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Abstract：Sleep stage on the whole night is not steady. Sleepers generally pass through three 
to five cycles. In each cycle, there are occur four typical sleep stages, such as wake stage (WS), 
light stage (LS), deep sleep (DS), rapid eye movement sleep stage (REM). According to the 
natural routine, in this paper, we investigate the stage transition and analyze the feature of 
stage transition using the local cluster Algorithm (LCA). Two-cycle sleep model (TCSM) is 
proposed to automatically classify sleep stages using over-night continuous heart rate 
variability (HRV) data. The generated model is based on the characteristics of the nested cycle's 
sleep stage distribution and the transition probabilities of sleep stages. Experiments were 
conducted using a public data set including 400 healthy subjects (female 239, male 161) and the 
model’s classification accuracy was evaluated for four sleep stages: WS, LS, DS, REM. The 
experimental results showed that based on the TCSM model, the segmentation classification of 
pure sleep is 5.2% higher than that of the traditional method, and the accuracy of segmentation 
classification is 11.2% higher than the traditional sleep staging accuracy. The experimental 
performance is promising in terms of the accuracy, sensitivity, and specificity rates compared 
with the ones of the state-of-the-art methods. The study contributes to improve the quality of 
sleep monitoring in daily life using easy-to-wear HRV sensors. 
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0. Introduction 

Sleep covers almost one-third of the human lifespan, and quality of sleep is very important. 
Sleep has a very important physiological function, which is of great significance for the 
recovery of physical strength and energy, hormone secretion rhythm, consolidation and 
reintegration of memory, and immune function. The quality and quantity of sleep impact the 
performance of many basic activities, such as learning, memorization, and concentration [1]. 
Many sleep disorders are related to sleep stage, such as OSA [2], major depressive disorder [3], 
insomnias, sleep-related breathing disorders, circadian rhythm sleep-wake disorders, sleep 
movement disorders [4], and so on. In sleep studies for clinical diagnosis and treatment of sleep 
disturbances, the fundamental step is the identification of an individual’s sleep stages. 

To evaluate the quality of sleep, it is important to determine how much time was spent in 
each sleep stage during the night. The sleep stage of the whole night is not a steady-state. 
Sleepers cyclically passed through five different stages of sleep [6]. The typical length of a 
complete sleep cycle is about 90 to 110 minutes [7]. In every cycle, there will exist WS, LS，DS, 
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REM. Meanwhile, stage dynamic transition information reveals significant characteristics of 
the degree of sleep continuity [9]. The gold standard in this domain is overnight 
polysomnography (PSG), which include the electrocardiogram (ECG), electroencephalogram 
(EEG), electromyogram (EMG), ectrooculogram (EOG), and respiration signals [10]. Sleepers 
cyclically passed through five different stages of sleep, i.e., stage 1, stage 2, stage 3, stage 4, and 
stage 5 or REM sleep. Sleep in stage 1is light. The eyes move slowly and muscle activity is slow. 
It is in stage 2 that eyes stop moving and the brain waves become slower. Deep sleep occurs in 
stages 3 and 4 when no eye movement and muscle activity exist [11]. But the recording of the 
necessary electrophysiological signals is extensive and complex and the environment of the 
sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. Meanwhile, 
manual stage scoring on PSG by domain experts is time-consuming and labor-intensive.  

At present, many studies focus on analyzing the HRV features, and some of them are 
focusing on one stage distribution and transition [12]. Besides, deep learning is also used to 
classify sleep stage scoring. In this paper, we divided sleep stages into four categories: WS, LS, 
DS, and REM stage, during which were also called pure sleep stage. Pure sleep stage means in 
one segment; no other sleep stages are shown. The sleep stage detection algorithm is proposed 
that used only the heart rate signal, derived from ECG, as a discriminator. This would make it 
possible for sleep analysis to be performed at home, saving a lot of effort and money. ECG data 
along with a hypnogram scored by professionals was used from the SHHS database, make it 
easy to compare the results. For sleep stage classification, we analyzed the sleep stage structure 
and proposed a TCSM concept and on this foundation, a new framework of sleep stage 
classification and prediction are presented based on machine learning and pattern recognition 
technique.  

The rest of this paper is organized as follows. Firstly, we review the related work in section 
2. Afterward, we present the datasets, ECG signals preprocessing and sleep stage smoothing 
algorithm in section 3. The details of our solution are also described in section 3. In section 4, 
Local Cluster Algorithm (LCA) for smoothing sleep stage results and TCSM model results are 
presented. Finally, we conclude the paper and discuss future work in section 6. 
1. Related Works 

Many systems using ECG signals have been proposed in the literature for sleep stage 
classification. In this section, we briefly review the related work which can be grouped into 
three categories, different biological signals were adopted to classify sleep stage, sleep stage 
classification based on stage distribution and transition, feature analysis, and extraction based 
sleep stage classification. 

1.1 Signals adopted to classify Sleep stage 

Such methods are divided into two categories, i.e. multi-channel and single-channel 
processing. In the former approach, the combination of various biological signals such as multi-
channel EEG [16] [17] signals, electromyogram (EMG) [18] and ectrooculogram (EOG), radio 
measurements without any attached sensors on subjects [19] capturing the temporal 
progression of sleep, are utilized to extract informative features. In [29] study, actigraphy and 
heart rate signals are used to classify the sleep stage. HRV and R-R intervals from EEG signals 
are used to classify the sleep stage [20]. According to the available evidence [22], EEG signals 
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are almost sufficient for reliable scoring, but the challenge is getting the EEG signals from the 
subjects. Conversely, HRV data are easy to access from non-contact sensors. 
1.2 Stage distribution and transition 

The probabilistic properties of sleep stage sequences and transitions are used to improve 
the performance of sleep stage detection using cardiorespiratory features [12]. The classifier, 
based on conditional random fields, achieved an average accuracy of 87.38%. [13] leverages 
both signal and stage transition features of human sleep for automatic identification of sleep 
stages. Random forest classifier is trained using thirty EEG signal features. The correction rules 
with a Markov model were constructed based on stage transition feature, importing the 
continuity property of sleep and characteristic of a sleep stage transition. In [14], the authors 
applied a smoothing process on classified results to improve their classifier’s performance, 
which considers the continuity of a subject’s sleep. It considered the temporal contextual 
information and improved the continuity of a subject’s sleep stage scoring results. Some 
correction rules were constructed according to the relationship among the current epoch, prior-
epoch, and posterior-epoch. Similarly, correction rules are used in paper [14]. However, their 
correction rules only contained a few manually defined rules and need more prior knowledge 
of the sleep study and characteristics of the sleep dataset. [23] previously showed that human 
sleep-wake stage distributions exhibit multi-exponential dynamics, which are fragmented by 
obstructive sleep apnea (OSA), suggesting that Markov models may be a useful method to 
quantify architecture in health and disease. Some works used a hidden Markov model [24] to 
classify the sleep stage. 
 
1.3 Feature analysis and extraction 

 

In [28], the author proposed a sleep stage classification system based on noise-reduced 
fractal property of heart rate variability, sensitivity is 77% that distinguish wake stage from the 
other sleep stages and 72% deep sleep stage from light sleep; In [29] study, actigraphy and heart 
rate signals were used to classify sleep stage. Body movement indices derived from actigraphy 
data and autonomic functional indices from heart rate variability is used for discriminating 
between non-REM sleep and waking/REM sleep at 76.9% sensitivity and 74.5% specificity and 
between REM sleep and waking at 77.2% sensitivity and 72.3%specificity. In the [30] study, 
REM sleep was determined with an adaptive threshold applied to the acquired feature. Only 
the heart rate signal feature: LF/HF ratio, the relative peak frequency power in the HF band, 
the variability within the HF band, derived from electrocardiogram (ECG), to perform 
classification [31]. The authors tried to detect sleep and wakefulness using a combination of 
ECG, actigraphy, and respiratory signals [32]. With an automated Bayesian classifier, they 
achieved an accuracy of 86.8%. In the study of [33], the author grouped the 6 consecutive 
windows into one epoch (length, 3 min), whose stage is defined as that of the majority among 
6 windows, i.e., if the stage of ≥4 windows were the same, it was chosen as the stage of an 
epoch. If there was no majority stage among 6windows, the epoch was defined as a transitional 
stage. Moreover, the existing work only focused on analyzing signal features without 
considering the dynamic stage transition information. 
The main contributions of this paper are listed as follows.   
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(1) Sleep structure characterization and modeling. Sleep is a gradual evolutionary process. 
Sleeping overnight usually takes three to five sleep cycles, and when transitioning from one 
sleep stage to another, there must be a transition, usually called sleep stage transition; 
Accordingly, if there is no stage transition, called pure sleep in this paper, and the local cluster 
algorithm (LCA) method is used to smooth the sleep stage to obtain pure sleep and stage 
transition. 
(2) HRV feature extraction and selection. This paper extracts ECG data from PSG data, and then 
uses the heartbeat interval detection method to detect the R wave to calculate the RR interval 
and perform false and missed detection. Based on the HRV data and sleep structure, for the 
sleep staging requirements and the TCSM model, the time domain, frequency domain and 
nonlinear domain characteristics of the HRV are utilized respectively, and the feature selection 
is based on the max-relevance min-redundancy criteria. 
(3) Verification of Sleep staging method based on the TCSM model. Based on the actual sensory 
data of the larger experimental data (400 people), the existing sleep staging method is used as 
a reference, and TCSM is used as the comparison verification.  
This paper studies the duration of stage transitions at different time scales and the optimal 
windowing criteria for pure sleep. In the experiment, the recognition of pure sleep and stage 
transition, the multi-classification of pure sleep, and the verification analysis of the coarse-fine 
grained classification of stage transition are carried out in multi-angle. The Hidden Markov 
Model is used to describe the objective law of natural stage transition in the sleep stage, 
improving the accuracy of sleep stage classification. The comparison experiments of large-scale 
datasets verified the accuracy and effectiveness of proposed method. 

2. Material and Methods 

In this section, we introduce the dataset, ECG and sleep stage preprocessing, the system 
flowchart and classification. The method consists of three phases: processing, feature selection, 
and classification. The flowchart of the whole architecture is shown in Fig.1. 

 

Figure.1 The flowchart of the proposed method. Consisting of three sections: data preprocessing, 

sleep stage LCA algorithm and TCSM model. 

2.1 Data Collection 
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    There are two standards commonly used to define sleep stages: The Rechtschaffen and 
Kales (R&K) [34], and that developed by the American Academy of Sleep Medicine (AASM) 
[35]. The AASM standard adopted in this paper classifies sleep into 4 different stages. To 
develop and validate the proposed method, a set of PSG recordings from real subjects are used. 
The recordings are taken from the Sleep Heart Health Study (SHHS). This database emerged 
from a multi-center cohort study to determine cardiovascular and other consequences of sleep-
disordered breathing. Details about the design of the SHHS study can be found in [36]. Each 
recording comes with the annotations of physicians’ off-line scorings following the R&K 
procedure [37]. The Sleep Heart Health Study (SHHS) is a multi-center cohort study [36], 
initiated by the American National Heart Lung and Blood Institute to determine whether sleep-
disordered breathing is associated with a higher risk of various cardiovascular diseases. The 
study includes two rounds of PSG recordings. We use only the first round (SHHS-1) because 
all records have the same sampling rate (125 Hz), contrary to the second round where records 
can be sampled at 125 or 128 Hz. Dataset SHHS-1 contains 5793 PSG records. 
   Here we adopted 400 subjects (male 161 subjects, female 239 subjects) and all of them were 
healthy. And the age is between 40 and 59, the mean age of all the subjects is 53.44. In the PSG 
records, for most subjects, along the ‘wake’ period before the subject goes to sleep and another 
after he or she wakes up is observed [38]. To preserve all the sleep data and HRV signals, the 
WS is not trimmed at the beginning of sleep. The hypnogram, which reports the different sleep 
stages across the sleep time, was obtained in TABLE I. 

                   TABLE 1.  DESCRIPTION OF THE DATASET  

 
Sleep Stage 

Wake LS DS REM Total 

Total epoch(30s) 93995 186226 55136 64307 399664 

Equivalent Hour 783.3 1551.9 459.5 535.9 3330.5 

2.2 Data preprocessing 

2.2.1 The preprocessing of ECG signals 

      We use the ECG deal package [39] to deal with the ECG signal and get the R wave index. 
The R wave detection results are as the Fig.2. According to the definition of HRV, the RR 
interval is calculated by the subtraction of later R wave and its adjacent front one. The 
sequences of the RR interval were HRV. Before the extraction of the frequency measures, a 
preprocessing was carried out on the RR interval based on the fact that the spectral analysis 
cannot be affected only on regularly sampled signals [40]. This preprocessing is presented by 
resampling the data at a frequency of 4 Hz using an interpolation method developed by Berger 
et al [41]. 
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Figure.2 R wave detection results. 

 

2.2.2 Sleep Stage Structure Characterization 

Pure Sleep Stage Analysis: 

Fig.3 is W, LS, DS, REM percent and duration time. When people sleep at night, LS accounts 
for the largest proportion, about 45%, and sleep less than 4 hours. The proportion of the 
awakening period is relatively large before a person falls into sleep. If the waking up before 
going to sleep is removed, there will be very few awake samples, so in this paper, W is not 
removed; REM duration time is about 15%, and the duration time is 1.2 hours. 

 
Figure.3 different pure sleep stage duration and percent in all pure sleep stage 

 Fig.4 shows the sleep stage of 400 people. The sleep time of one night is set to 9 hours, and the 
proportion of different pure periods of sleep is counted in each hour. From the beginning of 
sleep, as sleep deepens, the proportion of each sleep stage is also different. The proportion of 
waking or awakening period is higher in the first hour and the last hour; the proportion of LS 
in the whole night's sleep is high. Deep sleep accounted for a higher proportion in the first half 
of the night, that is, deep sleep was mainly in the first half of the night; while the REM period 
was difficult to occur in the first half of the night and improved in the latter half of the night. It 
can be seen from the proportion of different sleep stages that the probability of occurrence of 
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the sleep cycle was different in different sleep stages, and the sideshows that sleep has its 
natural laws and structures. This figure sets the duration to 9 hours and covers 90% of the 
experimenter's data. Some people sleep for more than 9 hours, and the length of time is not 
within the statistical range. The default data for more than 9 hours is invalid. In this figure, 
there is no correlation between the sleep structure and the number of sleep hours according to 
the proportion of different sleep stages in each hour. Therefore, in the next section, the sleep 
cycle analysis and the proportion of pure sleep in different cycles were introduced. 

 

Figure.4 Sleep stage percent in different hour in whole night 

Sleep stage cycle analysis: 

 The sleep cycle referred to the existence of a biological rhythm in a person's sleep state, that 
is, from the beginning of sleep to the end of sleep, there is a cycle in the middle. AASM divides 
sleep into five cycles, each of which lasts for about 90-110 minutes. The sleep cycle is defined 
as the end of a cycle with the REM period. NREM and REM alternately appear, alternating once 
called a sleep cycle. The number of occurrences of the cycle from awake or light sleep to REM 
is the number of cycles in sleep. 
From the analysis, 80% of people have 4-5 cycles of sleep at night, some have three sleep cycles, 
and a few have more than 5. In this paper, the sleep cycle of most people is 4 sleep cycles, so 
the sleep cycle is set 4 and is analyzed, and the data is shown in Fig.5.From the Fig.6, we can 
see that in different sleep cycles, the sleep stage duration is different. After entered the sleep 
state, the proportion of the W period is less than 10%. As LS deepens, the proportion increases; 
while LS occupied a major part of sleep. At the same time, it can be found that deep sleep 
mainly occurs in the first half of the night, and deep sleep decreases in the latter half of the 
night; the REM phase mainly occurs in the latter half of the night. As can be seen, the awakening 
period is 10 minutes in the period after falling asleep, LS is 50 minutes, DS is 10-30 minutes, 
and REM is 15-25 minutes. 
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Figure.5 Sleep cycles analysis 

 

 
Figure.6 Time spent in different sleep cycles 

Sleep Stage transition analysis: 

 It can be seen from the Fig.7 that the transition probability from the sleep stage P1 to the sleep 
stage P1 is the largest, indicating that the person continues for a while during sleep and does 
not change all the time. From L to other sleep stages, L has a high probability of transition to L, 
and some people have a higher probability of reaching D, indicating that the probability of 
going from shallow sleep to deep sleep is also higher. In the deep sleep transition, it can be seen 
that part of it is from deep sleep to deep sleep, and come from deep sleep to light sleep. In 
actual sleep, the transition probability from deep sleep to light sleep is also relatively large. At 
the same time, the probability of going from deep sleep to rapid eye movement is extremely 
small, that is, the previous sleep entering the REM phase, and the minimum may be deep. In 
the stage transition of REM, the stage transition of RR is the largest, and at the same time, part 
of it is from REM to the awakening period. From the figure, the stage transition of a person 
under a normal sleep state can be generally seen, which lays a theoretical foundation for the 
use of stage transition for sleep stage classification. 
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Figure.7 Sleep stage transition probability 

TABLE I.  Sleep stage transition probability in whole night 

Sleep stage  W LS DS REM 

W 0.9042 0.0434 0.0143 0.0381 

LS 0.1016 0.6920 0.1880 0.0183 

DS 0.0013 0.0783 0.9203 0.0001 

REM 0.0143 0.0151 0.0013 0.9693 

In this paper, the sleep cycle is set to four, to facilitate the description of the sleep structure, 
and in line with the sleep distribution of most people. TABLE.3 shows the probability 
distribution of the six-stage transitions in different cycle periods, and the data is visualized as 
shown in Fig.8. We can see that the mode of stage transition changes from the first to the fourth 
cycle. In the first and second cycles, the model did not change significantly. There was no big 
change in WL, LW, LD, DL after falling asleep to the second sleep cycle, because the probability 
of REM occurring in the first half of the night is small. Therefore, the proportion of RL and WR 
is small, and there is no large change; in the third and fourth cycles, LD is reduced, that is, the 
transition probability from light sleep to deep sleep is reduced, and DL is reduced, that is, deep 
sleep to light sleep. The transition probability is reduced because the proportion of deep sleep 
is reduced in the third cycle. In the fourth cycle, WL increased because the proportion of deep 
sleep decreased, and the proportion of awakening and shallow sleep increased. It can be seen 
throughout the night's sleep that as sleep progresses, RL and WR increased. This is because as 
the sleep progresses, the proportion of REM increases gradually, so the probability of stage 
transition increases. WL is the first drop in sleep throughout the night, gradually rising, just 
starting to fall asleep, waking up to occupy the main, with sleep deeper, W decreases, other 
pure sleep increases. At the end of the sleep, the awakening period increases. LW did not 
change much during the whole night's sleep. LW is from asleep to awakening. Here, W is the 
awakening period, and it is the state of waking without consciousness. The probability of stage 
transition in the different sleep cycles is different. If only the sleep transition probability of the 
whole night is used for sleep staging, the accuracy of sleep staging will be reduced. Therefore, 
in the paper, sleep structure is used in sleep staging, and different nights of sleep are used. 

TABLE II.  Sleep stage transition probability in the whole night in different sleep cycles 
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Cycle No. WL LW LD DL RL WR 

Cycle 1 0.2455 0.1432 0.2972 0.2659 0.02317 0.02496 

Cycle 2 0.2144 0.1536 0.2999 0.2717 0.02715 0.02579 

Cycle 3 0.2856 0.2052 0.2123 0.1959 0.0415 0.04604 

Cycle 4 0.3562 0.2611 0.1433 0.1316 0.0415 0.05429 

 

 
Figure.8 Sleep stage transition probability in different sleep cycles  

2.2.3 The pre-smooth of sleep stage (LCA algorithm) 

Sleep is a continuous process that does not mutate, but some weird stages may exist caused 
by some external factors, such as diseases and devices. Smoothing rule shows the stable sleep 
duration and the property of sleep continuity; in other words, in a stable stage of sleep, it is 
unlikely that the stage suddenly changed [13]. Consequently, we smoothed the data. The sleep 
stage smoothing rules are based on the local cluster Algorithm (LCA).  

The stage transition was ambiguous and the time of stage transition was not very clear. 
Consequently, we defined the stage transition time domain as the T minutes which mean that 
the former T/2 is one sleep stage, and the later T/2 is another sleep stage. For example, if T is 5, 
the former 2.5 minutes is in LS, the latter 2.5minutes in another maybe in WS, DS or REM. The 
next will explain how to pre-smooth the sleep stage based on the LCA algorithm and T is set 5. 
Firstly, the LCA obtains every stage and corresponding count. Secondly, LCA sets domain 2, if 
the corresponding count less than the domain, the stage will be changed to the adjacent stage 
whose count is larger. After that, the LCA sets domain 3, the similar processing as the above 
until the domain equal to T. Finally, the minimum stage’s corresponding count is T.  

As seen in Fig.3, the initial sleep stage is 00000011212222332220022211112, which 
corresponding count all are 1. After merging the same value, the stage is 01212320212, and the 
corresponding count is 62114232341 which domain is 1. Next, the domain is set 2, which means 
that only the countless than domain, the corresponding stage will be smooth. The smoothing 
rules are as follows: if the former stage’s count larger than the latter, the current stage will be 
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changed to the former; If the latter stage’s count larger than the former, the current stage will 
be changed to the latter. The same operations of the domain in 3,4,5. 

 

Figure.9 The LCA method for sleep stage smooth. 

The LCA pseudocode is as the Algorithm 1. After LCA algorithm, the results are as TABLE IV. 

TABLE IV.  LCA ALGORITHM RESULTS 

Stage 0 2 1 

Count 6 18 5 

 

Algorithm 1. Stage Local Cluster Algorithm 

Input: sleep Stage, domain 

Output: slice Stage and count 

FOR s=1: length (sleep Stage) 

Count(s)=1; 

END FOR 

INIT: new Stage= []; 

FOR s= 2: length (sleep Stage)-1 

IF count(s)>= domain THEN 

Continue; 

ELSE IF count(s) <domain THEN 

       IF count (i-1)>=count(i+1) THEN 

            New stage(i)=new stage(i-1); 

ELSE new stage(i)=new stage(i+1); 

       END IF 

END IF 

END FOR 

IF count (1) <domain THEN 

New stage (1) =new stage (2);  

END IF 

IF count (length (new stage)) < domain THEN 

New stage (length (new stage))=new stage(length(new stage)-1); 

END IF 
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Figure.10 LCA results compared to a Traditional smooth method 

2.3 Feature extraction and selection 

2.3.1 TCSM model 
          Complete sleep cycle is experience three to five cycles one night, with three or four 
small loops in every cycle. From the Fig.11, we can obviously find the whole night 4 sleep stage 
cycles. And each cycle, in the inner cycle, there are 3 sleep stages. Every cycle ends with a REM 
sleep stage. Every outer cycle may include LS, DS and REM stage. We analyzed the sleep stage 
structure, and proposed a TCSM concept and on this foundation a new framework of sleep 
stage classification and prediction are presented based on machine learning and pattern 
recognition technique. 

 

Figure.11 The whole night hypnogram. 

2.3.2 Feature extraction and feature reduction 
  According to the obtained HRV, there are total of 18 features in the time domain, frequency 
domain and nonlinear domain features are calculated. The features in the time domain are 
mean, variable, max, min, sdnn, sdsd, pnn50, cv; The frequency domain ones are vlf, lf, hf, vhf, 
tlh, v; Finally, the nonlinear domain features are s-entropy, renyi entropy, Shannon-entropy. 
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All features used to recognize the pure sleep stage and stage transition are shown as TABLE 
IV. 

TABLE III.   FEATURES OF HRV FOR ESTIMATING PURE STAGE AND STAGE TRANSITION 

Feature Description (all feature calculated in a window) 

mean Mean of RRI 

var Variance of all RR intervals 

sdnn Standard deviation of all RR intervals 

sdsd Difference Standard deviation of differences between adjacent RR intervals 

rmssd Square root of the mean of the square of differences between adjacent RR intervals 

pnn50 number of adjacent intervals greater than 50ms accounted for the proportion of all RR intervals 

cv Coefficient of variation of differences between adjacent RR intervals 

vlf Total power between 0.015 and 0.04Hz 

lf Total power between 0.04 and 0.15 Hz 

hf Total power between 0.15 and 0.4Hz 

vhf Total power between 0.4 and 0.5 Hz 

tlh Total power between 0.015 and 0.5 Hz 

v Ratio of low to high-frequency power 

s_entroy Sample entropy 

renyi_entrpy Renyi entropy 

shannon_entrpy Shannon entropy 

 
2.3.3 Classification 
 

Firstly, classify the three or four outer cycle and then classify the inner 4 sleep cycle. In the 
first step, 16HRV features, including temporal, frequency and non-linear features were used to 
train model1 and model2. 

The TCSM model first analyzes the stage transition T and the pure sleep P, which is the first 
layer of the TCSM model. In the second layer of the model, we have two methods to validate 
the model proposed in the experiment. The first method is based on course and fine-grained 
classification of a stage transition. The fine-grained classification is 12 classifications of WL, 
LW, WD, DW, WR, RW, LD, DL, LR, RL, DR, RD; Coarse sleep stage classification is of WL, 
LW, LD, DL, LR, RL, DR, RD classification. The second method is based on the classification of 
pure sleep, including segmentation classification and segmentation classification of pure sleep, 
and directly classified pure sleep. 

The stage transition analysis was performed under different time scales D (Domain), the 
time scale was 1-10 minutes, and the analysis of sleep stage transition and pure sleep were 
classified under D. The wake of the sleep stage, the light sleep, the deep sleep and the rapid 
eye movement period were divided into pure sleep, and the transition of different sleep stages 
were converted into a stage transition, and the second classification were performed. 

1. Use the sliding window for segmentation, the purpose was to build the sample, use the 
classifier to classified which was pure sleep, which was stage transitions, the time scale was 1-
10 minutes respectively; as shown in Fig.12.  
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   2. Further subdivide the detected pure sleep into pieces at different times (1-10 minutes) 
   3. Directly classified the detected sections, this section did not equal, some were 10 minutes, 
some were half an hour, some were a few minutes(Fig.12); large did not divided Pure sleep is 
called a slice, which is called a piece that is cut into fixed lengths(Fig.13); 
   4. Classified the stage transitions. Based on the first step, the stage transition was detected, 
and the stage transition was further subdivided into 6 classifications or 12 classifications 
(Fig.14). 

 

Figure.12 Pure sleep stage classification in slices 

 

Figure.13 Pure sleep stage classification in pieces 

 

Figure.14 Coarse and fine grained stage transition classification  

3 Experimental Results and Performance Evaluation 

3.1  Performance evaluation Measures 

In this section, we presented the evaluation results of the proposed sleep stage classification 
framework. Four criteria (measures) were used to evaluate the performance of the proposed 
sleep stage classification system. These criteria were the classification accuracy, sensitivity, 
specificity, and confusion matrix. The classification performance was measured which are 
expressed as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴𝑐) =
TP + TN

TP + FN + TN+ FP
(%) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑛) =
𝑇𝑃

TP + FN
(%) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝) =
TN

TN + FP
 

Precision(Pr) =
𝑇𝑃

TP + FP
(%) 

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false 
negatives, respectively. 
   To set the system parameters and to evaluate the system performance, we used a k-fold 
cross-validation process. To do this, the dataset divided randomly into k equal-sized subsets. 
At each fold, the (k-1) subsets were used as the training and validating data and 1 subset was 
used for testing. This process was repeated k times (the number of folds), with each subset used 
exactly once for testing. We also used a k-fold subject cross-validation process, where k was 
the number of subjects in the dataset. At each fold, the data of one subject were used for testing, 
while the data of other subjects were used as the training and validating data. This process was 
repeated k times. The results of the k folds were averaged and reported as the system 
performance. 

3.2 Results 

In the experiment, we firstly classified the stage transition and pure stage and then 
classified the four pure sleep stages. We choose the Random Forest (RF) classifier to classify the 
different classes. RF classifier, proposed by Breiman [43], was a classification and prediction 
models, belongs to a kind of combination classifier. It overcomes the problem of easy to 
converge to the local optimal solution and the problem of excessive fitting which may occur in 
the single decision tree model and can be a very good tolerance data set of noise and outliers, 
suitable for processing the unbalanced data sets and high dimension data. In the first step, 
according to the stage transition definition, we constructed the train set. If the restored stage, 
we choose the last 2/T stages and the first 2/T stages as the stage transition, and calculated the 
feature of the corresponding HRV. 
   Due to the ambiguity of stage transition during sleep in different people, it is difficult to 
directly set the stage transition to a fixed length [43]. Therefore, in the experiment, this paper 
classifies the stage transition and pure sleep at different time scales, and uses the detection rate 
of the stage transition (that is, the degree of effect, which evaluates the proportion of all 
negative classes detected) is appropriate in the case of evaluating how long the time scale is set. 
As shown in Fig.15, in 1-10 minutes, as the time scale increases, the detection rate of the stage 
transition increases; from 5-10 minutes, the detection rate decreases. Too long or too short is a 
difficult classification during sleep. It can be seen from the experimental results that the stage 
transition is set to 4 minutes. 
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Figure.15 Detection rate of different time scale for pure sleep stage and stage transition 

In this experiment, the AdaBoost classifier was used, and the NB and RB classifiers were 
used for classification. The experimental results are shown in Figure 5-7. As can be seen from 
the figure, using different classifiers, the experimental results were best when the time scale is 
set to 4 minutes. 

 

Figure.16 Sleep stage transition using different classifier in a different time scale 

Based on the first step, we divide the stage transition and pure sleep. In this step, we 
classified the classified pure sleep. For the classification of pure sleep, we proposed two 
methods for classification. First, based on pure sleep, further segmentation is divided into 
equal-length slices, called sleep segments, and then classified into equal-length segments. In 
the experiment, by analyzing and comparing the classification results of the fragments at 
different time scales, it was determined at which time scale the segmentation was performed, 
and then the classification effect was better, and the classification efficiency was high. Pure 
sleep was further divided into time slices of equal duration and then classified. Fragmentation 
was performed from pure sleep at different time scales. The second was to directly classified 
the classified pure sleep. The length of this pure sleep was different, and it was the unequal 
length HRV feature. Therefore, when extracting features, we should classify the features that 
are not related to length. The equal length division of pure sleep, followed by the 4 
classifications of pure sleep, as shown in Figure 5-8, is the classification of pure sleep using NB, 
RF and HMM. Pure sleep was divided into different time scales of 1 to 10 minutes and then 
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classified. It can be seen from the figure that pure sleep was sliced for 5 minutes, then classified, 
using three classifiers. The highest accuracy rate is 86.618% with HMM. 

 

Figure.17 Pure sleep stage classification in pieces using different classifier in a different time scale 

After the stage transition and the pure sleep classification, further, the classified pure sleep 
is directly classified, and the classification efficiency can be improved without fragmentation. 
Considering the difference in the length of the sections, this paper proposed new features for 
classification. In the classification of the subsection, considering the non-equal length of each 
pure sleep, we took the sleep stage of the sleep and the sleep cycle of the sleep stage as 
characteristics and added it to the traditional classification model to carry out the model 
training. In practical applications, by recognizing the stage transition, the sleep was divided 
into pure sleep of unequal length, and one sample loop is used for recognition. In the HMM 
model, the training of the model was performed using the sleep transition probabilities of 
different sleep stages. In this paper, three classifiers are used for the classification of pure sleep. 
From the classification results, the classification effect using HMM classifier was the best, 
81.6%. 

 

Figure.18 Pure sleep stage classification in slices using different classifier in a different time scale 
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HMM 81.62 82.62 80.62 82.62 86.62 80.62 82.62 77.62 76.62 72.62
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In this paper, in the fine-grained classification of stage transition, and then the 10-fold cross-
validation was performed, and the experimental results are shown in Fig19. It can be seen from 
the experimental results that for the 12 classifications, since the difference of the 12 stage 
transitions was relatively small, in the classification, the effect was not very satisfactory. 
Therefore, this paper proposed a coarse-grained classification of stage transitions, that is, 6 
classifications of stage transitions. For this experiment, this paper chooses to use DA and RF 
classifiers to train the model. The experimental results are shown in Fig20. As can be seen from 
the figure, the classification accuracy of the DA classifier is about 60, and the classification effect 
of the RF classifier is not as good as DA. From the time scale analysis, it can be seen that when 
the time scale was set to 6 minutes, the classification effect was better, and consistent 
conclusions were drawn from the two classifiers. At the same time, the time scale was 6 
minutes, and the time difference between the traditional sleep stage and 5 minutes was not 
much different. Therefore, in the experiment, this paper used the 6-minute 

 

Figure.19 Fine-grained classification accuracy of stage transition at different time scales 

Figure.20 Coarse-grained classification accuracy of stage transition at different time scales 

To verify the correctness and effectiveness of the proposed TCSM model, this paper used 
the traditional sleep staging method to identify the sleep stage. The traditional sleep stage 
identification method was divided the HRV for 5 minutes, and then count which one of the 10 
sleep stages was more frequent in 5 minutes, and then select the sleep stage corresponding to 
the 5-minute HRV. This article uses data from 400 people for verification. The classification 
results of traditional sleep stages are shown in Fig.21. As can be seen from the figure, the 
traditional method was used for sleep staging, and the classification accuracy was about 75%. 
At the same time, by setting different time scales, the paper analyzed the HRV segmentation, 
the scale was set to 6 minutes, and the classification effect was better. 
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Figure.21 Traditional method classification accuracy at different time scales 

This article compared the traditional method with TCSM and used 34 people's data to 
illustrate. From the data, it can be seen that there are 30 people whose classification effect is 
higher than the traditional classification method, more than 7%. The model presented in this 
paper is valid and feasible, as shown in Fig.22. 

 

Figure.22 TCSM and Traditional method comparison in 35 subjects 

TCSM is better than traditional ones in terms of classification accuracy and accuracy, as 
well as classification efficiency. During the experiment, the accuracy of the classification of pure 
sleep segmentation was 79.7%, and the recall rate is 79.6%. The experimental results shown that 
the research method is different from the traditional long-segmentation of sleep and then the 
staging method. The sleep staging method based on TCSM is based on the two-layer sleep 
structure model proposed by the sleep structure for the first time. The classification of non-
equal length pure sleep was directly classified, and the classification efficiency was high. 
4 Discussion and Conclusion 
The paper presents a new framework of sleep stage classification based on the proposed 
concept TCSM. In this study, we demonstrated the performance of sleep stage classification by 
the indices obtained from ECG signals. We studied 4340 epochs (length 5 min) of PSG data in 
800 subjects. Our results indicated that TCSM model and two steps sleep stage classification 
was useful for discriminating stage transitions from pure sleep stage and for discriminating 4 
pure sleep stage(Wake, Light sleep, Deep sleep, REM); Although a plenty of earlier studies 
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have reported various algorithms and methods for sleep stage classification by ECG data, this 
study is unique from them in (1)providing TCSM model, (2) proposing two-step approaches 
separately discriminating stage transitions from pure sleep stage and for discriminating 4 pure 
sleep stage(WS, LS, DS, REM), and (3) examining models with a large sample size. Our 
observations seem to reflect the performance of this approach when applied to real-world data 
from a wide range of people.  

The study has some limitations:  
1) Only signals from a single ECG channel were used in classification, 
2) The pure sleep stage and stage transition classification were not satisfactory, 
3) We have not considered the effects of diseases, such as narcolepsy, insomnia and sleep 
disorder, on their influences on classification.  
   In future work, we will focus on sleep stage scoring using multiple PSG signals, such as 
EOG and EMG, to improve the performance of our approach. Moreover, we will design more 
elegant algorithms for analyzing and classifying sleep data. Additionally, we will apply our 
approach to more datasets, especially to the datasets of different sleep disease studies, which 
can be obtained from the NSRR website [44]. In future work, the inner cycle will be classified 
directly rather than slicing into 5 minutes. 
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