

Electronics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics

Article 1

An efficient deep learning-based detection and 2

classification system for cyber-attacks in IoT 3

communication networks 4

Qasem Abu Al-Haija *, Charles D. McCurry and Saleh Zein-Sabatto 5

Department of Electrical and Computer Engineering, Tennessee State University, Nashville, TN 37209. 6
* Correspondence: Qabualha@Tnstate.edu 7

Received: date; Accepted: date; Published: date 8

Abstract: With the rapid expansion of intelligent resource-constrained devices and high-speed 9
communication technologies, Internet of Things (IoT) has earned a wide recognition as the primary 10
standard for low-power lossy networks (LLNs). Nevertheless, IoT infrastructures are vulnerable to 11
cyber-attacks due to the constraints in computation, storage, and communication capacity of the 12
endpoint devices. From one side, the majority of newly developed cyber-attacks are formed by 13
slightly mutating formerly established cyber-attacks to produce a new attack tending to be treated 14
as a normal traffic through the IoT network. From the other side, the influence of coupling the deep 15
learning techniques with cybersecurity field has become a recent inclination of many security 16
applications due to their impressive performance. In this paper, we provide a comprehensive 17
development of a new intelligent and autonomous deep learning-based detection and classification 18
system for cyber-attacks in IoT communication networks leveraging the power of convolutional 19
neural networks, abbreviated as (IoT-IDCS-CNN). The proposed IoT-IDCS-CNN makes use of the 20
high-performance computing employing the robust CUDA based Nvidia GPUs and the parallel 21
processing employing the high-speed I9-Cores based Intel CPUs. In particular, the proposed system 22
is composed of three subsystems: Feature Engineering subsystem, Feature Learning subsystem and 23
Traffic classification subsystem. All subsystems are developed, verified, integrated, and validated 24
in this research. To evaluate the developed system, we employed the NSL-KDD dataset which 25
includes all the key attacks in the IoT computing. The simulation results demonstrated more than 26
99.3% and 98.2% of cyber-attacks’ classification accuracy for the binary-class classifier (normal vs 27
anomaly) and the multi-class classifier (five categories) respectively. The proposed system was 28
validated using K-fold cross-validation method and was evaluated using the confusion matrix 29
parameters (i.e., TN, TP, FN, FP) along with other classification performance metrics including 30
precision, recall, F1-score, and false alarm rate. The test and evaluation results of the IoT-IDCS-CNN 31
system outperformed many recent machine-learning based IDCS systems in the same area of study. 32

Keywords: Deep Learning, Convolutional Neural Network, IoT Networks, Cyber-attack Detection, 33
Classification. 34

 35

1. Introduction 36

The Internet of Things (IoT) is comprised of a collection of heterogeneous resource-constrained 37
objects interconnected via different network architectures such as wireless sensor networks (WSN) 38
[1]. These objects or “things” are usually composed of sensors, actuators, and processors with the 39
ability to communicate with each other to achieve common goals/applications through unique 40
identifiers with respect to the Internet Protocol (IP) [2, 3]. Current IoT applications include smart 41
buildings; telecommunications; medical and pharmaceutical; aerospace and aviation; environmental 42
phenomenon monitoring; agriculture; industrial and manufacturing processes etc. The basic IoT 43

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202011.0508.v1
http://creativecommons.org/licenses/by/4.0/

Electronics 2020, 9, x FOR PEER REVIEW 2 of 24

layered architecture is shown in Figure 1. It has three layers: the perception layer (consist of edge-44
devices that interact with the environment to identify certain physical factors or other smart objects 45
in the environment), the network layer (consists of a number of networking-devices that discover and 46
connect devices over the IoT network to transmit and receive the sensed data), and the application 47
layer (consists of various IoT applications/services that are responsible for data processing and 48
storage). Indeed, most cyber-attacks target the application and network layers of the IoT system. 49

 50

 51

Figure 1. IoT Layered Architecture Considering the 3-layer Scheme of IoT [4]. 52

IoT is a promising profound technology with tremendous expansion and effect. IoT 53

infrastructures are vulnerable to cyber-attacks in that within the network, simple endpoint devices 54

(e.g. thermostat, home appliance, etc.) are more constrained in computation, storage, and network 55

capacity compared with the more complex endpoint devices (e.g., smartphones, laptops, etc.) that 56

may reside within the IoT infrastructure [5, 6]. In fact, the privacy, authentication, key management, 57

trust management and the cyber-attacks identification are among the significant challenges of the 58

Internet of Things (IoT) and cloud based IoT [7, 8]. A number of studies were directed to address the 59

security issues and challenges of IoT and cloud computing using block chain techniques [9, 10], light-60

weight authentication process [11,12], and the secure data sharing and searching of cloud based IoT 61

[13, 14]. Once the IoT infrastructure is breached, hackers have the ability to distribute the IoT data to 62

unauthorized parties and can manipulate the accuracy and consistency of IoT data over its entire life 63

cycle [15]. Therefore, such cyber-attacks need to be addressed for safe IoT utilization. Consequently, 64

vast efforts to handle the security issues in the IoT model have been made in the recent years. Many 65

of the new cybersecurity technologies were developed by coupling the fields of machine learning 66

with cybersecurity. It should be noted that, the majority of IoT new attacks are slight deviations (i.e. 67

mutations) of earlier known cyberattacks [16]. Such slight mutations of these IoT attacks have been 68

demonstrated to be difficult to identify/classify using traditional machine learning techniques. 69

Promising state-of-art research has been conducted for cybersecurity using deep neural networks [17-70

22]. Table 1 summarizes research of conventional and traditional machine learning approaches to 71

solve cybersecurity issues. 72

In this paper, a new intelligent system that can detect mutations of common IoT cyberattacks 73

using non-traditional machine learning techniques exploiting the power of Nvidia-Quad GPUs is 74

proposed. The proposed system employs the convolutional neural network (CNN) along its 75

associated machine learning algorithms to classify the NSL-KDD dataset records (we denote our 76

system using the acronym IoT-IDCS-CNN). The NSL-KDD dataset stores non-redundant records of 77

all the key attacks of IoT computing with different levels of difficulties. Specifically, the main 78

contributions of this paper can be summarized as follows: 79

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 3 of 24

• We provide a comprehensive efficient detection/classification model that can classify the IoT 80
traffic records of NSL-KDD dataset into two (Binary-Classifier) or five (Multi-Classifier) classes. 81
Also, we present detailed preprocessing operations for the collected dataset records prior to its 82
use with deep learning algorithms. 83

• We provide an illustrated description of our system modules and the machine learning 84
algorithms. Furthermore, we demonstrate a comprehensive view of the computation process of 85
our IoT-IDCS-CNN. 86

• We provide an inclusive development, validation environment and configurations along with an 87
extensive simulation results to gain insight into the proposed model and the solution approach. 88
This includes simulation results related to the classification accuracy, classification time and 89
classification error rate for the system validation of both detection (Binary-Classifier) and 90
classification (Multi-Classifier). 91

• We provide a comprehensive performance analysis to gain more insight about the system 92
efficiency such as the confusion matrix to analyze the attacks’ detection True/False Positives and 93
the True/False Negatives and other evaluation metrics including Precision, Recall, F-Score Metric 94
and, False Alarm Rate. 95

• We benchmark study of our findings with other related state-of-art works employing the same 96
dataset as well as the comparison with other State-of-Art machine learning based intrusion 97
detection systems (ML-IDS) employing different dataset. 98

Table 1. Summary of related research for machine learning based IoT security. 99

Research Method Description

K. Taher et. al.
2019 [16]

Artificial Neural Network
(ANN) with Support Vector
Machine (SVM) Classifier

3-classes, with 2 hidden layers and used only
35-features

X. Gao et. al.
2019 [17]

Deep Neural Network (DNN)
with ensemble voting

5-classes, 3-methods: Decision Tree, Random
Forest, K-Nearest

S. Sapre, et. al.
2019 [18]

Different ML-IDS techniques 5-classes, with 2 hidden layers and Naïve
Bayes Classifier

S. Jan et.al

2019 [23]

ML-IDS based SVM System Only binary classification, used only 2 or 3
simple features

Roopak et. al.
2019 [24]

Deep Neural Network (DNN) Small representative sample, does not reflect a
realistic accuracy in actual IoT environments

Ioannou et. al
2019 [25]

ML-IDS based SVM System Only binary classification, used anonymous
sensor topology

Brun et. al,

2018 [26]

Deep Neural Network (DNN) System validation was poorly accomplished on
a testbed comprising of only three devices and
naive attacks were used to validate the system
using a real-time date with 50,000 samples

Thing et. al
2017 [27]

Deep Auto-Encoder (DAE) But not realistic, very small dataset (no DDos,
no Probe), 3HL (256/128/64), need significant
time for FE.

Shukla et. al
2017 [28]

Neural Network Hybrid
Learning (K_Means + Decision
Trees)

Only binary classification, small scale
simulated network (16 nodes) with different
topologies

Hodo et. al
2016 [29]

Multi-Perceptron Layer (MLP)
Neural Network

But not realistic, small dataset, binary classes

Kolias et. al
2016 [30]

Different ML-IDS Techniques Very time-consuming manual feature
selection, 4-classes

Y. Li et. al.

2015 [31]

Hybrid NN (Autoencoder +
Deep Belief NN)

Redundant dataset needs to be up to date to
reflect more rationale results.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 4 of 24

The rest of this paper is organized as follows: Section 2 introduces and justifies the dataset of IoT 100
cyberattacks employed by our system. Section 3 provides details of the proposed system architecture, 101
development, and detailed design steps. Section 4 presents the simulation environment for system 102
implementation, testing and validation. Section 5 discusses the details about experimental evaluation, 103
comparison, and discussion. Finally, Section 6 concludes the findings of the research. 104

2. Dataset of Cyberattacks 105

Data collection involves the gathering of information on variables of interest (VOS) within 106
a dataset in a documented organized manner that allows one to answer the defined research 107
enquiries, examine the stated hypotheses, and assess the output consequences. In this research, 108
the variables of interest are concerned with the intrusions/attacks data records in IoT computing 109
environments. Two global datasets of IoT attacks can be investigated including KDD'99 dataset 110
and NSL-KDD dataset. Indeed, KDD'99 has been developed by DARPA intrusion detection 111
evaluation program to build a network IDS able of differentiating amongst “bad” and “good” 112
connections [32]. This dataset includes a standard list of data to be inspected, which contains a 113
broad range of cyber-attacks modeled in a military communication platform. However, one of 114
the most important issues of this dataset is the enormous number of redundant data-samples in 115
the training and testing datasets. Such redundancy affects the accuracy of c lassifier which will 116
have a biased towards more frequent records [32]. 117

Lately, KDD’99 has been re-investigated and updated to include more up-to-date and non-118
redundant attack records with different levels of difficulties through the newer version called NSL-119
KDD [33]. NSL-KDD [34] is a reduced version of the original KDD’99 dataset [35] and consists of the 120
same features as KDD’99. However, NSL-KDD includes more up-to-date and non-redundant attack 121
records with different levels of difficulties. Figure 2 shows sample records of original KDD-NSL 122
training dataset in CSV format but read by notepad in TXT format (prior to any processing technique). 123
In this research, the NSL-KDD dataset is employed for many reasons including: 124
(a) It can be efficiently imported, read, preprocessed, encoded, and programed to produce two- or 125

multi- class classification for IoT Cyber-attacks. 126
(b) It covers all key attacks of IoT computing including: Denial-of-Service (DoS) [36], Probe (side 127

channel) [37], Root to Local (R2L) [38], User to Root (U2R) [38]. 128
(c) It is obtainable as TXT/CSV file type consisting of a reasonable number of non-redundant records 129

in the training and test sets. This improves the classification process by avoiding the bias towards 130
more frequent records. 131

(d) It correlates to high-level IoT traffic structures and cyberattacks as well as it can be customized, 132
expanded, and regenerated [34]. 133

 134

 135

Figure 2. Sample records of KDD-NSL training dataset. 136

NSL-KDD dataset has been thoroughly developed with high-level diverse interpretations of the 137
training data covering normal and abnormal IoT network traffic data. The normal data samples 138
represent the legitimate data packets processed by the IoT network. The abnormal data samples 139

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 5 of 24

represent mutated data packets (i.e., attacks) achieved by slight mutations in the previously 140
developed attacks such as the small changes in the network packet header configurations. The 141
original dataset is available in two classification forms: two-class traffic dataset with binary labels and 142
multi-class traffic data set including attack-type labels and difficulty level. In both cases, it comprises 143
148,517 samples each with 43 attributes such as duration, protocol, service, and others [39]. The 144
statistics of traffic distribution of NSL-KDD dataset is summarized in Table 2. 145

Table 2. Statistics of traffic distribution of NSL-KDD dataset [35]. 146

Two-Classes Dataset Multi-Classes Dataset

Normal Attack Normal DoS Probe R2L U2R

Training 67343 58630 67343 45927 11656 995 52

Testing 9711 12833 9711 7458 2754 2421 200

Total 77,054 71,463 77,054 53,385 14,410 3,416 252

3. System Modeling 147

In this research, the proposed system is partitioned into distinct subsystems each of which is 148
implemented with several modules. Specifically, the system is composed of three subsystems 149
including: Feature Engineering (FE), Feature Learning (FL), and Detection and Classification (DC), 150
as illustrated in Figure 3. 151

 152

Figure 3. The three main subsystems composing the proposed system. 153

3.1. Implementation of Feature Engineering (FE) Subsystem 154

This subsystem is responsible for conversion of raw IoT traffic data records of NSL-KDD dataset 155
into a matrix of labeled features that can be fed and trained by the neural network’s part of the FL 156
subsystem. The implementation stages of this subsystem include: 157

Importing NSL-KDD dataset: In this stage, the collected dataset has been imported/read using 158
MATLAB in a tabulated format instead of raw data in the original dataset text files. All data 159
columns are assigned virtual names based on the nature of data in the cells. The imported dataset 160
includes 43 different features/columns. Figure 4 shows a sample of importing the NSL-KDD dataset 161
using table datatype. The illustrated sample shows only the first ten records along with five 162
features. All data columns were assigned virtual names based on the nature of data in the cells . 163
 164

 165

Figure 4. Importing NSL-KDD dataset: Samples from training dataset. 166

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 6 of 24

Renaming Categorical Features: Four of imported 43 features are categorical features that need to be 167
renamed prior the data encoding and sample labeling processes. These features are the target 168
protocol, the required service, the service flag, and the record category (e.g. normal or attack). 169
Therefore, the four categorical columns have been renamed accordingly in this stage. Figure 5 170
illustrates the four categorical features (columns) that have been renamed accordingly for the binary-171
classes data records (the other columns are omitted for better readability). Also, note that the dataset 172
encompasses multi-class data records for different traffic categories. 173
 174

 175

Figure 5. Importing NSL-KDD dataset: Samples from training dataset. 176

One Hot Encoding of Categorical Features: This module is responsible for conversion of the 177
categorical data records into numerical data records in order to be employed by the neural network. 178
Therefore, three categorical features undergo through One Hot Encoding process (1-N encoding) [40]. 179
These features are the protocol column, the service column, and the flag column. The class 180
feature/column is left for samples labeling process. 181

• For protocol feature, three different types of protocols are revealed from the dataset including: 182
{TCP, UDP and ICMP}. The one hot encoding for this feature will replace the categorical data of 183
‘Protocol column’ with the three numerical features as shown in Table 3. 184

Table 3. Scheme for Replacement of Categorical Data of Protocols 185

 186
• For service feature, 69 different services are revealed from the dataset such as: {'AOL', 'AUTH', 187

'BGP', 'COURIER', 'CSNET_NS', …, 'UUCP_PATH', 'VMNET', 'WHOIS', 'X11', 'Z39_50'}. The one 188
hot encoding for this feature will replace the categorical data of ‘Service column’ with the 69 189
numerical features as shown in Table 4. 190

Table 4. Scheme for Replacement of Categorical Data of Services 191

Protocol

Equivalent

One-Hot

Encoding

TCP_Protocol UDP_Protocol ICMP_Protocol

TCP 1 0 0

UDP 0 1 0

ICMP 0 0 1

Service

Equivalent

One-Hot

Encoding

AOL _

Service

AUTH_

Service

BGP_

Service
. . .

Z39_50_

Service

'AOL' 1 0 0 . . . 0

'AUTH' 0 1 0 . . . 0

'BGP' 0 0 1 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

⋱

.

.

.

'Z39_50' 0 0 0 . . . 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 7 of 24

• For flags feature, 11 different flags are revealed from the dataset including: { 'OTH', 'REJ', 'RSTO', 192
'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH' }. The one hot encoding for this feature will replace 193
the categorical data of ‘Flag column’ with the 11 numerical features as shown in Table 5. 194

Table 5. Scheme for Replacement of Categorical Data of Flags 195

 196
Labeling the Target Feature: This stage concerns with the samples labeling using numerical (integer) 197
labels for the target classes. Therefore, the categorical ‘Class Column’ will be converted to numerical 198
classes according to the classification technique. In our system implementation, we are considering 199
two forms of traffic classifications: Binary classification (1: Normal vs. 2: Attack) and Multi 200
classification (1: Normal, 2: DoS, 3:Probe, 4: R2L, 5: U2R). After this stage, all data records are 201
available into numerical format (i.e. no categorical data exist anymore). As a result of 1-N encoding 202
and numerical labeling, we converted the dataset into 123 features and one data label. The results of 203
this stage, i.e. encoded form of the dataset table of 2-class records, is provided in Figure 6. 204
 205

 206
Figure 6. Encoded dataset with labeling: Sample from training set. 207

Converting Tables to Double Matrix: At the end of dataset importing, encoding, and labeling 208
processes, the dataset samples and targets should be provided to the neural network inputs of FL 209
subsystem as a matrix of all input numerical samples. Therefore, encoded dataset tables have been 210
converted to double matrix (148517 x 124). For instance, the following double matrix illustrates the 211
first five rows of dataset matrix. 212
 213

 214

Flag

Equivalen

t One-Hot

Encoding

OTH_Flag REJ_Flag RSTO_Flag . . . SF_Flag

'OTH' 1 0 0 . . . 0

'REJ' 0 1 0 . . . 0

'RSTO' 0 0 1 . . . 0
.
.
.

.

.

.

.

.

.

.

.

.
⋱

.

.

.

'SH' 0 0 0 . . . 1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 8 of 24

Matrix Resizing with Padding Operation: This module is responsible to adjust the size of the dataset 215
matrix to accommodate the input size for the FL subsystem. This was performed by resizing the matrix 216
of the engineered dataset form 148517 x 124 to the new size of 148517 x 784, since the input size of every 217
individual sample processed at FL subsystem is 28 x 28 (= 784). Thereafter, the new empty records of 218
this matrix were padded with zero-padding technique [41]. To avoid any feature biasing in the samples 219
of the dataset, the padded records were distributed equally around the data samples. Figure 7 illustrates 220
an example of resizing with zero-padding operation used in this research. The new matrix size is 221
composed of 148517 sample attack each with 784 features. 222
 223

 224
Figure 7. Encoded dataset with labeling: Sample from training set. 225

Matrix Normalization with Min-Max Norm: Data normalization is performed to get all the data 226
points to be in the same range (scale) with equal significance for each of them. Otherwise, one of the 227
great value features might completely dominate the others in the dataset. Thus, this module is 228
responsible to normalize all integer numbers of the dataset matrix into a range between 0~1 using 229
Min-Max Normalization (MX-Norm) [42]. MX-Norm is well-known method to normalize data as it 230
is commonly used in machine learning applications. In this method, we scan all the values in every 231
feature, and then, the minimum value is converted into a 0 and the maximum value is converted into 232
a 1, while the other values are converted (normalized) into a fraction value from 0 to 1. The Min-Max 233
normalization (𝑋𝑖

𝑛𝑜𝑟𝑚) for data record (𝑋𝑖) at the (𝑖𝑡ℎ) position of matrix (X) is defined as follows: 234

 𝑋𝑖
𝑛𝑜𝑟𝑚 = [𝑋𝑖 − 𝑚𝑖𝑛(𝑋)] [𝑚𝑎𝑥(𝑋) − 𝑚𝑖 𝑛(𝑋)⁄] (1) 235

Also, Figure 8 illustrates an example of integer data features normalized using min-max normalization 236
(0 ~1). It can be clearly seen the effect of normalization as it ensures all features to be in the same scale. 237
 238

 239
Figure 8. Illustration of Min-Max Normalization Impact over data with different scales. 240

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 9 of 24

Reshaping the Double Matrix: This module is responsible to create the attack samples for the 241
𝐶𝑜𝑣𝑁𝑒𝑡 by reshaping the one-dimensional vectors of attack records into two-dimensional square 242
matrices to accommodate the input size for the developed 𝐶𝑜𝑣𝑁𝑒𝑡 network. Accordingly, every one-243
dimensional vector sample (1 x 784) will be reshaped into two-dimensional matrix (28 x 28) using a 244
raw-by-raw reshaping fashion. This operation should generate a square matrix for each data sample 245
as illustrated in Figure 9. 246
 247

 248
Figure 9. Illustration of Re-Shaping Operation of Dataset Samples: 1-D vector is reshaped into 2-D matric. 249

3.2 Implementation of Feature Learning (FL) Subsystem 250

So far, the FE subsystem has been developed and the next step is to process the encoded input 251
features using FL subsystem-based CNN. The deep learning network will to be trained with minimum 252
classification error and thus maximum accuracy. Generally, CNN involves various layers including 253
convolution, activation, pooling, flatten and others. Convolutional layers are the core component of 254
CNN network and they are hierarchically assembled to generate a number of feature-maps which 255
enable CNNs to learn complex features being a vital operation to recognize patterns in the classification 256
and detection tasks. Therefore, the developed FL subsystem is responsible for an appropriate 𝐶𝑁𝑁 that 257
can accept the encoded features from FE subsystem at the input layer and train on them with multiple 258
hidden layers as well as update the training parameters before classifying the IoT traffic dataset as 259
normal or anomaly (mutated). The implementation stages of this subsystem include: 260

Feature Mapping with 2D- Convolution Operations Layer: This module is responsible to generate 261
new matrices called feature maps that emphasizes the unique features of the original matrix [43]. These 262
feature-maps are produced by convolving (multiply and accumulate) the original matrix (𝑛𝑖𝑛 𝑥 𝑛𝑖𝑛) 263
using a number (𝑁) of (𝑘 𝑥 𝑘) convolution filters with padding size (𝑝) and stride size of (𝑠) which 264
yields the feature maps (𝑛𝑜𝑢𝑡 𝑥 𝑛𝑜𝑢𝑡). The size of the resultant feature maps can be evaluated as follows: 265

𝑛𝑜𝑢𝑡 = (𝑛𝑖𝑛 + 2 𝑝 − 𝑘)/𝑠 + 1 (2) 266

In this research, we have applied 20 convolution filters (9𝑥9) over the 28 𝑥 28 input samples with 267
(p=0, and 𝑠 = 1) which resulted in 20 feature map each (20x 20). Figure 10 illustrates our 268
convolutional layer, where the input is 28×28 matrix and a filter of size 9×9, this defines a space of 269
20×20 neurons in the first hidden layer. This is the case because we can only move the window 19 270
neurons to the right and 19 neurons to the bottom before hitting the right (or bottom) border of the 271
input matrix. Note that the filter moves forward 1 position away, both horizontally and vertically 272
when a new row starts. Also note that, Convolution layer goes through a backpropagation process to 273
determine the most accurate values of its trainable parameters (weights: k x k x N = 9 x 9 x 20). 274

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 10 of 24

 275

Figure 10. Implementation of convolution layer of our CNN. 276

Feature Activation with ReLU Function: This module is responsible to activate all units of the feature 277
maps with non-linear rectification function namely known as ReLU. ReLU function is MAX (X,0) that 278
sets all negative values in the matrix X to zero while all other values are kept constant. The reason of 279
using ReLU is that training a deep network with ReLU tended to converge much more quickly and 280
reliably than training a deep network with other non-linear activation functions such sigmoid or tanh 281
activation functions [44]. Figure 11 illustrates the rectification layer of the convolved maps. 282
 283

 284

Figure 11. Implementation of ReLU activation Layer of our CNN. 285

Down-Sampling with Pooling Operations Layer: This module is responsible to generate new 286
matrices called pooled feature maps that reduces the spatial size of the rectified feature maps and 287
thus reduces the number of parameters and computation complexity in the network [43]. This can be 288
done by combining the neighboring points of a particular region of the matrix representation into a 289
single value that represent the selected region. The adjacent points are typically selected from a fixed 290
size-square matrix (determined according to the application). Among these points of the applied 291
matrix, one value is nominated as the maximum or mean of the selected points. In this research, we 292
have used the mean pooling technique to develop the pooling layer since it combines the contribution 293
of neighboring points instead of only selecting the maximum point. To produce the pooled feature-294
maps (𝐿𝑜𝑢𝑡 𝑥 𝐿𝑜𝑢𝑡), the pooling filter (𝑓 𝑥 𝑓) is independently applied over the rectified feature-maps 295
(𝐿𝑖𝑛 𝑥 𝐿𝑖𝑛) with stride (𝑠) as follows: 296

𝐿𝑜𝑢𝑡 = (𝐿𝑖𝑛 − 𝑓)/𝑠 + 1 (3) 297

In this research, we have applied 20 pooling operation (2 𝑥 2) over the 20 𝑥 20 rectified feature-298
maps with (𝑠 = 2) which resulted in 20 feature map each (10 𝑥 10). Figure 12 illustrates our pooling 299
layer, where the input from previous layer is 20×20 x 20 and the mean pooling filter of size 2×2. Note 300
that the stride value is 2 which means that the filter moves forward 2 positions away, both 301
horizontally and vertically when a new row starts. Thus, we end up with pooled maps of 10×10 x 20. 302

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 11 of 24

 303

Figure 12. Implementation of pooling layer of our CNN. 304

3.3 Implementation of Detection and Classification (DC) Subsystem 305

DC subsystem is responsible for providing traffic classification for the input traffic data into 306
binary-class classification (2-Classes: normal vs. anomaly) or multi-class classification (5-Classes: 307
Normal, DoS, Probe, R2L, U2R). This subsystem is composed of three consecutive stages as follows: 308

Flattening Layer of Pooled Feature Maps: This module is responsible to linearize the output 309
dimension of the convolutional/pooling layers network to create a single long feature vector [43]. This 310
can be achieved by converting the 2D data of N- Pooled feature-maps into a 1-D array (or vector) to 311
be inputted to the next layer, which is connected to the final classification model, called a dense or 312
fully connected layer. Since flatten layer collapses the spatial dimensions of the input into the channel 313
dimension (array), this means that if the input to the flatten layer is (𝑁) feature maps each with a 314
dimension of (𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛) then the flattened output (𝐹𝑜𝑢𝑡) can be obtained by linear multiplication of 315
the input dimensions by the number of maps, that’s it: 316

𝐹𝑜𝑢𝑡 = 𝑁 𝑥 𝐹𝑖𝑛 𝑥 𝐹𝑖𝑛 (4) 317

In this research, since we have 20 pooled feature maps (𝑁 = 20), each with dimension of 10 x 10 318
(𝐹𝑖𝑛 = 10), then, our flatten layer comprise of 2000 nodes. Figure 13 illustrates the flattening layer 319
development of our CNN. 320

 321

Figure 13. Implementation of flattening layer of our CNN. 322

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 12 of 24

Fully Connected Layer with ReLU Function: Fully Connected (FC) layers- as name implies- are those 323
layers where all the inputs from one layer are connected to every activation unit of the next layer [43]. 324
Commonly, FC layers are located as the last few layers of any CNN. Therefore, this module is 325
responsible to compile the high level features extracted by previous layers (convolutional and 326
pooling layers) into a reduced form of low level features in which they can be used by the classifier 327
located at the output layer to provide classification probabilities. In this research, we have developed 328
the FC layer with 200 neurons connected with 2000 nodes of the flattened (FL) layer which provide 329
a layer complexity reduction by10: 1. As the inputs pass from the units of FL layer through the 330
neurons of FC layer, their values are multiplied by the weights and then pass into the employed 331
activation function (normally ReLU function) just in the same way as in a the classical NN (i.e. 332
shallow NN). Thereafter, they are forwarded to the output classification layer where each neuron 333
expresses a class label. Note that, FC layer also goes through a backpropagation [43] process to 334
determine the most accurate values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐿 𝑥 𝑊𝐹𝐶 = 2000 𝑥 200). 335
Figure 14 illustrates the development for FC layer of our CNN. 336

 337

 338

Figure 14. Implementation of flattening layer of our CNN. 339

Output Layer with SoftMax Function: This module is responsible to provide/predict the correct 340
classification for each evaluated sample record of the utilized IoT attacks-dataset. Here we are 341
providing two types of classification including the binary-classifier (normal or anomaly) and the 342
multi-classifier (normal, DoS, Probe, R2L, U2R). The data points received from the 200 neurons of the 343
FC layer (𝐴1, 𝐴2, … , 𝐴200) are fully connected with the five neurons (𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5) of the output 344
classes (𝑗 = 5 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) through the transposed weight connections (𝑊𝑗

𝑇). This is illustrated in Figure 345

15 and can be achieved algebraically as follows: 346

𝐶 = 𝑊𝑗
𝑇 . 𝐴 =

[

𝑊1

𝑇

𝑊2
𝑇

𝑊3
𝑇

𝑊4
𝑇

𝑊5
𝑇]

[

𝐴1

𝐴2

𝐴3

⋮
⋮
⋮

𝐴198

𝐴199

𝐴200]

=

[

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5]

 𝑊ℎ𝑒𝑟𝑒: 𝑊1
𝑇 ,𝑊2

𝑇 ,𝑊3
𝑇 ,𝑊4

𝑇 ,𝑊5
𝑇 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑜𝑓 1 𝑥 200 (5) 347

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 13 of 24

 348
Figure 15. Implementation of the output layer with SoftMax of our CNN. 349

Note that, the output layer also goes through a backpropagation process to determine the most accurate 350
values of its trainable parameters (𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑊𝐹𝐶 𝑥 𝑊𝑜𝑢𝑡 = 200 𝑥 5). The last layer of the neural network 351
is a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 layer which has similar number of nodes as the output layer. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 normalizes the 352
output into a probability distribution on classes [43]. Specifically, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 assigns numerical 353
probability values for every class at the output layer where these probabilities should sum up to 1.0 354
(following a probability distribution). Given an input a vector (𝑥) of (𝐾) real numbers and (𝑖) defines 355
the index for the input values, then, SoftMax function σ: ℝk ⟼ ℝk is defined as follows: 356

𝜎(𝑥)𝑖 = 𝑒𝑥𝑖 ∑ 𝑒𝑥𝑖𝐾
𝑗=1⁄ 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝐾 𝑎𝑛𝑑 𝑥 = (𝑥1, 𝑥1, … , 𝑥𝐾) ∈ ℝ𝑘 (6) 357

For example, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 might produce the following probabilities for an attack record: 358
 359

Multi-Classes Dataset

Normal DoS Probe R2L U2R

 Label 1 2 3 4 5

 Probability 0.001 0.040 0.008 0.950 0.001

3.4 System Integration 360

In this section, we integrate all the aforementioned subsystems and modules by Putting-It-All-Together 361
to come up with complete system architecture of our IoT-IDCS-CNN. Figure 16 illustrates the top view 362

architecture of the integrated system as a feedforward 𝐶𝑜𝑣𝑁𝑒𝑡 network based IoT attack detection system. 363

 364
Figure 16. Top view architecture of the proposed IoT-IDCS-CNN. 365

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 14 of 24

According to the system architecture, after data preprocessing stages and using the 28 𝑥 28 366
input matrix, we constructed 784 (= 28 𝑥 28) input nodes. To extract features of the input data, the 367
network encompasses a deep convolutional layer involving a depth of 20 convolution filters of size 368
(9 𝑥 9). Thereafter, the results of the convolutional layer pass via ReLU activation function which 369
followed by the subsampling operation of the pooling layer. The pooling layer utilizes the average 370
pooling method with 2 𝑥 2 submatrices. The pooled features are then flattened to 2000 nodes. The 371
classification/detection neural network comprises the single hidden fully connected (FC) layer and 372
the output classification layer. This FC layer comprises 200 nodes along with ReLU activation 373
function. Since our system requires the classification of the data into 5 classes, therefore, the output 374
layer is implemented with 5 nodes with SoftMax activation function. The next table, Table 6, recaps 375
the final integrated 𝐶𝑜𝑣𝑁𝑒𝑡 based system for IoT attacks detection. 376

Table 6. Summary of the developed CovNet for IoT attacks detection/classification system. 377

Layer Comment Trainable Parameters

Preprocessing 148517 Sample each (28x28) -

Input 28 x 28 nodes (784 nodes) -

Convolution 20 convolution filters (9 x 9)+ReLU WCon(9 x 9 x 20)

Pooling Mean pooling (2 x 2) -

Flattening 2000 nodes -

Fully Connected 200 nodes + ReLU WFCL(2000 x 200)

Output 5 nodes (or 2 nodes) + SoftMax WOut(200 x 5)
 378

Moreover, the life cycle for the packet traffic received at the IoT gateway is provided in Figure 379
17 below. The input layer takes the encoded features generated from FE subsystem in order to be 380
trained at the CNN which update the training parameters and generate the least cost/loss value 381
(error) with optimal accuracy. The output layer employs the SoftMax classifier which is used to 382
classify the data using two classification techniques include: binary classification technique which 383
provides two categories (normal vs anomaly) and the multi-classification technique which provides 384
five categories (normal, DoS attack, Probe attack, R2L attack, U2R attack). 385

 386
Figure 17. Comprehensive view of the Computation Process IoT-IDCS-CNN. 387

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 15 of 24

4. Simulation Environment 388

To implement, verify, and validate the proposed IoT attacks detection and classification system, 389

the training and testing were performed on the NSL-KDD dataset involving the key attacks for IoT 390

communication. The classifier model was determined to have either two classes (binary attack 391

detection) or five classes (multi-attack classification). The proposed system was implemented in 392

MATLAB 2019a. To evaluate the system performance, experiments were performed using a high-393

performance computing platform utilizing the power of central processing unit (CPU) and graphical 394

processing unit (GPU) with Multicore structure of NVIDIA GeForce® Quadro P2000 Graphic card. The 395

specifications for the workstation used in development, validation & verification are provided in Table 7. 396

Table 7. The system development and validation environment. 397

System Unit Specifications

Processor Unit (CPU) Intel Core I9-9900 CPU, 8 Cores, @ 4900 MHz

Graphics Card (GPU) NVIDIA Quad P2000@1480 MHz, 5GB Mem, 1024 CUDA Cores

Cache Memory ($) 16 MB Cache @ 3192 MHz

Main Memory (RAM) 32 GB DDR4 @ 2666MHz

Operating System (OS) 64 bit, Windows 10 Pro.

Hard Disk Drive (HD) SATA 1TB Drive + 256 GB SSD

Besides, the experimental setup for training/testing model has been configured as follows: 398

• Dataset Distribution: 399

⎯ 85 % of the dataset used for training (i.e., ~ 128500 data sample records). 400

⎯ 15 % of the dataset used for testing (i.e., ~ 20000 data sample records). 401

• 𝑪𝒐𝒗𝑵𝒆𝒕 Configurations: 402

⎯ Input (Sample) Size = 28 x 28. ⎯ Number of Kernels = 20.

⎯ Conv. Kernel Size = 9 x 9. ⎯ Mean Pooling filter size = 2 x 2.

⎯ Activation function = ReLU. ⎯ Classifier function= SoftMax.

⎯ Number of Hidden Layers = 5. ⎯ Number of Output classes = 2 or 5.

• Model Optimization Configurations: 403

⎯ Optimization Algorithm = Mini Batch Gradient Descent (find minimum loss). 404

⎯ Mini_batch_size = 50, Momentum factor (β) =0.95, learning rate (α)=0.05. 405

⎯ Momentum updates= MomCon[9 x 9 x 20], MomFCL[2000x200], MomOut[200x5]. 406

⎯ All Momentum updates were initialized using ZEROS matrices (zeros (size)). 407

• Training Model Configurations: 408

⎯ Training technique = back-propagation with momentum (to update weights).

⎯ Trainable weights = WCon[9 x 9 x 20] , WFCL[2000x200], WOut[200x5].

⎯ Backprop. Derivatives = dWCon[9 x 9 x 20], d WFCL[2000x200], dWOut[200x5].

⎯ The number of epochs = 100 and the number of iterations per epoch = ~2500.

⎯ All trainable weights were initialized using random number generator (rand).

⎯ All backpropagation derivatives were initialized using ZEROS matrices.

• Weight update policy: 409

― dWCon = dWCon Mini_batch_size⁄ , dWFCL = dWFCL Mini_batch_size⁄ , dWOut = dWOut Mini_batch_size⁄ 410

― MomCon = α ∗ dWCon + β ∗ MomCon; ➔ WCon= WCon+ MomCon 411

― MomFCL = α ∗ dWFCL + β ∗ MomFCL; ➔ WFCL= WFCL+ MomFCL 412

― MomOut = α ∗ dWOut + β ∗ MomOut; ➔ WOut= WOut+ MomOut 413

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 16 of 24

5. Results and Discussion 414

Verification and validation (V&V) are essential activities and quality control factors that are 415

performed independently to check the system compliance with requirements and specifications and 416

that it fulfills its intended purpose. Typically, the verification process is defined as a number of 417

activities used to examine the suitability of the system or component (i.e. are we building the product 418

right). On the other hand, the validation process is defined as a number of activities used to examine 419

the conformity of the system (or any of its elements) with its purpose and functions (i.e. are we 420

building the right product). Note that while system validation is distinct from verification, however, 421

the actions of both processes are integral and meant to be performed in coupling [45]. In this section, 422

we provide a comprehensive verification and validation to check the system compliance with its 423

intended objectives and purpose. 424

5.1 System Evlaution and Verification 425

To verify the effectiveness of the proposed system in compliance with its intended 426

functionalities and missions, we have evaluated the system performance using the recommended 427

testing dataset in terms of the classification accuracy, classification error percent and the classification 428

time as follows: 429

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%) =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100% (7) 430

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 (%) =
𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100% (8) 431

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 (𝑚𝑠) = ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (𝑖)

𝑁𝑜. 𝑅𝑢𝑛𝑠

𝑖 = 1

×
1000

𝑁𝑜. 𝑅𝑢𝑛𝑠
 (9) 432

The plot for the overall testing classification accuracy and overall classification loss 433

(classification error) comparing the performance of the binary-classifier (2-Classes) and the multi-434

classifier (5-Classes) obtained during the validation process of NSL-KDD dataset are illustrated in 435

Figure 18. According to the figure, at the beginning and after one complete pass (epoch) of testing 436

process, both classifiers showed relatively low classification accuracy proportions with 85% and 437

79% registered for 2-Class classifier and 5-Class classifier, respectively. Thereafter, both 438

classification accuracy curves begin to roughly be increasing in a stable tendency while testing 439

epochs proceeds with faster and higher ceiling level obtained for the classification accuracy of 2-440

Class classifier. After training the system for 100 epochs, the system was able to record an overall 441

testing accuracy proportions of 99.3% and 98.2% for 2-Classs classifier and 5-Classs classifier, 442

respectively, for the given testing dataset samples. Conversely, it can be clearly seen that both 443

classifiers showed relatively high classification error proportions at the beginning of the testing 444

process with 15% and 21% registered for 2-Class classifier and 5-Class classifier after one testing 445

epoch, respectively. Thereafter, both classification error rates started to systematically decline 446

while the binary classifier progresses with faster threshold achieving 0.7% of incorrect prediction 447

proportion (classification error percentage). However, the classification error rate proportion for 448

the multi-classifier has saturated with less than 2.0% of incorrect prediction. This range of 449

classification error of both classifiers (0.7% - 1.8%) is permitted to avoid underfitting or overfitting 450

from the training loss (~0.0%) and training accuracy (~100%) and thus provided high-accuracy 451

classification performance. 452

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 17 of 24

 453

Figure 18. Testing Detection/Classification Accuracy/Error Rate vs. Number of Epochs. 454

Moreover, we have analyzed the time required to perform attack detection or classification for 455
one IoT traffic sample. To obtain accurate and precise results, we have run the validation test for 500 456
times and then computed the time statistics for detection and classification. Figure 19 shows the 457
detection/classification time performance for the proposed model (either 2-Class or 5-class classifier). 458
According to the figure, the time required to detect/classify one sample record ranges from (𝑀𝑖𝑛 ≈459
 0.5662 𝑚𝑠) to (𝑀𝑎𝑥 ≈ 2.099 𝑚𝑠) with average time of (𝑀𝑒𝑎𝑛 ≈ 0.9439 𝑚𝑠) recorded for the 500 460
simulation runs. This average time (𝑎𝑟𝑜𝑢𝑛𝑑 1 𝑚𝑠) is very useful for the system to run in dynamical 461
environment such as the real time IDS applications. 462

 463

 464

Figure 19. Run time performance of IoT Traffic classification over 500 simulation runs. 465

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 18 of 24

Furthermore, even though the classification accuracy measurement is the key significant factor 466
used to evaluate the efficiency of the classification or detection system, we have evaluated the 467
validation (testing) dataset using a confusion matrix with clear identification of True Positive (TP), 468
True Negative (TN), False Positives (FP) and False Negatives (FN) analysis to provide more insight 469
about the performance of the proposed. Figure 20 shows the general confusion matrix of our system, 470
confusion Matrix results for 2-Class Classifier using the testing dataset, and the confusion matrix 471
results for 5-Class Classifier using the testing dataset. 472
 473

 474

Figure 20. Confusion Matrix Analysis for both classification models. 475

Therefore, the confusion matrix parameters (i.e., TN, TP, FN, FP) can be used to compute some 476

other performance evaluation metrics (has less importance than the accuracy metric) including: (a) 477

the classification precision (detection rate) which is defined as the percentage of relevant instances 478

(e.g. attacks) among the retrieved instances, (b) the classification recall (sensitivity) which is defined 479

as the percentage of positive instances that are correctly labeled, (c) F1-Score which is defined as the 480

average score involving precision and recall (i.e., utilizes both false negative and false positive), and 481

(d) False alarm rate which is defined as the percentage of misclassified normal instances detected by 482

the system [48]. These metrics can be calculated in the following equations while Table 8 summarizes 483

the results of the overall evaluation metrics for our proposed system. 484

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100% (10) 485

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100% (11) 486

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥
𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 × 100% (12) 487

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =
𝐹𝑃

 𝑇𝑁 + 𝐹𝑃
 × 100% (13) 488

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 19 of 24

Table8. Summary of the overall evaluation metrics results 489

 2-Class Classification 5-Class Classification

Correctly predicted samples 19860 19640

Incorrectly predicted samples 140 360

Classification Accuracy 99.3% 98.2%

Classification Error Rate 00.7% 01.8%

Classification Precision 99.04% 98.27%

Classification Recall 99.33% 98.23%

F-Score Metric 99.18% 98.22%

False Alarm Rate (FAR) 01.28% 1.73%

Average Classification time 0.9246 0.9439

5.2 System Validation and Benchmarking 490

To validate the proficiency of proposed system in compliance with system purpose and 491
specifications. To ensure high level of reliability of our system validation stage, we have conducted 492
a 5-fold cross-validation process [47] that encompasses 5 different experiments for each classification 493
model (total of 10 experiments) with different sets for training (~128,000 sample) and validation 494
(20,000 sample) nominated for each experiments as demonstrated in Figure 21 which shows the 495
distribution of the dataset across the folds for each conducted experiment. 496

 497
Figure 21. Scheme for 5-fold cross-validation of the proposed system . 498

For each experiment, we have evaluated the validation accuracy and validation error for the 499
classification system models (2-Classes/5-Classes). Thereafter, the results obtained from the five 500
experiments are averaged to provide an overall validation accuracy and validation error values. 501
Consequently, the proposed system provided high level of stability and reliability across the dataset 502
folds which confirm the system robustness in the mission of attacks detection and classification for 503
IoT communications. The results of the 5-fold cross-validation are provided in Table 9 below. 504

Table 9. The results of 5-fold cross-validation of both classifiers (accuracy and error) 505

 2-Class 5-Class

 Accuracy Error Accuracy Error

Experiment 1 0.9930 0.0070 0.9820 0.0180

Experiment 2 0.9942 0.0058 0.9950 0.0050

Experiment 3 0.98750 0.01250 0.9907 0.0093

Experiment 4 0.99440 0.00560 0.9929 0.0071

Experiment 5 0.99320 0.00680 0.9966 0.0034

AVERAGE 99.25% 0.75% 99.14% 0.86%

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 20 of 24

Additionally, to gain more insight on the advantage of the proposed method, we benchmark 506
IoT-IDS-CNN classification system by comparing its performance with other state-of-art machine 507
learning based intrusion/attacks detection systems in terms in terms of classification accuracy metric. 508
For better and more reasonable evaluation, we have selected the related researches that employs 509
machine learning techniques for intrusion/attacks detection/classification for the NSL-KDD dataset 510
(the same used by our system) to be compared with our proposed IoT-IDS-CNN. Therefore, we 511
summarize the classification accuracy metric values for related state-of-art research in the following 512
table, Table 10, in chronological order. Accordingly, it can be obviously noticed, that the proposed 513
IoT-IDS-CNN model has improved the cyber-attacks classification accuracy of other ML-IDS models 514
by an improvement factor (IF) of (~1.03 – 1.25). 515

Table 10. Comparison with State-of-Art ML-IDS Employing Same Dataset. 516

Research Data Accuracy IF %

K. Taher et. al. 2019 [16] NSL-KDD Dataset ≈ 83.7% 117.3%

X. Gao et. al. 2019 [17] NSL-KDD Dataset ≈ 85.2% 115.2%

S. Sapre, et. al. 2019 [18] NSL-KDD Dataset ≈ 78.5% 125.1%

Chowdhry, 2017 [19] NSL-KDD Dataset ≈ 94.6% 103.8%

Javaid et. al. 2016 [20] NSL-KDD Dataset ≈ 88.4% 112.3%

Yadigar, et. al. 2016 [21] NSL-KDD Dataset ≈ 91.7% 108.0%

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____

 517

Finally, although the other existing related researches for machine learning based 518
intrusion/attack detection/classification use different cyber-attacks datasets, learning policies, 519
programming techniques, and computing platforms, we still can compare the classification system 520
performance in terms of testing accuracy metrics and the level of complexity for the developed 521
method. Therefore, for better readability, we summarize the classification accuracy metrics for the 522
other related state-of-art research in the following table, Table 11, in chronological order. According 523
to the comparison of the table, it can be seen that the proposed approach produces attractive results 524
in terms of classification accuracy showing superiority over all other compared methods. 525

Table 11. Comparison with State-of-Art ML-IDS Employing Different Dataset 526

Research Data Accuracy IF %

S.Jan et.al 2019 [23] CICIDS dataset ≈ 93.0% 106.7%

Roopak et. al. 2019 [24] CICIDS Dataset ≈ 92.0% 107.9%

Ioannou et. al 2019 [25] Simulated Dataset ≈ 81.0% 122.5%

Brun et al, 2018 [26] Real-Time Dataset ≈ 75.0% 132.4%

Thing et. al 2017 [27] AWID Dataset ≈ 98.0% 101.3%

Shukla et. al 2017 [28] Simulated Dataset ≈ 75.0% 132.4%

Hodo et. al 2016 [29] DoS Dataset ≈ 99.0% 100.3%

Kolias et. al 2016 [30] AWID Dataset ≈ 92.0% 107.9%

Y. Li et. al. 2015 [31] KDDCUP Dataset ≈ 92.0% 107.9%

Proposed Method NSL-KDD Dataset ≈ 98.2~99.3% ____

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 21 of 24

6. Conclusions and Future Directions 527

An efficient and intelligent deep learning-based detection and classification system for 528
cyberattacks in IoT communication networks (IoT-IDCS-CNN) was proposed, developed, tested, and 529
validated in this paper. The proposed IoT-IDCS-CNN makes use of the high-performance computing 530
employing the robust Nvidia GPUs (Quad-Cores, CUDA based) and the parallel processing 531
employing the high-speed Intel CPUs (N-Cores, I9 based). For the purpose of system development, 532
the proposed IoT-IDCS-CNN was decomposed into three subsystems including the Feature 533
Engineering (FE) subsystem, the Feature Learning (FL) subsystem and the Detection and 534
Classification (DC) subsystem. All subsystems were individually developed then, integrated, 535
verified, and validated in this research. Because of the use of CNN based design, the proposed system 536
was able to detect and classify the slightly mutated cyberattacks of IoT networks (represented 537
collectively by NSL-KDD dataset which includes all the key attacks in the IoT computing) with 538
detection accuracy of 99.3% of normal or anomaly traffic, and classify the IoT traffic into five 539
categories with classification accuracy of 98.2%. Also, to ensure high level of reliability for system 540
validation stage, we have conducted a 5-fold cross-validation process that encompasses 5 different 541
experiments for each classification model. Moreover, and to provide more insight about the 542
performance of the system, the proposed system was evaluated using the confusion matrix parameters 543
(i.e., TN, TP, FN, FP) and computed some other performance evaluation metrics including: the 544
classification precision, the classification recall, the F1-score of classification, and the false alarm rate. 545
Eventually, the experimental evaluation results of IoT-IDCS-CNN system surpassed the results of many 546
recent existing IDCS systems in the same area of study. Several recommendations for future research 547
works may be considered to extend this study. These further recommendations include: 548
a) Additional data collection by setting up a real-time IoT communication network with sufficient 549

number of nodes and gateways, incorporating nodes diversity. A future researcher can develop 550
a new software system that catch and investigate any data packet communicated through the IoT 551
environment (in-going and out-going) and come up with attacks to update an existing dataset or 552
to come up with a new dataset. Note that the packet collection and investigation should be 553
performed for a sufficient amount of time to provide more insights on the type of packets (normal 554
or anomaly) processed at IoT networking. This can provide different perceptions of the operation 555
of the device such as the utilization of processing unit, memory unit and the communication 556
traffic. The collected data can be then deemed as normal or anomaly based on their behavior. For 557
example, the normal data is related to the imitation of usual actions of local IoT devices, such as 558
surveillance cameras. The anomaly data concerns with botnets/probes actions such as the 559
communication with command & control units. At the end, the data can be labeled accordingly. 560

b) The proposed IoT-IDCS-CNN can be customized and used for intrusion detection incorporating 561
other cyberattacks datasets such as AWID Dataset [49], CICIDS Dataset [50], DDoS dataset [51], 562
UNSW-NB15 dataset [52] and others. This can be achieved by customizing the preprocessing and 563
output layers accordingly with fine-tuning for the hidden layers as well as the model parameters 564
and hyperparameters to obtain the maximum classification accuracy and least error rate. 565

c) The proposed IoT-IDCS-CNN can also be tuned and used to perform other real-life applications 566
requiring image recognition and classification such as medical, biomedical, handwritten 567
recognition applications and others. 568

d) Finally, the proposed system can be employed by IoT gateway device to provide intrusion detection 569
services for a network of IoT devices such as a network of ARM Cortex based nodes. More 570
investigation on the proposed IoT-IDCS-CNN can be reported including power consumption, 571
memory utilizations, communication, and computation complexity over low power IoT nodes with 572
tiny system components (such as the battery-operated/energy aware devices). 573

Author Contributions: Conceptualization, Q. A. Al-Haija; methodology, Q. A. Al-Haija; software, Q. A. Al-574
Haija; validation, Q. A. Al-Haija, formal analysis, Q. A. Al-Haija and C.D. McCurry; investigation, Q. A. Al-Haija 575
and S. Z. Sabatto; resources, C. D. McCurry and S. Z. Sabatto; data curation, Q. A. Al-Haija; writing—original 576
draft preparation, Q. A. Al-Haija; writing—review and editing, C. D. McCurry and S. Z. Sabatto; visualization, 577
Q. A. Al-Haija; supervision, S. Z. Sabatto; project administration, C. D. McCurry; funding acquisition, C. D. 578
McCurry. All authors have read and agreed to the published version of the manuscript. 579

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 22 of 24

Funding: This research was funded under the National Science Foundation Target Infusion Project (NSF-TIP) 580
Program; titled “Targeted Infusion Project: Academic Enhancement of Electrical & Computer Engineering 581
Program at Tennessee State University through IoT Research and Integrated Learning Environment” Award #: 582
1912313, funding period 2019-2022 583

Acknowledgments: Authors would like to thank the Department of Electrical and Computer Engineering in the 584
College of Engineering at Tennessee State University for its administrative and technical support of this research. 585

Conflicts of Interest: The authors declare no conflict of interest. 586

References 587

1. Alrawais, A. Alhothaily, C. Hu, and X. Cheng. Fog Computing for the Internet of Things: Security and 588
Privacy Issues. IEEE Internet Computing, 2017, vol. 21(2), pp. 34-42. DOI: 10.1109/MIC.2017.37. 589

2. F. Chiti, R. Fantacci, M. Loreti and R. Pugliese. Context-aware wireless mobile automatic computing and 590
communications: research trends & emerging applications. IEEE Wireless Communications, 2016, vol. 23(2): 591
pp. 86-92. DOI: 10.1109/MWC.2016.7462489 592

3. N. Silva, M. Khan, and K. Han. Internet of Things: A Comprehensive Review of Enabling Technologies, 593
Architecture, and Challenges. IETE Technical Review, 2017, vol. 35(2): pp. 1-16. DOI: 594
10.1080/02564602.2016.1276416 595

4. R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan. Internet of things (IoT) security: Current status, challenges 596
and prospective measures. Proceedings of the 10th International Conference for Internet Technology and 597
Secured Transactions (ICITST), London, 2015, pp. 336-341, DOI: 10.1109/ICITST.2015.7412116. 598

5. Q. Jing, A.V. Vasilakos, J. Wan, et al. Security of the Internet of Things: perspectives and challenges. Wireless 599
Network, Springer, 2014, Vol. 20, pp. 2481–2501. DOI: 10.1007/s11276-014-0761-7 600

6. J. Zhou, Z. Cao, X. Dong and A. V. Vasilakos. Security and Privacy for Cloud-Based IoT: Challenges. IEEE 601
Communications Magazine, 2017, Vol. 55(1), pp. 26-33. DOI: 10.1109/MCOM.2017.1600363CM. 602

7. Z. Yan, P. Zhang, A.V. Vasilakos. A survey on trust management for Internet of Things. Journal of network 603
and computer applications, 2014, Vol. 42, pp. 120-134. DOI: 10.1016/j.jnca.2014.01.014 604

8. P. Porambage, M. Ylianttila, C. Schmitt, P. Kumar, A. Gurtov and A. V. Vasilakos. The quest for privacy in 605
the internet of things. IEEE Cloud Computing, 2016, Vol 3 (2), pp. 36-45,2016. DOI: 10.1109/MCC.2016.28. 606

9. C. Lin, D. He, X. Huang, K.R. Choo, A.V. Vasilakos. BSeIn: A blockchain-based secure mutual authentication 607
with fine-grained access control system for industry 4.0. Journal of Network and Computer Applications, 2018, 608
Vol. 116, pp. 42-52. DOI: 10.1016/j.jnca.2018.05.005 609

10. S. Jangirala, A. K. Das and A. V. Vasilakos. Designing Secure Lightweight Blockchain-Enabled RFID-Based 610
Authentication Protocol for Supply Chains in 5G Mobile Edge Computing Environment. IEEE Transactions 611
on Industrial Informatics, 2020, Vol. 16(11), pp. 7081-7093, DOI: 10.1109/TII.2019.2942389. 612

11. M. Wazid, A. K. Das, V. BhBat, A.V. Vasilakos. LAM-CIoT: Lightweight authentication mechanism in cloud-613
based IoT environment. Journal of Network and Computer Applications. 2020, Vol. 150. DOI: 614
10.1016/j.jnca.2019.102496 615

12. M. Wazid, A. K. Das, N. Kumar, A.V. Vasilakos and J. J. P. C. Rodrigues. Design and Analysis of Secure 616
Lightweight Remote User Authentication and Key Agreement Scheme in Internet of Drones Deployment. 617
IEEE Internet of Things Journal, 2019, Vol. 6 (2), pp. 3572-3584. DOI: 10.1109/JIOT.2018.2888821. 618

13. M. Wazid, A.K. Das, N. Kumar, A.V. Vasilakos. Design of secure key management and user authentication 619
scheme for fog computing services. Future Generation Computer Systems. 2019, Vol. 91, pp. 475-492. DOI: 620
10.1016/j.future.2018.09.017. 621

14. M. B. Mollah, M. A. K. Azad and A. Vasilakos. Secure Data Sharing and Searching at the Edge of Cloud-622
Assisted Internet of Things. IEEE Cloud Computing, 2017, Vol. 4 (1), pp. 34-42. DOI: 10.1109/MCC.2017.9. 623

15. Paar, J. Pelzl. Understanding Cryptography. Springer-Verlag Berlin Heidelberg Publisher, Germany, 2010, 624
pp. 1–87. DOI: 10.1007/978-3-642-04101-3. 625

16. G. Caspi. Introducing Deep Learning: Boosting Cybersecurity with An Artificial Brain. Informa Tech, Dark 626
Reading, Analytics, http://www.darkreading.com/analytics. 2016. 627

17. K. A. Taher, B. M.Y. Jisan and M. M. Rahman. Network Intrusion Detection using Supervised Machine 628
Learning Technique with Feature Selection. Proceedings of the International Conference on Robotics, 629
Electrical and Signal Processing Techniques (ICREST), Bangladesh, 2019, pp. 643-646, DOI: 630
10.1109/ICREST.2019.8644161. 631

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 23 of 24

18. X. Gao, C. Shan, C. Hu, Z. Niu and Z. Liu. An Adaptive Ensemble Machine Learning Model for Intrusion 632
Detection. IEEE Access, 2019, vol. 7, pp. 82512-82521, DOI: 10.1109/ACCESS.2019.2923640. 633

19. S. Sapre, P. Ahmadi, K. Islam. A Robust Comparison of the KDDCup99 and NSL-KDD IoT Network Intrusion 634
Detection Datasets Through Various Machine Learning Algorithms. 2019. arXiv:1912.13204v1 [cs.LG]. 635

20. M. Chowdhury, et. al. A few-shot deep learning approach for improved intrusion detection. Proceedings of 636
the IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference 637
(UEMCON), New York, 2017, pp. 456-462, 10.1109/UEMCON.2017.8249084. 638

21. Q. Niyaz, W. Sun, A.Y Javaid, and M. Alam. Deep Learning Approach for Network Intrusion Detection 639
System. Proceedings of the ACM 9th EAI International Conference on Bio-inspired Information and 640
Communications Technologies, New York, 2016, pp. 1-6. DOI: 10.4108/eai.3-12-2015.2262516 641

22. A. R. Yusof, et.al. Adaptive feature selection for denial of services (DoS) attack. Proceedings of the IEEE 642
Conference on Application, Information and Network Security (AINS), Miri, 2017, pp. 81-84, 643
10.1109/AINS.2017.8270429. 644

23. S.U. Jan, S. Ahmed, V. Shakhov, I. Koo. Toward a Lightweight Intrusion Detection System for the Internet 645
of Things. IEEE Access, 2019, Vol.7, pp. 42450- 42471. DOI: 10.1109/ACCESS.2019.2907965. 646

24. M. Roopak, G. Yun Tian and J. Chambers. Deep Learning Models for Cyber Security in IoT Networks. 647
Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 648
USA, 2019, pp. 0452-0457. DOI: 10.1109/CCWC.2019.8666588. 649

25. C. Ioannou and V. Vassiliou. Classifying Security Attacks in IoT Networks Using Supervised Learning. 650
Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), 651
Greece, 2019, pp. 652-658. DOI: 10.1109/DCOSS.2019.00118. 652

26. O. Brun, Y. Yin, and E. Gelenbe. Deep learning with dense random neural network for detecting attacks 653
against IoT-connected home environments. Procedia Computer. Sci., 2018, vol. 134, pp. 458–463. DOI: 654
10.1016/j.procs.2018.07.183 655

27. V. L. L. Thing. IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning 656
Approach. Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), USA, 657
2017, pp. 1-6. DOI: 10.1109/WCNC.2017.7925567. 658

28. P. Shukla. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. 659
Proceedings of the Intelligent Systems Conference (IntelliSys), London, 2017, pp. 234-240. doi: 660
10.1109/IntelliSys.2017.8324298. 661

29. E. Hodo et al. Threat analysis of IoT networks using artificial neural network intrusion detection system. 662
Proceedings of the International Symposium of Network Computer Communication (ISNCC), 2016. pp. 1–663
6. DOI: 10.1109/ISNCC.2016.7746067 664

30. C. Kolias, G. Kambourakis, A. Stavrou, and S. Gritzalis. Intrusion detection in 802.11 networks: Empirical 665
evaluation of threats and a public dataset. IEEE Communications Surveys and Tutorials, 2016. Vol. 18 (1), pp. 666
184-208. DOI: 10.1109/COMST.2015.2402161 667

31. Y. Li, R. Ma, and R. Jiao. A hybrid malicious code detection method based on deep learning. International 668
Journal of Security and Its Applications, 2015, Vol. 9, pp 205–216. DOI: 10.14257/ijseia.2015.9.5.21 669

32. A. Ozgur and H. Erdem. A review of KDD99 dataset usage in intrusion detection and machine learning 670
between 2010 and 2015. PeerJ Preprints, 2016, Vol. 4:e1954v1. DOI: 10.7287/PEERJ.PREPRINTS.1954 671

33. S. Revathi, Dr. A. Malathi. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning 672
Techniques for Intrusion Detection. International Journal of Engineering Research & Technology (IJERT), 2013, 673
Vol. 2(2), pp. 1848- 1853. 674

34. Canadian Institute for Cybersecurity (CIS). NSL-KDD Dataset. https://www.unb.ca/cic/datasets/nsl.html. 675
Retrieved on. 2019. 676

35. S. J. Stolfo, Wei Fan, Wenke Lee, A. Prodromidis and P. K. Chan. Cost-based modeling for fraud and 677
intrusion detection: results from the JAM project. Proceedings of the DARPA Information Survivability 678
Conference and Exposition. DISCEX'00, Hilton Head, SC, USA, 2000, pp. 130-144 vol.2, DOI: 679
10.1109/DISCEX.2000.821515. 680

36. C. Kolias, G. Kambourakis, A. Stavrou and J. Voas. DDoS in the IoT: Mirai and Other Botnets. Journal of 681
Computers, 2017. vol. 50 (7), pp. 80-84, DOI: 10.1109/MC.2017.201. 682

37. Ambedkar, V. Kishore Babu. Detection of Probe Attacks Using Machine Learning Techniques. International 683
Journal of Research Studies in Computer Science and Engineering (IJRSCSE), 2015, Vol.2(3), pp. 25-29. 684

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

Electronics 2020, 9, x FOR PEER REVIEW 24 of 24

38. P. Pongle and G. Chavan. A survey: Attacks on RPL and 6LoWPAN in IoT. Proceedings of the International 685
Conference on Pervasive Computing (ICPC), Pune, 2015. pp. 1-6. DOI: 10.1109/PERVASIVE.2015.7087034. 686

39. Y. Bengio; A. Courville; P. Vincent. Representation Learning: A Review and New Perspectives. IEEE 687
Transactions on Pattern Analysis and Machine Intelligence. 2013, Vol.35 (8): 1798–1828. arXiv:1206.5538. 688
doi:10.1109/tpami.2013.50. PMID 23787338. 689

40. D.J. Sarkar. Understanding Feature Engineering. Towards Data Science. Medium. 690
https://towardsdatascience.com/tagged/tds-feature-engineering. 2018. 691

41. J. Brownlee. A Gentle Introduction to Padding and Stride for Convolutional Neural Networks. Deep 692
Learning for Computer Vision, Machine Learning Mastery. https://machinelearningmastery.com/padding-693
and-stride-for-convolutional-neural-networks. 2019. 694

42. Kalay. Preprocessing for Neural Networks - Normalization Techniques. Machine Learning, Github.IO. 695
https://alfurka.github.io/2018-11-10-preprocessing-for-nn. 2018. 696

43. Fei-Fei Li. CS231n: Convolutional Neural Networks for Visual Recognition. Computer Science, Stanford 697
University, http://cs231n.stanford.edu. 2019. 698

44. J. Brownlee. A Gentle Introduction to the Rectified Linear Unit (ReLU). Deep Learning for Computer Vision, 699
Machine Learning Master. https://machinelearningmastery.com. 2019. 700

45. INCOSE. INCOSE Systems Engineering Handbook, version 3.2.2. San Diego, CA, USA: International 701
Council on Systems Engineering (INCOSE), INCOSE-TP-2003-002-03.2.2, 2012. 702

46. P. Gupta. Cross-Validation in Machine Learning. Medium: Towards data science. 703
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f. 2017. 704

47. S. Narkhede. Understanding Confusion Matrix. Medium: Towards data science. 705
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62. 2018. 706

48. Phill Kim. MATLAB Deep Learning with Machine Learning, Neural Networks and Artificial Intelligence. 707
Apress, 2017. 708

49. C. Kolias, G. Kambourakis, S. Gritzalis. Attacks and countermeasures on 802.16: Analysis & assessment. 709
IEEE Communications Surveys Tuts., 2013, Vol. 15(1), pp. 487–514. DOI: 10.1109/SURV.2012.021312.00138. 710

50. CICIDS Dataset. DS-0917: Intrusion Detection Evaluation Dataset. 711
https://www.impactcybertrust.org/dataset_view?idDataset=917 712

51. DDoS Dataset. Distributed Denial of Service (DDoS) attack Evaluation Dataset. 713
https://www.unb.ca/cic/datasets/ddos-2019.html 714

52. N. Moustafa and J. Slay. UNSW-NB15: a comprehensive data set for network intrusion detection systems 715
(UNSW-NB15 network data set). Proceedings of the Military Communications and Information Systems 716
Conference (MilCIS), Canberra, ACT, 2015, pp. 1-6, DOI: 10.1109/MilCIS.2015.7348942. 717

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 718
affiliations. 719

53.

54. © 2020 by the authors. Submitted for possible open access publication under the terms

and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

 720

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 November 2020 doi:10.20944/preprints202011.0508.v1

https://doi.org/10.20944/preprints202011.0508.v1

