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Abstract: With the rapid expansion of intelligent resource-constrained devices and high-speed 9 
communication technologies, Internet of Things (IoT) has earned a wide recognition as the primary 10 
standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to 11 
cyber-attacks due to the constraints in computation, storage, and communication capacity of the 12 
endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by 13 
slightly mutating formerly established cyber-attacks to produce a new attack tending to be treated 14 
as a normal traffic through the IoT network. From the other side, the influence of coupling the deep 15 
learning techniques with cybersecurity field has become a recent inclination of many security 16 
applications due to their impressive performance. In this paper, we provide a comprehensive 17 
development of a new intelligent and autonomous deep learning-based detection and classification 18 
system for cyber-attacks in IoT communication networks leveraging the power of convolutional 19 
neural networks, abbreviated as (IoT-IDCS-CNN). The proposed IoT-IDCS-CNN makes use of the 20 
high-performance computing employing the robust CUDA based Nvidia GPUs and the parallel 21 
processing employing the high-speed I9-Cores based Intel CPUs. In particular, the proposed system 22 
is composed of three subsystems: Feature Engineering subsystem, Feature Learning subsystem and 23 
Traffic classification subsystem. All subsystems are developed, verified, integrated, and validated 24 
in this research. To evaluate the developed system, we employed the NSL-KDD dataset which 25 
includes all the key attacks in the IoT computing. The simulation results demonstrated more than 26 
99.3% and 98.2% of cyber-attacks’ classification accuracy for the binary-class classifier (normal vs 27 
anomaly) and the multi-class classifier (five categories) respectively. The proposed system was 28 
validated using K-fold cross-validation method and was evaluated using the confusion matrix 29 
parameters (i.e., TN, TP, FN, FP) along with other classification performance metrics including 30 
precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN 31 
system outperformed many recent machine-learning based IDCS systems in the same area of study. 32 

Keywords: Deep Learning, Convolutional Neural Network, IoT Networks, Cyber-attack Detection, 33 
Classification. 34 

 35 

1. Introduction 36 

The Internet of Things (IoT) is comprised of a collection of heterogeneous resource-constrained 37 
objects interconnected via different network architectures such as wireless sensor networks (WSN) 38 
[1]. These objects or “things” are usually composed of sensors, actuators, and processors with the 39 
ability to communicate with each other to achieve common goals/applications through unique 40 
identifiers with respect to the Internet Protocol (IP) [2, 3]. Current IoT applications include smart 41 
buildings; telecommunications; medical and pharmaceutical; aerospace and aviation; environmental 42 
phenomenon monitoring; agriculture; industrial and manufacturing processes etc. The basic IoT 43 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202011.0508.v1
http://creativecommons.org/licenses/by/4.0/


Electronics 2020, 9, x FOR PEER REVIEW 2 of 24 

 

 

layered architecture is shown in Figure 1. It has three layers: the perception layer (consist of edge-44 
devices that interact with the environment to identify certain physical factors or other smart objects 45 
in the environment), the network layer (consists of a number of networking-devices that discover and 46 
connect devices over the IoT network to transmit and receive the sensed data), and the application 47 
layer (consists of various IoT applications/services that are responsible for data processing and 48 
storage). Indeed, most cyber-attacks target the application and network layers of the IoT system. 49 

 50 

 51 

Figure 1. IoT Layered Architecture Considering the 3-layer Scheme of IoT [4]. 52 

IoT is a promising profound technology with tremendous expansion and effect. IoT 53 

infrastructures are vulnerable to cyber-attacks in that within the network, simple endpoint devices 54 

(e.g. thermostat, home appliance, etc.) are more constrained in computation, storage, and network 55 

capacity compared with the more complex endpoint devices (e.g., smartphones, laptops, etc.) that 56 

may reside within the IoT infrastructure [5, 6]. In fact, the privacy, authentication, key management, 57 

trust management and the cyber-attacks identification are among the significant challenges of the 58 

Internet of Things (IoT) and cloud based IoT [7, 8]. A number of studies were directed to address the 59 

security issues and challenges of IoT and cloud computing using block chain techniques [9, 10], light-60 

weight authentication process [11,12], and the secure data sharing and searching of cloud based IoT 61 

[13, 14]. Once the IoT infrastructure is breached, hackers have the ability to distribute the IoT data to 62 

unauthorized parties and can manipulate the accuracy and consistency of IoT data over its entire life 63 

cycle [15]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization. Consequently, 64 

vast efforts to handle the security issues in the IoT model have been made in the recent years. Many 65 

of the new cybersecurity technologies were developed by coupling the fields of machine learning 66 

with cybersecurity. It should be noted that, the majority of IoT new attacks are slight deviations (i.e. 67 

mutations) of earlier known cyberattacks [16]. Such slight mutations of these IoT attacks have been 68 

demonstrated to be difficult to identify/classify using traditional machine learning techniques. 69 

Promising state-of-art research has been conducted for cybersecurity using deep neural networks [17-70 

22]. Table 1 summarizes research of conventional and traditional machine learning approaches to 71 

solve cybersecurity issues. 72 

In this paper, a new intelligent system that can detect mutations of common IoT cyberattacks 73 

using non-traditional machine learning techniques exploiting the power of Nvidia-Quad GPUs is 74 

proposed. The proposed system employs the convolutional neural network (CNN) along its 75 

associated machine learning algorithms to classify the NSL-KDD dataset records (we denote our 76 

system using the acronym IoT-IDCS-CNN). The NSL-KDD dataset stores non-redundant records of 77 

all the key attacks of IoT computing with different levels of difficulties. Specifically, the main 78 

contributions of this paper can be summarized as follows: 79 
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• We provide a comprehensive efficient detection/classification model that can classify the IoT 80 
traffic records of NSL-KDD dataset into two (Binary-Classifier) or five (Multi-Classifier) classes. 81 
Also, we present detailed preprocessing operations for the collected dataset records prior to its 82 
use with deep learning algorithms. 83 

• We provide an illustrated description of our system modules and the machine learning 84 
algorithms. Furthermore, we demonstrate a comprehensive view of the computation process of 85 
our IoT-IDCS-CNN. 86 

• We provide an inclusive development, validation environment and configurations along with an 87 
extensive simulation results to gain insight into the proposed model and the solution approach. 88 
This includes simulation results related to the classification accuracy, classification time and 89 
classification error rate for the system validation of both detection (Binary-Classifier) and 90 
classification (Multi-Classifier). 91 

• We provide a comprehensive performance analysis to gain more insight about the system 92 
efficiency such as the confusion matrix to analyze the attacks’ detection True/False Positives and 93 
the True/False Negatives and other evaluation metrics including Precision, Recall, F-Score Metric 94 
and, False Alarm Rate. 95 

• We benchmark study of our findings with other related state-of-art works employing the same 96 
dataset as well as the comparison with other State-of-Art machine learning based intrusion 97 
detection systems (ML-IDS) employing different dataset. 98 

Table 1. Summary of related research for machine learning based IoT security. 99 

Research  Method Description 

K. Taher et. al. 
2019 [16] 

Artificial Neural Network 
(ANN) with Support Vector 
Machine (SVM) Classifier  

3-classes, with 2 hidden layers and used only 
35-features 

X. Gao et. al. 
2019 [17] 

Deep Neural Network (DNN) 
with ensemble voting 

5-classes, 3-methods: Decision Tree, Random 
Forest, K-Nearest 

S. Sapre, et. al. 
2019 [18] 

Different ML-IDS techniques 5-classes, with 2 hidden layers and Naïve 
Bayes Classifier 

S. Jan et.al  

2019 [23] 

ML-IDS based SVM System Only binary classification, used only 2 or 3 
simple features 

Roopak et. al. 
2019 [24] 

Deep Neural Network (DNN) Small representative sample, does not reflect a 
realistic accuracy in actual IoT environments 

Ioannou  et. al 
2019 [25] 

ML-IDS based SVM System Only binary classification, used anonymous 
sensor topology 

Brun et. al,  

2018 [26] 

Deep Neural Network (DNN) System validation was poorly accomplished on 
a testbed comprising of only three devices and 
naive attacks were used to validate the system 
using a real-time date with 50,000 samples 

Thing et. al 
2017 [27] 

Deep Auto-Encoder (DAE) But not realistic, very small dataset (no DDos, 
no Probe), 3HL (256/128/64), need significant 
time for FE. 

Shukla et. al 
2017 [28] 

Neural Network Hybrid 
Learning (K_Means + Decision 
Trees) 

Only binary classification, small scale 
simulated network (16 nodes) with different 
topologies 

Hodo et. al 
2016 [29] 

Multi-Perceptron Layer (MLP) 
Neural Network 

But not realistic, small dataset, binary classes 

Kolias et. al 
2016 [30] 

Different ML-IDS Techniques Very time-consuming manual feature 
selection, 4-classes 

Y. Li et. al.  

2015 [31] 

Hybrid NN (Autoencoder + 
Deep Belief NN) 

Redundant dataset needs to be up to date to 
reflect more rationale results. 
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The rest of this paper is organized as follows: Section 2 introduces and justifies the dataset of IoT 100 
cyberattacks employed by our system. Section 3 provides details of the proposed system architecture, 101 
development, and detailed design steps. Section 4 presents the simulation environment for system 102 
implementation, testing and validation. Section 5 discusses the details about experimental evaluation, 103 
comparison, and discussion. Finally, Section 6 concludes the findings of the research. 104 

2. Dataset of Cyberattacks 105 

Data collection involves the gathering of information on variables of interest (VOS) within 106 
a dataset in a documented organized manner that allows one to answer the defined research 107 
enquiries, examine the stated hypotheses, and assess the output consequences. In this research, 108 
the variables of interest are concerned with the intrusions/attacks data records in IoT computing 109 
environments. Two global datasets of IoT attacks can be investigated including KDD'99 dataset 110 
and NSL-KDD dataset. Indeed, KDD'99 has been developed by DARPA intrusion detection 111 
evaluation program to build a network IDS able of differentiating amongst “bad” and “good” 112 
connections [32]. This dataset includes a standard list of data to be inspected, which contains a 113 
broad range of cyber-attacks modeled in a military communication platform. However, one of 114 
the most important issues of this dataset is the enormous number of redundant data-samples in 115 
the training and testing datasets. Such redundancy affects the accuracy of c lassifier which will 116 
have a biased towards more frequent records [32].  117 

Lately, KDD’99 has been re-investigated and updated to include more up-to-date and non-118 
redundant attack records with different levels of difficulties through the newer version called NSL-119 
KDD [33]. NSL-KDD [34] is a reduced version of the original KDD’99 dataset [35] and consists of the 120 
same features as KDD’99. However, NSL-KDD includes more up-to-date and non-redundant attack 121 
records with different levels of difficulties. Figure 2 shows sample records of original KDD-NSL 122 
training dataset in CSV format but read by notepad in TXT format (prior to any processing technique). 123 
In this research, the NSL-KDD dataset is employed for many reasons including: 124 
(a) It can be efficiently imported, read, preprocessed, encoded, and programed to produce two- or 125 

multi- class classification for IoT Cyber-attacks. 126 
(b) It covers all key attacks of IoT computing including: Denial-of-Service (DoS) [36], Probe (side 127 

channel) [37], Root to Local (R2L) [38], User to Root (U2R) [38]. 128 
(c) It is obtainable as TXT/CSV file type consisting of a reasonable number of non-redundant records 129 

in the training and test sets. This improves the classification process by avoiding the bias towards 130 
more frequent records. 131 

(d) It correlates to high-level IoT traffic structures and cyberattacks as well as it can be customized, 132 
expanded, and regenerated [34]. 133 

 134 

 135 

Figure 2. Sample records of KDD-NSL training dataset. 136 

NSL-KDD dataset has been thoroughly developed with high-level diverse interpretations of the 137 
training data covering normal and abnormal IoT network traffic data. The normal data samples 138 
represent the legitimate data packets processed by the IoT network. The abnormal data samples 139 
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represent mutated data packets (i.e., attacks) achieved by slight mutations in the previously 140 
developed attacks such as the small changes in the network packet header configurations. The 141 
original dataset is available in two classification forms: two-class traffic dataset with binary labels and 142 
multi-class traffic data set including attack-type labels and difficulty level. In both cases, it comprises 143 
148,517 samples each with 43 attributes such as duration, protocol, service, and others [39]. The 144 
statistics of traffic distribution of NSL-KDD dataset is summarized in Table 2. 145 

Table 2. Statistics of traffic distribution of NSL-KDD dataset [35]. 146 

 
Two-Classes Dataset Multi-Classes Dataset 

Normal Attack Normal DoS Probe R2L U2R 

Training 67343 58630 67343 45927 11656 995 52 

Testing 9711 12833 9711 7458 2754 2421 200 

Total 77,054 71,463 77,054 53,385 14,410 3,416 252 

3. System Modeling 147 

In this research, the proposed system is partitioned into distinct subsystems each of which is 148 
implemented with several modules. Specifically, the system is composed of three subsystems 149 
including: Feature Engineering (FE), Feature Learning (FL), and Detection and Classification (DC), 150 
as illustrated in Figure 3. 151 

 152 

Figure 3. The three main subsystems composing the proposed system. 153 

3.1. Implementation of Feature Engineering (FE) Subsystem  154 

This subsystem is responsible for conversion of raw IoT traffic data records of NSL-KDD dataset 155 
into a matrix of labeled features that can be fed and trained by the neural network’s part of the FL 156 
subsystem. The implementation stages of this subsystem include: 157 

Importing NSL-KDD dataset: In this stage, the collected dataset has been imported/read using 158 
MATLAB in a tabulated format instead of raw data in the original dataset text files. All data 159 
columns are assigned virtual names based on the nature of data in the cells. The imported dataset 160 
includes 43 different features/columns. Figure 4 shows a sample of importing the NSL-KDD dataset 161 
using table datatype. The illustrated sample shows only the first ten records along with five 162 
features. All data columns were assigned virtual names based on the nature of data in the cells . 163 
 164 

 165 

Figure 4. Importing NSL-KDD dataset: Samples from training dataset. 166 
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Renaming Categorical Features: Four of imported 43 features are categorical features that need to be 167 
renamed prior the data encoding and sample labeling processes. These features are the target 168 
protocol, the required service, the service flag, and the record category (e.g. normal or attack). 169 
Therefore, the four categorical columns have been renamed accordingly in this stage. Figure 5 170 
illustrates the four categorical features (columns) that have been renamed accordingly for the binary-171 
classes data records (the other columns are omitted for better readability). Also, note that the dataset 172 
encompasses multi-class data records for different traffic categories. 173 
 174 

 175 

Figure 5. Importing NSL-KDD dataset: Samples from training dataset. 176 

One Hot Encoding of Categorical Features: This module is responsible for conversion of the 177 
categorical data records into numerical data records in order to be employed by the neural network. 178 
Therefore, three categorical features undergo through One Hot Encoding process (1-N encoding) [40]. 179 
These features are the protocol column, the service column, and the flag column. The class 180 
feature/column is left for samples labeling process.  181 

• For protocol feature, three different types of protocols are revealed from the dataset including: 182 
{TCP, UDP and ICMP}. The one hot encoding for this feature will replace the categorical data of 183 
‘Protocol column’ with the three numerical features as shown in Table 3. 184 

Table 3.  Scheme for Replacement of Categorical Data of Protocols 185 

 186 
• For service feature, 69 different services are revealed from the dataset such as: {'AOL', 'AUTH', 187 

'BGP', 'COURIER', 'CSNET_NS', …, 'UUCP_PATH', 'VMNET', 'WHOIS', 'X11', 'Z39_50'}. The one 188 
hot encoding for this feature will replace the categorical data of ‘Service column’ with the 69 189 
numerical features as shown in Table 4. 190 

Table 4.  Scheme for Replacement of Categorical Data of Services 191 

Protocol    

 

 

Equivalent 

One-Hot 

Encoding  

TCP_Protocol UDP_Protocol ICMP_Protocol 

TCP 1 0 0 

UDP 0 1 0 

ICMP 0 0 1 

Service   

 

 

Equivalent 

One-Hot 

Encoding  

AOL _ 

Service   

AUTH_   

Service   

BGP_ 

Service   
. . . 

Z39_50_ 

Service   

'AOL' 1 0 0 . . . 0 

'AUTH' 0 1 0 . . . 0 

'BGP' 0 0 1 . . . 0 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

 
⋱ 

. 

. 

. 

'Z39_50' 0 0 0 . . . 1 
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• For flags feature, 11 different flags are revealed from the dataset including: { 'OTH', 'REJ', 'RSTO', 192 
'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH' }. The one hot encoding for this feature will replace 193 
the categorical data of ‘Flag column’ with the 11 numerical features as shown in Table 5. 194 

Table 5.  Scheme for Replacement of Categorical Data of Flags 195 

 196 
Labeling the Target Feature: This stage concerns with the samples labeling using numerical (integer) 197 
labels for the target classes. Therefore, the categorical ‘Class Column’ will be converted to numerical 198 
classes according to the classification technique. In our system implementation, we are considering 199 
two forms of traffic classifications: Binary classification (1: Normal vs. 2: Attack) and Multi 200 
classification (1: Normal, 2: DoS, 3:Probe, 4: R2L, 5: U2R). After this stage, all data records are 201 
available into numerical format (i.e. no categorical data exist anymore). As a result of 1-N encoding 202 
and numerical labeling, we converted the dataset into 123 features and one data label. The results of 203 
this stage, i.e. encoded form of the dataset table of 2-class records, is provided in Figure 6. 204 
 205 

 206 
Figure 6. Encoded dataset with labeling: Sample from training set. 207 

Converting Tables to Double Matrix: At the end of dataset importing, encoding, and labeling 208 
processes, the dataset samples and targets should be provided to the neural network inputs of FL 209 
subsystem as a matrix of all input numerical samples. Therefore, encoded dataset tables have been 210 
converted to double matrix (148517 x 124). For instance, the following double matrix illustrates the 211 
first five rows of dataset matrix. 212 
 213 

 214 

Flag   

 

 

 

Equivalen

t One-Hot 

Encoding  

OTH_Flag   REJ_Flag   RSTO_Flag   . . . SF_Flag   

'OTH' 1 0 0 . . . 0 

'REJ' 0 1 0 . . . 0 

'RSTO' 0 0 1 . . . 0 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
⋱ 

. 

. 

. 

'SH' 0 0 0 . . . 1 
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Matrix Resizing with Padding Operation: This module is responsible to adjust the size of the dataset 215 
matrix to accommodate the input size for the FL subsystem. This was performed by resizing the matrix 216 
of the engineered dataset form 148517 x 124 to the new size of 148517 x 784, since the input size of every 217 
individual sample processed at FL subsystem is 28 x 28 (= 784). Thereafter, the new empty records of 218 
this matrix were padded with zero-padding technique [41]. To avoid any feature biasing in the samples 219 
of the dataset, the padded records were distributed equally around the data samples. Figure 7 illustrates 220 
an example of resizing with zero-padding operation used in this research. The new matrix size is 221 
composed of 148517 sample attack each with 784 features. 222 
 223 

 224 
Figure 7. Encoded dataset with labeling: Sample from training set. 225 

Matrix Normalization with Min-Max Norm: Data normalization is performed to get all the data 226 
points to be in the same range (scale) with equal significance for each of them. Otherwise, one of the 227 
great value features might completely dominate the others in the dataset. Thus, this module is 228 
responsible to normalize all integer numbers of the dataset matrix into a range between 0~1 using 229 
Min-Max Normalization (MX-Norm) [42]. MX-Norm is well-known method to normalize data as it 230 
is commonly used in machine learning applications. In this method, we scan all the values in every 231 
feature, and then, the minimum value is converted into a 0 and the maximum value is converted into 232 
a 1, while the other values are converted (normalized) into a fraction value from 0 to 1. The Min-Max 233 
normalization (𝑋𝑖

𝑛𝑜𝑟𝑚) for data record (𝑋𝑖 ) at the (𝑖𝑡ℎ) position of matrix (X) is defined as follows: 234 

              𝑋𝑖
𝑛𝑜𝑟𝑚 = [𝑋𝑖  −   𝑚𝑖𝑛(𝑋)] [𝑚𝑎𝑥(𝑋)  −  𝑚𝑖 𝑛(𝑋)⁄ ]                (1) 235 

Also, Figure 8 illustrates an example of integer data features normalized using min-max normalization 236 
(0 ~1). It can be clearly seen the effect of normalization as it ensures all features to be in the same scale. 237 
 238 

 239 
Figure 8. Illustration of Min-Max Normalization Impact over data with different scales. 240 
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Reshaping the Double Matrix: This module is responsible to create the attack samples for the 241 
𝐶𝑜𝑣𝑁𝑒𝑡 by reshaping the one-dimensional vectors of attack records into two-dimensional square 242 
matrices to accommodate the input size for the developed 𝐶𝑜𝑣𝑁𝑒𝑡 network. Accordingly, every one-243 
dimensional vector sample (1 x 784) will be reshaped into two-dimensional matrix (28 x 28) using a 244 
raw-by-raw reshaping fashion. This operation should generate a square matrix for each data sample 245 
as illustrated in Figure 9. 246 
  247 

 248 
Figure 9. Illustration of Re-Shaping Operation of Dataset Samples: 1-D vector is reshaped into 2-D matric. 249 

3.2 Implementation of Feature Learning (FL) Subsystem  250 

So far, the FE subsystem has been developed and the next step is to process the encoded input 251 
features using FL subsystem-based CNN. The deep learning network will to be trained with minimum 252 
classification error and thus maximum accuracy. Generally, CNN involves various layers including 253 
convolution, activation, pooling, flatten and others. Convolutional layers are the core component of 254 
CNN network and they are hierarchically assembled to generate a number of feature-maps which 255 
enable CNNs to learn complex features being a vital operation to recognize patterns in the classification 256 
and detection tasks. Therefore, the developed FL subsystem is responsible for an appropriate 𝐶𝑁𝑁 that 257 
can accept the encoded features from FE subsystem at the input layer and train on them with multiple 258 
hidden layers as well as update the training parameters before classifying the IoT traffic dataset as 259 
normal or anomaly (mutated). The implementation stages of this subsystem include: 260 

Feature Mapping with 2D- Convolution Operations Layer: This module is responsible to generate 261 
new matrices called feature maps that emphasizes the unique features of the original matrix [43]. These 262 
feature-maps are produced by convolving (multiply and accumulate) the original matrix (𝑛𝑖𝑛 𝑥 𝑛𝑖𝑛) 263 
using a number (𝑁) of (𝑘 𝑥 𝑘) convolution filters with padding size (𝑝) and stride size of (𝑠)  which 264 
yields the feature maps (𝑛𝑜𝑢𝑡  𝑥 𝑛𝑜𝑢𝑡). The size of the resultant feature maps can be evaluated as follows: 265 

𝑛𝑜𝑢𝑡  =       (𝑛𝑖𝑛   +   2 𝑝   −   𝑘)/𝑠    +    1                                                (2) 266 

In this research, we have applied 20 convolution filters (9𝑥9) over the 28 𝑥 28  input samples with 267 
(p=0, and 𝑠 = 1 ) which resulted in 20  feature map each (20x 20 ). Figure 10 illustrates our 268 
convolutional layer, where the input is 28×28 matrix and a filter of size 9×9, this defines a space of 269 
20×20 neurons in the first hidden layer. This is the case because we can only move the window 19 270 
neurons to the right and 19 neurons to the bottom before hitting the right (or bottom) border of the 271 
input matrix. Note that the filter moves forward 1 position away, both horizontally and vertically 272 
when a new row starts. Also note that, Convolution layer goes through a backpropagation process to 273 
determine the most accurate values of its trainable parameters (weights: k x k x  N = 9 x 9 x 20 ). 274 
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 275 

Figure 10. Implementation of convolution layer of our CNN. 276 

Feature Activation with ReLU Function: This module is responsible to activate all units of the feature 277 
maps with non-linear rectification function namely known as ReLU. ReLU function is MAX (X,0) that 278 
sets all negative values in the matrix X to zero while all other values are kept constant. The reason of 279 
using ReLU is that training a deep network with ReLU tended to converge much more quickly and 280 
reliably than training a deep network with other non-linear activation functions such sigmoid or tanh 281 
activation functions [44]. Figure 11 illustrates the rectification layer of the convolved maps. 282 
 283 

 284 

Figure 11. Implementation of ReLU activation Layer of our CNN. 285 

Down-Sampling with Pooling Operations Layer: This module is responsible to generate new 286 
matrices called pooled feature maps that reduces the spatial size of the rectified feature maps and 287 
thus reduces the number of parameters and computation complexity in the network [43]. This can be 288 
done by combining the neighboring points of a particular region of the matrix representation into a 289 
single value that represent the selected region. The adjacent points are typically selected from a fixed 290 
size-square matrix (determined according to the application). Among these points of the applied 291 
matrix, one value is nominated as the maximum or mean of the selected points. In this research, we 292 
have used the mean pooling technique to develop the pooling layer since it combines the contribution 293 
of neighboring points instead of only selecting the maximum point. To produce the pooled feature-294 
maps (𝐿𝑜𝑢𝑡  𝑥 𝐿𝑜𝑢𝑡), the pooling filter (𝑓 𝑥 𝑓) is independently applied over the rectified feature-maps 295 
(𝐿𝑖𝑛 𝑥 𝐿𝑖𝑛) with stride (𝑠) as follows: 296 

𝐿𝑜𝑢𝑡   =       (𝐿𝑖𝑛   −   𝑓)/𝑠    +    1                                                       (3) 297 

In this research, we have applied 20 pooling operation (2 𝑥 2) over the 20 𝑥 20  rectified feature-298 
maps with (𝑠 = 2) which resulted in 20 feature map each (10 𝑥 10). Figure 12 illustrates our pooling 299 
layer, where the input from previous layer is 20×20 x 20 and the mean pooling filter of size 2×2. Note 300 
that the stride value is 2 which means that the filter moves forward 2 positions away, both 301 
horizontally and vertically when a new row starts. Thus, we end up with pooled maps of 10×10 x 20. 302 
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 303 

Figure 12. Implementation of pooling layer of our CNN. 304 

3.3 Implementation of Detection and Classification (DC) Subsystem 305 

DC subsystem is responsible for providing traffic classification for the input traffic data into 306 
binary-class classification (2-Classes: normal vs. anomaly) or multi-class classification (5-Classes: 307 
Normal, DoS, Probe, R2L, U2R). This subsystem is composed of three consecutive stages as follows:  308 

Flattening Layer of Pooled Feature Maps: This module is responsible to linearize the output 309 
dimension of the convolutional/pooling layers network to create a single long feature vector [43]. This 310 
can be achieved by converting the 2D data of N- Pooled feature-maps into a 1-D array (or vector) to 311 
be inputted to the next layer, which is connected to the final classification model, called a dense or 312 
fully connected layer. Since flatten layer collapses the spatial dimensions of the input into the channel 313 
dimension (array), this means that if the input to the flatten layer  is (𝑁)  feature maps each with a 314 
dimension of (𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛) then the flattened output (𝐹𝑜𝑢𝑡) can be obtained by linear multiplication of 315 
the input dimensions by the number of maps, that’s it:  316 

𝐹𝑜𝑢𝑡 = 𝑁 𝑥 𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛                                                                                      (4) 317 

In this research, since we have 20 pooled feature maps (𝑁 =  20), each with dimension of 10 x 10 318 
(𝐹𝑖𝑛 = 10), then, our flatten layer comprise of 2000 nodes. Figure 13 illustrates the flattening layer 319 
development of our CNN. 320 

 321 

Figure 13. Implementation of flattening layer of our CNN. 322 
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Fully Connected Layer with ReLU Function: Fully Connected (FC) layers- as name implies- are those 323 
layers where all the inputs from one layer are connected to every activation unit of the next layer [43]. 324 
Commonly, FC layers are located as the last few layers of any CNN. Therefore, this module is 325 
responsible to compile the high level features extracted by previous layers (convolutional and 326 
pooling layers) into a reduced form of low level features in which they can be used by the classifier 327 
located at the output layer to provide classification probabilities. In this research, we have developed 328 
the FC layer with 200 neurons connected with 2000 nodes of the flattened (FL) layer which provide 329 
a layer complexity reduction by10: 1. As the inputs pass from the units of FL layer through the 330 
neurons of FC layer, their values are multiplied by the weights and then pass into the employed 331 
activation function  (normally ReLU function) just in the same way as in a the classical NN (i.e. 332 
shallow NN). Thereafter, they are forwarded to the output classification layer where each neuron 333 
expresses a class label. Note that, FC layer also goes through a backpropagation [43] process to 334 
determine the most accurate values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐿 𝑥 𝑊𝐹𝐶  = 2000 𝑥 200). 335 
Figure 14 illustrates the development for FC layer of our CNN. 336 

 337 

 338 

Figure 14. Implementation of flattening layer of our CNN. 339 

Output Layer with SoftMax Function: This module is responsible to provide/predict the correct 340 
classification for each evaluated sample record of the utilized IoT attacks-dataset. Here we are 341 
providing two types of classification including the binary-classifier (normal or anomaly) and the 342 
multi-classifier (normal, DoS, Probe, R2L, U2R). The data points received from the 200 neurons of the 343 
FC layer (𝐴1, 𝐴2, … , 𝐴200) are fully connected with the five neurons (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) of the output 344 
classes (𝑗 =  5 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) through the transposed weight connections (𝑊𝑗

𝑇). This is illustrated in Figure 345 

15 and can be achieved algebraically as follows: 346 

𝐶 = 𝑊𝑗
𝑇 . 𝐴 =  

[
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=
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𝐶3

𝐶4

𝐶5]
 
 
 
 

  𝑊ℎ𝑒𝑟𝑒: 𝑊1
𝑇 ,𝑊2

𝑇 ,𝑊3
𝑇 ,𝑊4

𝑇 ,𝑊5
𝑇 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 1 𝑥 200                   (5) 347 
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 348 
Figure 15. Implementation of the output layer with SoftMax of our CNN. 349 

Note that, the output layer also goes through a backpropagation process to determine the most accurate 350 
values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐶  𝑥 𝑊𝑜𝑢𝑡  = 200 𝑥 5). The last layer of the neural network 351 
is a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer which has similar number of nodes as the output layer. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 normalizes the 352 
output into a probability distribution on classes [43]. Specifically, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥  assigns numerical 353 
probability values for every class at the output layer where these probabilities should sum up to 1.0 354 
(following a probability distribution). Given an input a vector (𝑥) of (𝐾) real numbers and (𝑖) defines 355 
the index for the input values, then, SoftMax function σ: ℝk ⟼ ℝk is defined as follows: 356 

𝜎(𝑥)𝑖 = 𝑒𝑥𝑖 ∑ 𝑒𝑥𝑖𝐾
𝑗=1⁄     𝑓𝑜𝑟 𝑖 =  1, 2, 3, … , 𝐾 𝑎𝑛𝑑 𝑥 =  (𝑥1, 𝑥1, … , 𝑥𝐾) ∈ ℝ𝑘             (6) 357 

For example, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 might produce the following probabilities for an attack record: 358 
 359 

 
Multi-Classes Dataset  

Normal DoS Probe R2L U2R 

  Label  1 2  3 4 5 

  Probability  0.001 0.040 0.008 0.950 0.001 

3.4 System Integration 360 

In this section, we integrate all the aforementioned subsystems and modules by Putting-It-All-Together 361 
to come up with complete system architecture of our IoT-IDCS-CNN. Figure 16 illustrates the top view 362 

architecture of the integrated system as a feedforward 𝐶𝑜𝑣𝑁𝑒𝑡 network based IoT attack detection system.   363 

 364 
Figure 16. Top view architecture of the proposed IoT-IDCS-CNN. 365 
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According to the system architecture, after data preprocessing stages and using the 28 𝑥 28 366 
input matrix, we constructed 784 (= 28 𝑥 28) input nodes. To extract features of the input data, the 367 
network encompasses a deep convolutional layer involving a depth of 20 convolution filters of size 368 
(9 𝑥 9). Thereafter, the results of the convolutional layer pass via ReLU activation function which 369 
followed by the subsampling operation of the pooling layer. The pooling layer utilizes the average 370 
pooling method with 2 𝑥 2 submatrices. The pooled features are then flattened to 2000 nodes. The 371 
classification/detection neural network comprises the single hidden fully connected (FC) layer and 372 
the output classification layer. This FC layer comprises 200 nodes along with ReLU  activation 373 
function. Since our system requires the classification of the data into 5 classes, therefore, the output 374 
layer is implemented with 5 nodes with SoftMax activation function. The next table, Table 6, recaps 375 
the final integrated 𝐶𝑜𝑣𝑁𝑒𝑡 based system for IoT attacks detection.  376 

Table 6. Summary of the developed CovNet for IoT attacks detection/classification system. 377 

Layer Comment Trainable Parameters  

Preprocessing 148517 Sample each (28x28) - 

Input 28 x 28 nodes (784 nodes) - 

Convolution 20 convolution filters (9 x 9)+ReLU WCon(9 x 9 x 20) 

Pooling Mean pooling ( 2 x 2 ) - 

Flattening 2000 nodes - 

Fully Connected 200 nodes + ReLU WFCL(2000 x 200) 

Output 5 nodes (or 2 nodes) + SoftMax WOut(200 x 5) 
 378 

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided in Figure 379 
17 below. The input layer takes the encoded features generated from FE subsystem in order to be 380 
trained at the CNN which update the training parameters and generate the least cost/loss value 381 
(error) with optimal accuracy. The output layer employs the SoftMax classifier which is used to 382 
classify the data using two classification techniques include: binary classification technique which 383 
provides two categories (normal vs anomaly) and the multi-classification technique which provides 384 
five categories (normal, DoS attack, Probe attack, R2L attack, U2R attack). 385 

 386 
Figure 17. Comprehensive view of the Computation Process  IoT-IDCS-CNN. 387 
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4. Simulation Environment  388 

To implement, verify, and validate the proposed IoT attacks detection and classification system, 389 

the training and testing were performed on the NSL-KDD dataset involving the key attacks for IoT 390 

communication. The classifier model was determined to have either two classes (binary attack 391 

detection) or five classes (multi-attack classification). The proposed system was implemented in 392 

MATLAB 2019a. To evaluate the system performance, experiments were performed using a high-393 

performance computing platform utilizing the power of central processing unit (CPU) and graphical 394 

processing unit (GPU) with Multicore structure of NVIDIA GeForce® Quadro P2000 Graphic card. The 395 

specifications for the workstation used in development, validation & verification are provided in Table 7. 396 

Table 7. The system development and validation environment. 397 

System Unit Specifications  

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 Cores, @ 4900 MHz 

Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5GB Mem, 1024 CUDA Cores 

Cache Memory ($) 16 MB Cache @ 3192 MHz 

Main Memory (RAM) 32 GB DDR4 @ 2666MHz 

Operating System (OS) 64 bit, Windows 10 Pro. 

Hard Disk Drive (HD) SATA 1TB Drive + 256 GB SSD 

Besides, the experimental setup for training/testing model has been configured as follows: 398 

• Dataset Distribution: 399 

⎯ 85 % of the dataset used for training (i.e., ~ 128500 data sample records). 400 

⎯ 15 % of the dataset used for testing (i.e., ~    20000 data sample records). 401 

• 𝑪𝒐𝒗𝑵𝒆𝒕 Configurations: 402 

⎯ Input (Sample) Size = 28 x 28. ⎯ Number of Kernels = 20. 

⎯ Conv. Kernel Size = 9 x 9. ⎯ Mean Pooling filter size = 2 x 2. 

⎯ Activation function = ReLU. ⎯ Classifier function= SoftMax. 

⎯ Number of Hidden Layers = 5. ⎯ Number of Output classes = 2 or 5. 

• Model Optimization Configurations:  403 

⎯ Optimization Algorithm = Mini Batch Gradient Descent (find minimum loss). 404 

⎯ Mini_batch_size = 50, Momentum factor (β) =0.95, learning rate (α)=0.05. 405 

⎯ Momentum updates=  MomCon[9 x 9 x 20],  MomFCL[2000x200],  MomOut[200x5]. 406 

⎯ All Momentum updates were initialized using ZEROS matrices (zeros (size)). 407 

• Training Model Configurations: 408 

⎯ Training technique = back-propagation with momentum (to update weights). 

⎯ Trainable weights  =  WCon[9 x 9 x 20] ,  WFCL[2000x200],  WOut[200x5]. 

⎯ Backprop. Derivatives =  dWCon[9 x 9 x 20], d WFCL[2000x200],  dWOut[200x5]. 

⎯ The number of epochs = 100 and the number of iterations per epoch = ~2500. 

⎯ All trainable weights were initialized using random number generator (rand). 

⎯ All backpropagation derivatives were initialized using ZEROS matrices. 

• Weight update policy: 409 

― dWCon = dWCon Mini_batch_size⁄ ,  dWFCL =  dWFCL Mini_batch_size⁄ ,   dWOut = dWOut Mini_batch_size⁄  410 

― MomCon =  α ∗ dWCon +  β ∗ MomCon;            ➔        WCon= WCon+ MomCon 411 

― MomFCL =  α ∗ dWFCL +  β ∗ MomFCL;            ➔        WFCL= WFCL+ MomFCL 412 

― MomOut =  α ∗ dWOut +  β ∗ MomOut;          ➔        WOut= WOut+ MomOut 413 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1


Electronics 2020, 9, x FOR PEER REVIEW 16 of 24 

 

 

5. Results and Discussion 414 

Verification and validation (V&V) are essential activities and quality control factors that are 415 

performed independently to check the system compliance with requirements and specifications and 416 

that it fulfills its intended purpose. Typically, the verification process is defined as a number of 417 

activities used to examine the suitability of the system or component (i.e. are we building the product 418 

right). On the other hand, the validation process is defined as a number of activities used to examine 419 

the conformity of the system (or any of its elements) with its purpose and functions (i.e. are we 420 

building the right product). Note that while system validation is distinct from verification, however, 421 

the actions of both processes are integral and meant to be performed in coupling [45]. In this section, 422 

we provide a comprehensive verification and validation to check the system compliance with its 423 

intended objectives and purpose.  424 

5.1 System Evlaution and Verification   425 

To verify the effectiveness of the proposed system in compliance with its intended 426 

functionalities and missions, we have evaluated the system performance using the recommended 427 

testing dataset in terms of the classification accuracy, classification error percent and the classification 428 

time as follows: 429 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  (%) =   
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 ×  100%                (7) 430 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (%)           =    
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 ×  100%            (8) 431 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑚𝑠)        =    ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑖)

𝑁𝑜.  𝑅𝑢𝑛𝑠

𝑖 = 1

× 
1000 

𝑁𝑜.  𝑅𝑢𝑛𝑠 
                  (9) 432 

The plot for the overall testing classification accuracy and overall classification loss 433 

(classification error) comparing the performance of the binary-classifier (2-Classes) and the multi-434 

classifier (5-Classes) obtained during the validation process of NSL-KDD dataset are illustrated in 435 

Figure 18. According to the figure, at the beginning and after one complete pass (epoch) of testing 436 

process, both classifiers showed relatively low classification accuracy proportions with 85% and 437 

79%  registered for 2-Class classifier and 5-Class classifier, respectively. Thereafter, both 438 

classification accuracy curves begin to roughly be increasing in a stable tendency while testing 439 

epochs proceeds with faster and higher ceiling level obtained for the classification accuracy of 2-440 

Class classifier. After training the system for 100 epochs, the system was able to record an overall 441 

testing accuracy proportions of 99.3% and 98.2% for 2-Classs classifier and 5-Classs classifier, 442 

respectively, for the given testing dataset samples. Conversely, it can be clearly seen that both 443 

classifiers showed relatively high classification error proportions at the beginning of the testing 444 

process with 15% and 21% registered for 2-Class classifier and 5-Class classifier after one testing 445 

epoch, respectively. Thereafter, both classification error rates started to systematically decline 446 

while the binary classifier progresses with faster threshold achieving 0.7% of incorrect prediction 447 

proportion (classification error percentage). However, the classification error rate proportion for 448 

the multi-classifier has saturated with less than 2.0% of incorrect prediction. This range of 449 

classification error of both classifiers (0.7% - 1.8%) is permitted to avoid underfitting or overfitting 450 

from the training loss (~0.0%) and training accuracy (~100%) and thus provided high-accuracy 451 

classification performance.  452 
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 453 

Figure 18. Testing Detection/Classification Accuracy/Error Rate vs. Number of Epochs. 454 

Moreover, we have analyzed the time required to perform attack detection or classification for 455 
one IoT traffic sample. To obtain accurate and precise results, we have run the validation test for 500 456 
times and then computed the time statistics for detection and classification. Figure 19 shows the 457 
detection/classification time performance for the proposed model (either 2-Class or 5-class classifier). 458 
According to the figure, the time required to detect/classify one sample record ranges from (𝑀𝑖𝑛 ≈459 
 0.5662 𝑚𝑠) to  (𝑀𝑎𝑥 ≈ 2.099 𝑚𝑠) with average time of (𝑀𝑒𝑎𝑛 ≈  0.9439 𝑚𝑠) recorded for the 500 460 
simulation runs. This average time (𝑎𝑟𝑜𝑢𝑛𝑑 1 𝑚𝑠) is very useful for the system to run in dynamical 461 
environment such as the real time IDS applications. 462 

 463 

 464 

Figure 19. Run time performance of IoT Traffic classification over 500 simulation runs. 465 
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Furthermore, even though the classification accuracy measurement is the key significant factor 466 
used to evaluate the efficiency of the classification or detection system, we have evaluated the 467 
validation (testing) dataset using a confusion matrix with clear identification of True Positive (TP), 468 
True Negative (TN), False Positives (FP) and False Negatives (FN) analysis to provide more insight 469 
about the performance of the proposed. Figure 20 shows the general confusion matrix of our system, 470 
confusion Matrix results for 2-Class Classifier using the testing dataset, and the confusion matrix 471 
results for 5-Class Classifier using the testing dataset. 472 
 473 

   474 

Figure 20. Confusion Matrix Analysis for both classification models. 475 

Therefore, the confusion matrix parameters (i.e., TN, TP, FN, FP) can be used to compute some 476 

other performance evaluation metrics (has less importance than the accuracy metric) including: (a) 477 

the classification precision (detection rate) which is defined as the percentage of relevant instances 478 

(e.g. attacks) among the retrieved instances, (b) the classification recall (sensitivity) which is defined 479 

as the percentage of positive instances that are correctly labeled, (c) F1-Score which is defined as the 480 

average score involving  precision and recall (i.e., utilizes both false negative and false positive), and 481 

(d) False alarm rate which is defined as the percentage of misclassified normal instances detected by 482 

the system [48]. These metrics can be calculated in the following equations while Table 8 summarizes 483 

the results of the overall evaluation metrics for our proposed system. 484 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ×  100%                                                         (10) 485 

𝑅𝑒𝑐𝑎𝑙𝑙         =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ×  100%                                                         (11) 486 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 ×  100%                                (12) 487 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =   
𝐹𝑃

 𝑇𝑁 + 𝐹𝑃
 ×  100%                                        (13) 488 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1


Electronics 2020, 9, x FOR PEER REVIEW 19 of 24 

 

 

Table8. Summary of the overall evaluation metrics results 489 

 2-Class Classification 5-Class Classification 

Correctly predicted samples 19860 19640 

Incorrectly predicted samples 140 360 

Classification Accuracy 99.3% 98.2% 

Classification Error Rate 00.7% 01.8% 

Classification Precision  99.04% 98.27% 

Classification Recall  99.33% 98.23% 

F-Score Metric 99.18% 98.22% 

False Alarm Rate (FAR) 01.28% 1.73% 

Average Classification time 0.9246 0.9439 

5.2 System Validation and Benchmarking   490 

To validate the proficiency of proposed system in compliance with system purpose and 491 
specifications. To ensure high level of reliability of our system validation stage, we have conducted 492 
a 5-fold cross-validation process [47] that encompasses 5 different experiments for each classification 493 
model (total of 10 experiments) with different sets for training (~128,000 sample) and validation 494 
(20,000 sample) nominated for each experiments as demonstrated in Figure 21 which shows the 495 
distribution of the dataset across the folds for each conducted experiment. 496 

 497 
Figure 21. Scheme for 5-fold cross-validation of the proposed system . 498 

For each experiment, we have evaluated the validation accuracy and validation error for the 499 
classification system models (2-Classes/5-Classes). Thereafter, the results obtained from the five 500 
experiments are averaged to provide an overall validation accuracy and validation error values. 501 
Consequently, the proposed system provided high level of stability and reliability across the dataset 502 
folds which confirm the system robustness in the mission of attacks detection and classification for 503 
IoT communications. The results of the 5-fold cross-validation are provided in Table 9 below. 504 

Table 9. The results of 5-fold cross-validation of both classifiers (accuracy and error) 505 

 2-Class 5-Class 

 Accuracy Error Accuracy Error 

Experiment 1 0.9930 0.0070 0.9820 0.0180 

Experiment 2 0.9942 0.0058 0.9950 0.0050 

Experiment 3 0.98750 0.01250 0.9907 0.0093 

Experiment 4 0.99440 0.00560 0.9929 0.0071 

Experiment 5 0.99320 0.00680 0.9966 0.0034 

AVERAGE 99.25% 0.75% 99.14% 0.86% 
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Additionally, to gain more insight on the advantage of the proposed method, we benchmark 506 
IoT-IDS-CNN classification system by comparing its performance with other state-of-art machine 507 
learning based intrusion/attacks detection systems in terms in terms of classification accuracy metric. 508 
For better and more reasonable evaluation, we have selected the related researches that employs 509 
machine learning techniques for intrusion/attacks detection/classification for the NSL-KDD dataset 510 
(the same used by our system) to be compared with our proposed IoT-IDS-CNN. Therefore, we 511 
summarize the classification accuracy metric values for related state-of-art research in the following 512 
table, Table 10, in chronological order. Accordingly, it can be obviously noticed, that the proposed 513 
IoT-IDS-CNN model has improved the cyber-attacks classification accuracy of other ML-IDS models 514 
by an improvement factor (IF) of (~1.03 – 1.25). 515 

Table 10. Comparison with State-of-Art ML-IDS Employing Same Dataset. 516 

Research  Data Accuracy IF % 

K. Taher et. al. 2019 [16] NSL-KDD Dataset ≈ 83.7% 117.3%  

X. Gao et. al. 2019 [17] NSL-KDD Dataset ≈ 85.2%   115.2%  

S. Sapre, et. al. 2019 [18] NSL-KDD Dataset ≈ 78.5% 125.1%  

Chowdhry,  2017 [19] NSL-KDD Dataset ≈ 94.6% 103.8%  

Javaid et. al. 2016 [20] NSL-KDD Dataset ≈ 88.4%  112.3%  

Yadigar, et. al. 2016 [21] NSL-KDD Dataset ≈ 91.7% 108.0% 

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3%  ____ 

 517 

Finally, although the other existing related researches for machine learning based 518 
intrusion/attack detection/classification use different cyber-attacks datasets, learning policies, 519 
programming techniques, and computing platforms, we still can compare the classification system 520 
performance in terms of testing accuracy metrics and the level of complexity for the developed 521 
method. Therefore, for better readability, we summarize the classification accuracy metrics for the 522 
other related state-of-art research in the following table, Table 11, in chronological order. According 523 
to the comparison of the table, it can be seen that the proposed approach produces attractive results 524 
in terms of classification accuracy showing superiority over all other compared methods. 525 

Table 11. Comparison with State-of-Art ML-IDS Employing Different Dataset 526 

Research  Data Accuracy IF % 

S.Jan et.al 2019 [23] CICIDS dataset ≈ 93.0% 106.7%  

Roopak et. al. 2019 [24] CICIDS Dataset ≈ 92.0%  107.9%  

Ioannou  et. al 2019 [25] Simulated Dataset ≈ 81.0% 122.5%  

Brun et al, 2018 [26] Real-Time Dataset ≈ 75.0% 132.4%  

Thing et. al 2017 [27] AWID Dataset ≈ 98.0%  101.3%  

Shukla et. al 2017 [28] Simulated Dataset ≈ 75.0%   132.4%  

Hodo et. al 2016 [29] DoS Dataset ≈ 99.0% 100.3%  

Kolias et. al 2016 [30] AWID Dataset ≈ 92.0% 107.9%  

Y. Li et. al. 2015 [31] KDDCUP Dataset ≈ 92.0%  107.9%  

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____ 
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6. Conclusions and Future Directions 527 

An efficient and intelligent deep learning-based detection and classification system for 528 
cyberattacks in IoT communication networks (IoT-IDCS-CNN) was proposed, developed, tested, and 529 
validated in this paper. The proposed IoT-IDCS-CNN makes use of the high-performance computing 530 
employing the robust Nvidia GPUs (Quad-Cores, CUDA based) and the parallel processing 531 
employing the high-speed Intel CPUs (N-Cores, I9 based). For the purpose of system development, 532 
the proposed IoT-IDCS-CNN was decomposed into three subsystems including the Feature 533 
Engineering (FE) subsystem, the Feature Learning (FL) subsystem and the Detection and 534 
Classification (DC) subsystem. All subsystems were individually developed then, integrated, 535 
verified, and validated in this research. Because of the use of CNN based design, the proposed system 536 
was able to detect and classify the slightly mutated cyberattacks of IoT networks (represented 537 
collectively by NSL-KDD dataset which includes all the key attacks in the IoT computing) with 538 
detection accuracy of 99.3% of normal or anomaly traffic, and classify the IoT traffic into five 539 
categories with classification accuracy of 98.2%. Also, to ensure high level of reliability for system 540 
validation stage, we have conducted a 5-fold cross-validation process that encompasses 5 different 541 
experiments for each classification model. Moreover, and to provide more insight about the 542 
performance of the system, the proposed system was evaluated using the confusion matrix parameters 543 
(i.e., TN, TP, FN, FP) and computed some other performance evaluation metrics including: the 544 
classification precision, the classification recall, the F1-score of classification, and the false alarm rate. 545 
Eventually, the experimental evaluation results of IoT-IDCS-CNN system surpassed the results of many 546 
recent existing IDCS systems in the same area of study. Several recommendations for future research 547 
works may be considered to extend this study. These further recommendations include:  548 
a) Additional data collection by setting up a real-time IoT communication network with sufficient 549 

number of nodes and gateways, incorporating nodes diversity. A future researcher can develop 550 
a new software system that catch and investigate any data packet communicated through the IoT 551 
environment (in-going and out-going) and come up with attacks to update an existing dataset or 552 
to come up with a new dataset. Note that the packet collection and investigation should be 553 
performed for a sufficient amount of time to provide more insights on the type of packets (normal 554 
or anomaly) processed at IoT networking. This can provide different perceptions of the operation 555 
of the device such as the utilization of processing unit, memory unit and the communication  556 
traffic. The collected data can be then deemed as normal or anomaly based on their behavior. For 557 
example, the normal data is related to the imitation of usual actions of local IoT devices, such as 558 
surveillance cameras. The anomaly data concerns with botnets/probes actions such as the 559 
communication with command & control units. At the end, the data can be labeled accordingly. 560 

b) The proposed IoT-IDCS-CNN can be customized and used for intrusion detection incorporating 561 
other cyberattacks datasets such as AWID Dataset [49], CICIDS Dataset [50],  DDoS dataset [51], 562 
UNSW-NB15 dataset [52] and others. This can be achieved by customizing the preprocessing and 563 
output layers accordingly with fine-tuning for the hidden layers as well as the model parameters 564 
and hyperparameters to obtain the maximum classification accuracy and least error rate. 565 

c) The proposed IoT-IDCS-CNN can also be tuned and used to perform other real-life applications 566 
requiring image recognition and classification such as medical, biomedical, handwritten 567 
recognition applications and others. 568 

d) Finally, the proposed system can be employed by IoT gateway device to provide intrusion detection 569 
services for a network of IoT devices such as a network of ARM Cortex based nodes. More 570 
investigation on the proposed IoT-IDCS-CNN can be reported including power consumption, 571 
memory utilizations, communication, and computation complexity over low power IoT nodes with 572 
tiny system components (such as the battery-operated/energy aware devices). 573 

Author Contributions: Conceptualization, Q. A. Al-Haija; methodology, Q. A. Al-Haija; software, Q. A. Al-574 
Haija; validation, Q. A. Al-Haija, formal analysis, Q. A. Al-Haija and C.D. McCurry; investigation, Q. A. Al-Haija 575 
and S. Z. Sabatto; resources, C. D. McCurry and S. Z. Sabatto; data curation, Q. A. Al-Haija; writing—original 576 
draft preparation, Q. A. Al-Haija; writing—review and editing, C. D. McCurry and S. Z. Sabatto; visualization, 577 
Q. A. Al-Haija; supervision, S. Z. Sabatto; project administration, C. D. McCurry; funding acquisition, C. D. 578 
McCurry. All authors have read and agreed to the published version of the manuscript. 579 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1


Electronics 2020, 9, x FOR PEER REVIEW 22 of 24 

 

 

Funding: This research was funded under  the National Science Foundation Target Infusion Project (NSF-TIP) 580 
Program; titled “Targeted Infusion Project: Academic Enhancement of Electrical & Computer Engineering 581 
Program at Tennessee State University through IoT Research and Integrated Learning Environment” Award #: 582 
1912313, funding period 2019-2022 583 

Acknowledgments: Authors would like to thank the Department of Electrical and Computer Engineering in the 584 
College of Engineering at Tennessee State University for its administrative and technical support of this research. 585 

Conflicts of Interest: The authors declare no conflict of interest. 586 

References 587 

1. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog Computing for the Internet of Things: Security and 588 
Privacy Issues. IEEE Internet Computing, 2017, vol. 21(2), pp. 34-42. DOI: 10.1109/MIC.2017.37.   589 

2. F. Chiti, R. Fantacci, M. Loreti and R. Pugliese. Context-aware wireless mobile automatic computing and 590 
communications: research trends & emerging applications. IEEE Wireless Communications, 2016, vol. 23(2): 591 
pp. 86-92. DOI: 10.1109/MWC.2016.7462489 592 

3. N. Silva, M. Khan, and K. Han. Internet of Things: A Comprehensive Review of Enabling Technologies, 593 
Architecture, and Challenges. IETE Technical Review, 2017, vol. 35(2): pp. 1-16. DOI: 594 
10.1080/02564602.2016.1276416 595 

4. R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan. Internet of things (IoT) security: Current status, challenges 596 
and prospective measures. Proceedings of the 10th International Conference for Internet Technology and 597 
Secured Transactions (ICITST), London, 2015, pp. 336-341, DOI: 10.1109/ICITST.2015.7412116. 598 

5. Q. Jing, A.V. Vasilakos, J. Wan, et al. Security of the Internet of Things: perspectives and challenges. Wireless 599 
Network, Springer, 2014, Vol. 20, pp. 2481–2501. DOI: 10.1007/s11276-014-0761-7  600 

6. J. Zhou, Z. Cao, X. Dong and A. V. Vasilakos. Security and Privacy for Cloud-Based IoT: Challenges. IEEE 601 
Communications Magazine, 2017, Vol. 55(1), pp. 26-33. DOI: 10.1109/MCOM.2017.1600363CM. 602 

7. Z. Yan, P. Zhang, A.V. Vasilakos. A survey on trust management for Internet of Things. Journal of network 603 
and computer applications, 2014, Vol. 42, pp. 120-134. DOI: 10.1016/j.jnca.2014.01.014 604 

8. P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov and A. V. Vasilakos. The quest for privacy in 605 
the internet of things. IEEE Cloud Computing, 2016, Vol 3 (2), pp. 36-45,2016. DOI: 10.1109/MCC.2016.28. 606 

9. C. Lin, D. He, X. Huang, K.R. Choo, A.V. Vasilakos. BSeIn: A blockchain-based secure mutual authentication 607 
with fine-grained access control system for industry 4.0. Journal of Network and Computer Applications, 2018, 608 
Vol. 116, pp. 42-52. DOI: 10.1016/j.jnca.2018.05.005 609 

10. S. Jangirala, A. K. Das and A. V. Vasilakos. Designing Secure Lightweight Blockchain-Enabled RFID-Based 610 
Authentication Protocol for Supply Chains in 5G Mobile Edge Computing Environment. IEEE Transactions 611 
on Industrial Informatics, 2020, Vol. 16(11), pp. 7081-7093, DOI: 10.1109/TII.2019.2942389. 612 

11. M. Wazid, A. K. Das, V. BhBat, A.V. Vasilakos. LAM-CIoT: Lightweight authentication mechanism in cloud-613 
based IoT environment. Journal of Network and Computer Applications. 2020, Vol. 150. DOI: 614 
10.1016/j.jnca.2019.102496 615 

12. M. Wazid, A. K. Das, N. Kumar, A.V. Vasilakos and J. J. P. C. Rodrigues. Design and Analysis of Secure 616 
Lightweight Remote User Authentication and Key Agreement Scheme in Internet of Drones Deployment. 617 
IEEE Internet of Things Journal, 2019, Vol. 6 (2), pp. 3572-3584. DOI: 10.1109/JIOT.2018.2888821. 618 

13. M. Wazid, A.K. Das, N. Kumar, A.V. Vasilakos. Design of secure key management and user authentication 619 
scheme for fog computing services. Future Generation Computer Systems. 2019, Vol. 91, pp. 475-492. DOI: 620 
10.1016/j.future.2018.09.017. 621 

14. M. B. Mollah, M. A. K. Azad and A. Vasilakos. Secure Data Sharing and Searching at the Edge of Cloud-622 
Assisted Internet of Things. IEEE Cloud Computing, 2017, Vol. 4 (1), pp. 34-42. DOI: 10.1109/MCC.2017.9. 623 

15. Paar, J. Pelzl.  Understanding Cryptography. Springer-Verlag Berlin Heidelberg Publisher, Germany, 2010, 624 
pp. 1–87. DOI: 10.1007/978-3-642-04101-3. 625 

16. G. Caspi. Introducing Deep Learning: Boosting Cybersecurity with An Artificial Brain. Informa Tech, Dark 626 
Reading, Analytics, http://www.darkreading.com/analytics. 2016. 627 

17. K. A. Taher, B. M.Y. Jisan and M. M. Rahman. Network Intrusion Detection using Supervised Machine 628 
Learning Technique with Feature Selection. Proceedings of the International Conference on Robotics, 629 
Electrical and Signal Processing Techniques (ICREST), Bangladesh, 2019, pp. 643-646, DOI: 630 
10.1109/ICREST.2019.8644161. 631 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1


Electronics 2020, 9, x FOR PEER REVIEW 23 of 24 

 

 

18. X. Gao, C. Shan, C. Hu, Z. Niu and Z. Liu. An Adaptive Ensemble Machine Learning Model for Intrusion 632 
Detection. IEEE Access, 2019, vol. 7, pp. 82512-82521, DOI: 10.1109/ACCESS.2019.2923640. 633 

19. S. Sapre, P. Ahmadi, K. Islam. A Robust Comparison of the KDDCup99 and NSL-KDD IoT Network Intrusion 634 
Detection Datasets Through Various Machine Learning Algorithms. 2019. arXiv:1912.13204v1 [cs.LG]. 635 

20. M. Chowdhury, et. al. A few-shot deep learning approach for improved intrusion detection. Proceedings of 636 
the IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference 637 
(UEMCON), New York, 2017, pp. 456-462, 10.1109/UEMCON.2017.8249084. 638 

21. Q. Niyaz, W. Sun, A.Y Javaid, and M. Alam. Deep Learning Approach for Network Intrusion Detection 639 
System. Proceedings of the ACM 9th EAI International Conference on Bio-inspired Information and 640 
Communications Technologies, New York, 2016, pp. 1-6. DOI: 10.4108/eai.3-12-2015.2262516 641 

22. A. R. Yusof, et.al. Adaptive feature selection for denial of services (DoS) attack. Proceedings of the IEEE 642 
Conference on Application, Information and Network Security (AINS), Miri, 2017, pp. 81-84, 643 
10.1109/AINS.2017.8270429. 644 

23. S.U. Jan, S. Ahmed, V. Shakhov, I. Koo. Toward a Lightweight Intrusion Detection System for the Internet 645 
of Things. IEEE Access, 2019, Vol.7, pp. 42450- 42471. DOI: 10.1109/ACCESS.2019.2907965. 646 

24. M. Roopak, G. Yun Tian and J. Chambers. Deep Learning Models for Cyber Security in IoT Networks. 647 
Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 648 
USA, 2019, pp. 0452-0457. DOI: 10.1109/CCWC.2019.8666588. 649 

25. C. Ioannou and V. Vassiliou. Classifying Security Attacks in IoT Networks Using Supervised Learning. 650 
Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), 651 
Greece, 2019, pp. 652-658. DOI: 10.1109/DCOSS.2019.00118. 652 

26. O. Brun, Y. Yin, and E. Gelenbe. Deep learning with dense random neural network for detecting attacks 653 
against IoT-connected home environments. Procedia Computer. Sci., 2018, vol. 134, pp. 458–463. DOI: 654 
10.1016/j.procs.2018.07.183 655 

27. V. L. L. Thing. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning 656 
Approach. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), USA, 657 
2017, pp. 1-6. DOI: 10.1109/WCNC.2017.7925567. 658 

28. P. Shukla. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. 659 
Proceedings of the Intelligent Systems Conference (IntelliSys), London, 2017, pp. 234-240. doi: 660 
10.1109/IntelliSys.2017.8324298. 661 

29. E. Hodo et al. Threat analysis of IoT networks using artificial neural network intrusion detection system. 662 
Proceedings of the International Symposium of Network Computer Communication (ISNCC), 2016. pp. 1–663 
6. DOI: 10.1109/ISNCC.2016.7746067 664 

30. C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion detection in 802.11 networks: Empirical 665 
evaluation of threats and a public dataset. IEEE Communications Surveys and Tutorials, 2016. Vol. 18 (1),  pp. 666 
184-208. DOI: 10.1109/COMST.2015.2402161 667 

31. Y. Li, R. Ma, and R. Jiao. A hybrid malicious code detection method based on deep learning. International 668 
Journal of Security and Its Applications, 2015, Vol. 9, pp 205–216. DOI: 10.14257/ijseia.2015.9.5.21 669 

32. A. Ozgur and H. Erdem. A review of KDD99 dataset usage in intrusion detection and machine learning 670 
between 2010 and 2015. PeerJ Preprints, 2016, Vol. 4:e1954v1. DOI: 10.7287/PEERJ.PREPRINTS.1954 671 

33. S. Revathi, Dr. A. Malathi. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning 672 
Techniques for Intrusion Detection. International Journal of Engineering Research & Technology (IJERT), 2013, 673 
Vol. 2(2), pp. 1848- 1853. 674 

34. Canadian Institute for Cybersecurity (CIS). NSL-KDD Dataset. https://www.unb.ca/cic/datasets/nsl.html. 675 
Retrieved on. 2019. 676 

35. S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis and P. K. Chan. Cost-based modeling for fraud and 677 
intrusion detection: results from the JAM project. Proceedings of the DARPA Information Survivability 678 
Conference and Exposition. DISCEX'00, Hilton Head, SC, USA, 2000, pp. 130-144 vol.2, DOI: 679 
10.1109/DISCEX.2000.821515. 680 

36. C. Kolias, G. Kambourakis, A. Stavrou and J. Voas. DDoS in the IoT: Mirai and Other Botnets. Journal of 681 
Computers, 2017. vol. 50 (7), pp. 80-84, DOI: 10.1109/MC.2017.201. 682 

37. Ambedkar, V. Kishore Babu. Detection of Probe Attacks Using Machine Learning Techniques. International 683 
Journal of Research Studies in Computer Science and Engineering (IJRSCSE), 2015, Vol.2(3), pp. 25-29. 684 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1


Electronics 2020, 9, x FOR PEER REVIEW 24 of 24 

 

 

38. P. Pongle and G. Chavan. A survey: Attacks on RPL and 6LoWPAN in IoT. Proceedings of the International 685 
Conference on Pervasive Computing (ICPC), Pune, 2015. pp. 1-6. DOI: 10.1109/PERVASIVE.2015.7087034. 686 

39. Y. Bengio; A. Courville; P. Vincent. Representation Learning: A Review and New Perspectives. IEEE 687 
Transactions on Pattern Analysis and Machine Intelligence. 2013, Vol.35 (8): 1798–1828. arXiv:1206.5538. 688 
doi:10.1109/tpami.2013.50. PMID 23787338. 689 

40. D.J. Sarkar. Understanding Feature Engineering. Towards Data Science. Medium. 690 
https://towardsdatascience.com/tagged/tds-feature-engineering. 2018. 691 

41. J. Brownlee. A Gentle Introduction to Padding and Stride for Convolutional Neural Networks. Deep 692 
Learning for Computer Vision, Machine Learning Mastery. https://machinelearningmastery.com/padding-693 
and-stride-for-convolutional-neural-networks. 2019. 694 

42. Kalay. Preprocessing for Neural Networks - Normalization Techniques. Machine Learning, Github.IO. 695 
https://alfurka.github.io/2018-11-10-preprocessing-for-nn. 2018. 696 

43. Fei-Fei Li. CS231n: Convolutional Neural Networks for Visual Recognition. Computer Science, Stanford 697 
University, http://cs231n.stanford.edu. 2019. 698 

44. J. Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). Deep Learning for Computer Vision, 699 
Machine Learning Master. https://machinelearningmastery.com. 2019. 700 

45. INCOSE. INCOSE Systems Engineering Handbook, version 3.2.2. San Diego, CA, USA: International 701 
Council on Systems Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2, 2012. 702 

46. P. Gupta. Cross-Validation in Machine Learning. Medium: Towards data science. 703 
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f.  2017. 704 

47. S. Narkhede. Understanding Confusion Matrix. Medium: Towards data science. 705 
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62. 2018. 706 

48. Phill Kim. MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence.  707 
Apress, 2017. 708 

49. C. Kolias, G. Kambourakis, S. Gritzalis. Attacks and countermeasures on 802.16: Analysis & assessment. 709 
IEEE Communications Surveys Tuts., 2013, Vol. 15(1), pp. 487–514. DOI: 10.1109/SURV.2012.021312.00138. 710 

50. CICIDS Dataset. DS-0917: Intrusion Detection Evaluation Dataset. 711 
https://www.impactcybertrust.org/dataset_view?idDataset=917 712 

51. DDoS Dataset. Distributed Denial of Service (DDoS) attack Evaluation Dataset. 713 
https://www.unb.ca/cic/datasets/ddos-2019.html 714 

52. N. Moustafa and J. Slay. UNSW-NB15: a comprehensive data set for network intrusion detection systems 715 
(UNSW-NB15 network data set). Proceedings of the Military Communications and Information Systems 716 
Conference (MilCIS), Canberra, ACT, 2015, pp. 1-6, DOI: 10.1109/MilCIS.2015.7348942. 717 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 718 
affiliations. 719 

53.  

54. © 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 720 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 November 2020                   doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

