in this research. Because of the use of CNN based design, the proposed system 

was able to detect and classify the slightly mutated cyberattacks of IoT networks (represented 

collectively by NSL-KDD dataset which includes all the key attacks in the IoT computing) with 

detection accuracy of 99.3% of normal or anomaly traffic, and classify the IoT traffic into five 

categories with classification accuracy of 98.2%. Also, to ensure high level of reliability for system 

validation stage, we have conducted a 5-fold cross-validation process that encompasses 5 different 

experiments for each classification model. Moreover, and to provide more insight about the 

performance of the system, the proposed system was evaluated using the confusion matrix parameters 

(i.e., TN, TP, FN, FP) and computed some other performance evaluation metrics including: the 

classification precision, the classification recall, the F1-score of classification, and the false alarm rate. 

Eventually, the experimental evaluation results of IoT-IDCS-CNN system surpassed the results of many 

recent existing IDCS systems in the same area of study. Several recommendations for future research 

works may be considered to extend this study. These further recommendations include:  

a) Additional data collection by setting up a real-time IoT communication network with sufficient 

number of nodes and gateways, incorporating nodes diversity. A future researcher can develop 

a new software system that catch and investigate any data packet communicated through the IoT 

environment (in-going and out-going) and come up with attacks to update an existing dataset or 

to come up with a new dataset. Note that the packet collection and investigation should be 

performed for a sufficient amount of time to provide more insights on the type of packets (normal 

or anomaly) processed at IoT networking. This can provide different perceptions of the operation 

of the device such as the utilization of processing unit, memory unit and the communication  

traffic. The collected data can be then deemed as normal or anomaly based on their behavior. For 

example, the normal data is related to the imitation of usual actions of local IoT devices, such as 

surveillance cameras. The anomaly data concerns with botnets/probes actions such as the 

communication with command & control units. At the end, the data can be labeled accordingly. 

b) The proposed IoT-IDCS-CNN can be customized and used for intrusion detection incorporating 

other cyberattacks datasets such as AWID Dataset [49], CICIDS Dataset [50],  DDoS dataset [51], 

UNSW-NB15 dataset [52] and others. This can be achieved by customizing the preprocessing and 

output layers accordingly with fine-tuning for the hidden layers as well as the model parameters 

and hyperparameters to obtain the maximum classification accuracy and least error rate. 

c) The proposed IoT-IDCS-CNN can also be tuned and used to perform other real-life applications 

requiring image recognition and classification such as medical, biomedical, handwritten 

recognition applications and others. 

d) Finally, the proposed system can be employed by IoT gateway device to provide intrusion detection 

services for a network of IoT devices such as a network of ARM Cortex based nodes. More 

investigation on the proposed IoT-IDCS-CNN can be reported including power consumption, 

memory utilizations, communication, and computation complexity over low power IoT nodes with 

tiny system components (such as the battery-operated/energy aware devices). 
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