
Article

Improved RRT-Connect Algorithm based on
Triangular Inequality for Robot Path Planning

 Jin-Gu Kang 1, Dong-Woo Lim 1, Yong-Sik Choi 2, Woo-Jin Jang 1, and Jin-Woo Jung 1,*

1 Department of Computer Science and Engineering, Dongguk University, Seoul 04620, Korea;

kanggu12@dongguk.edu (J.-G.K.); aehddn@gmail.com (D.-W.L.); skwndbth159@dongguk.edu (W.-J.J.)
2 Department of Artificial Intelligence, Dongguk University, Seoul 04620, Korea;

sik2230@dongguk.edu (Y.-S.C.)

* Correspondence: jwjung@dongguk.edu (J.-W.J.); Tel.: +82-2-2260-3812

Abstract: This paper proposed a triangular inequality-based rewiring method for the Rapidly

exploring Random Tree (RRT)-Connect robot path-planning algorithm that guarantees the planning

time compared to the RRT algorithm, to bring it closer to the optimum. To check the proposed

algorithm’s performance, this paper compared the RRT and RRT-Connect algorithms in various

environments through simulation. From these experimental results, the proposed algorithm shows

both quicker planning time and shorter path length than the RRT algorithm and shorter path length

than the RRT-Connect algorithm with a similar number of samples and planning time.

Keywords: RRT-Connect; triangular inequality; Rewiring; Optimality; Robot path planning

1. Introduction

With the recent fourth Industrial Revolution, interest in mobile robots has increased in various

fields such as robotics, smart factories, and autonomous driving [1]. Classical mobile robot path-

planning algorithms can be classified into three broad categories [2]. The first is the Road Map

Approach algorithm [3], which is easy to implement by designing a map that represents a path that

can be moved and plan through it. The second is Cell Decomposition algorithm [4], which creates a

path by dividing the configuration space into cells and connecting each cell using a graph. The last is

the Artificial Potential Field algorithm [5], which creates an artificial potential field and directs the

robot to the goal according to the flow of potential power.

Optimality means always ensuring the optimal path. Clearance indicates a lower probability of

collision between obstacles and the robot. Completeness means that if a path exists, it can always be

found. Optimality, clearance and completeness are considered important in these classical algorithms

and have been the main focus of study [6]. Particularly if completeness is not guaranteed by the robot

path-planning algorithm, there is a problem that the path may not be found in finite time. This is a

fatal problem in robot path planning.

Recently, sampling-based path-planning algorithms [7–12] such as Rapidly Exploring Random

Tree (RRT) [13], which is quicker and less computationally intensive than classical algorithms, have

been attracting attention. The main purpose of sampling-based algorithms is to find a path that can

reach the goal as quickly as possible using randomly extracted sample points (random sampling).

Unlike classical algorithms, sampling-based algorithms have difficulty fully reflecting the optimality

and completeness. Therefore, most sampling-based algorithms claim Probabilistic Completeness,

which explains that they can be probabilistically close to complete when random sampling is

repeated infinitely [14]. This means that it is difficult to guarantee the Planning time (First path finding

time), which refers to how quickly the path can be planned from the start point to the goal point, and

the Convergence rate, which means iterative sampling to bring the path closer to the optimum after

the first path has been found. If the situation does not allow enough time to plan the path, it can create

a path that is more different from the optimal path. Even so, the sampling-based algorithm is mainly

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202011.0494.v3
http://creativecommons.org/licenses/by/4.0/

used in dynamic environments because it enables quicker path planning with very little planning

time compared to classical algorithms.

To overcome these limitations of planning time and convergence rate, many studies are being

conducted to expand the RRT algorithm. The RRT-Connect [15] algorithm finds a connected path

more quickly than the RRT algorithm by setting the start point and goal point as the roots of separate

trees and expanding both trees alternately. In addition, there are algorithms that optimize paths

based on the principle of triangular inequality, such as RRT*-Smart algorithm [16] and Quick-RRT*

algorithm [17], to derive a path that is close to the optimal. Many algorithms [18–21] that extend the

RRT algorithm have been studied.

The above algorithms show more efficient performance by improving the RRT algorithm to

overcome the limitations of sampling-based methods but they are still not perfect. Their limitations

include being unable to derive the optimal length and there is room for improvement in terms of the

number of operations and time. For example, the RRT* algorithm has rewiring(search for the parent

node as a via point nearby a newly inserted node, where the addition of path length from the start

point to the via point and path length from the via point to the newly inserted node in the tree is the

optimized, and change the neighboring nodes to optimize the path length) and neighbor

search(search for nodes nearby the node to be newly inserted in the tree) processes to obtain shorter

path lengths than the RRT algorithm [18]. However, there is an efficiency trade-off in this process. In

other words, while the convergence rate has improved, the planning time has significantly increased

[22]. Therefore, the RRT* algorithm cannot be said to be better than the RRT algorithm in all

performance metrics and it can be said that the RRT* algorithm gets closer to the optimum at the

expense of planning time.

To overcome the limitation of getting closer to the optimum at the expense of planning time, this

paper proposes a triangular inequality-based RRT-Connect algorithm that finds an ancestor node as

a via point, where the addition of path length from the start point to the via point and path length

from the via point to the newly inserted node is the most optimized, based on the principle of

triangular inequality and RRT-Connect. The proposed algorithm shortens the planning time while

also pursuing optimization through rewiring. In addition, we will verify the efficiency by comparing

the RRT and RRT-Connect algorithms from previous studies through simulation experiments. As a

result, this paper shows that the proposed algorithm has a shorter path length than the RRT and RRT-

Connect algorithms without sacrificing other performance measures such as the number of sample

or planning time.

The scope of the research we will cover is how much more quickly it can find the path and how

much shorter the path is. This is because in a dynamic environment, it is more important to find a

navigable path. In a dynamic environment, there may not be enough time for convergence. In other

words, the purpose of our proposed algorithm is to improve the RRT-Connect algorithm so that it

can find a shorter path over the same planning time(computation time before convergence or

computation time for first path finding).

(a)

(b)

(c)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 1. Overview of the algorithms in this paper: (a) RRT; (b) RRT-Connect; (c) the proposed

algorithm.

Figure 1 shows an overview of the three main algorithms covered in this paper: RRT, RRT-

Connect, and the proposed algorithm. In this figure, the start qstart and goal points are qgoal, respectively.

The RRT algorithm in Figure 1 (a) shows that the path is expanded in a tree structure and the RRT-

Connect algorithm in Figure 1 (b) shows that the trees that are expanded at the start and goal points

attract and connect each other. The proposed algorithm in Figure 1 (c) shows that the RRT-Connect

algorithm was rewired into a triangular inequality during path planning.

In this paper, Chapter 2 introduces the RRT algorithm, Chapter 3 introduces the RRT-Connect

algorithm, and the triangular inequality-based RRT-Connect algorithm is proposed in Chapter 4. In

detail, Section 4.1 shows the pseudocode of the proposed rewiring method through the principle of

triangular inequality, which can be applied to the RRT-Connect algorithm, Section 4.2 shows the

mathematical modeling of the proposed algorithm, Sections 4.3 and 4.4 show the pseudocode of each

method of the RRT-Connect algorithm applying the proposed rewiring method, and Section 4.5

shows the path-planning process for the proposed algorithm that applies the proposed rewire

method to the RRT-Connect algorithm. Chapter 5 shows the experimental environment and results

to check the performance of the proposed algorithm and Chapter 6 presents the conclusion.

2. The Rapidly exploring Random Tree (RRT) Algorithm

The Rapidly exploring Random Tree (RRT) algorithm [13] is the most representative sampling-

based path-planning algorithm. the RRT algorithm plans a path by gradually expanding a tree with

a root node at the start point using random sampling. It is designed to handle Non-holonomic

constraints and high degrees of freedom [12].

When a random sample is generated in the configuration space, it tries to connect at a point

separated by a preset step length from the node nearest to the random sample among nodes

constituting the tree with the step length. If tree connections are possible, nodes are added to create

an extended tree.

As mentioned in the introduction, this sampling-based path-planning algorithm uses randomly

generated sample points to find a path that can reach the goal as quickly as possible, so it is difficult

to sufficiently reflect the optimality and completeness.

(a)

(b)

Figure 2. The RRT algorithm: (a) Process when qnew is created; (b) After the random sampling has

ended.

Figure 2 shows the path-planning process of the RRT algorithm. Figure 2 (a) shows that qnew is

created at the node position qnear of the tree T nearest to the random sample position qrand. Figure 2 (b)

shows the resultant path R among several candidate paths to the start position qstart and the goal

position qgoal.

3. The RRT-Connect Algorithm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Path planning through the RRT algorithm may have a disadvantage in that since random

samples appear with the same probability in all regions, the tree easily extends even in a direction

irrespective of the goal, resulting in a long planning time and inefficiency. The RRT-Connect

algorithm [15] proposed later has two new ideas as the method to compensate for the disadvantage

of the RRT algorithm.

The first is that the start and goal points are each inserted as root nodes and extended in each

direction alternately. The two trees extending from the start point and the goal point expand as if

attracting one another, which prevents the tree and is a disadvantage of the RRT algorithm, is in a

direction irrespective of the goal. This enhances the disadvantage of the planning time required to

search for a path. The second is the concept of Extend, which continues extending to the other side of

the tree if there are no collisions with obstacles when the tree extends. Through this, unlike the RRT

algorithm that extends the maximum extension length when the sample is generated and is inserted

into the tree, the tree continues to expand in the direction of the goal if there is no collision with an

obstacle, so the path can be planned more quickly.

Path planning through the RRT-Connect algorithm can find a path quicker than the RRT

algorithm, but the Extend method does not work properly in complex environments with narrow

paths and many obstacles and it can be difficult. In addition, the path planned using the RRT-Connect

algorithm is far from the optimal length, so it does not properly reflect optimality.

3.1. Pseudocode of the RRT-Connect Algorithm

This section shows the pseudocode of the RRT-Connect algorithm used in the experiment in this

paper that was designed based on [15] in which the RRT-Connect algorithm was proposed. The RRT-

Connect algorithm can be represented by a main algorithm (A1) and two main methods (A2 and 3).

Algorithm 1. Pseudocode of the RRT-Connect Algorithm.

Input:

qstart ← Start Point Position

qgoal ← Goal Point Position

λ ← Step Length

C ← Position Set of All Boundary Points in All Obstacles

Ν ← Number of Random Samples

Output:

R ← Result of Path R

Initialize:

Ta ← Null Tree

Tb ← Null Tree

dshorter ← 0

Begin RRT-Connect Procedure

1 Ta ← Insert Root Node<qstart> to Ta

2 Tb ← Insert Root Node<qgoal> to Tb

3 While 1 ← n to N do

4 Generate n-th Random Sample

5 qrand ← Position of n-th Random Sample

6 If Not Extend(Ta, Tb, qnewB ← Null, qrand, λ, C) then

7 If Connect(Preach ← Null Path, Ta, Tb, qnewB, λ) then

8 dreach ← Distance of Preach

9 If dshorter = 0 or dshorter > dreach then

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

10 R ← Preach

11 dshorter ← dreach

12 Swap(Ta, Tb)

End RRT-Connect Procedure

Algorithm 1 shows the pseudocode of RRT-Connect algorithm. Both of the two initial trees Ta

and Tb have qstart and qgoal as root nodes and these two trees randomly sample N times and aim to reach

each other during their expansion. Unlike RRT, the RRT-Connect algorithm is divided into two

methods: Extend and Connect. The Extend method (A2) creates qnew from qrand in Ta and extends from

Tb to the qnew direction of Ta, and the Connect method (A3) determines whether the two trees Ta and

Tb have reached each other; if they do, merge them into one tree to obtain a path Preach between the

root nodes qstart and qgoal of the two trees.

When a path is created by the Connect method, the distance dreach is calculated for the path Preach

from qstart to qgoal. At this time, if dreach is smaller than dshorter(the shortest path length until now) or Preach

is the first path found (i.e., dshorter = 0), the resultant path R becomes Preach, and dshorter becomes dreach. At

the end of the next N sampling, R becomes the final planned path. If the number of random sampling

remains, the above process is repeated.

3.2. Pseudocode of the Extend method from the RRT-Connect Algorithm

This section introduces the Extend method used in pseudocode (A1) of the RRT-Connect

algorithm in Section 3.1.

Algorithm 2. Pseudocode of the original Extend method from the RRT-Connect Algorithm.

Input:

Ta ← Tree Ta from RRT-Connect

Tb ← Tree Tb from RRT-Connect

qnewB ← Position qnewB from RRT-Connect

qrand ← Position qrand from RRT-Connect

λ ← Step Length λ from RRT-Connect

C ← Position Set C from RRT-Connect

Output:

ftrap ← Result of Boolean ftrap

Ta ← Result of Tree Ta // Return by Reference

Tb ← Result of Tree Tb // Return by Reference

qnewB ← Result of Position qnewB // Return by Reference

Initialize:

ftrap ← False

Begin Extend Procedure from RRT-Connect

1 qnear ← Find Position of Nearest Node in Ta from qrand

2 If Not isInside(qnear, qrand, λ) then

3
qnewA ← Position of the Intersection Point between the Line Segment connecting qrand and qnear and

a Circle with Radius λ centered at qnear // 2D: Circle, 3D: Sphere, …

4 Else

5 qnewA ← qrand

6 If isTrapped(qnewA, qnear, C) then

7 ftrap ← True

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

8 Else

9 Ta ← Insert Node<qnewA> and Edge<qnewA, qnear> to Ta

10 qnear ← Find Position of Nearest Node in Tb from qnewA

11 If isInside(qnear, qnewA, λ) then

12 qnewB ← qnear

13 Else

14
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear,

and Circle with Radius λ centered at qnear // 2D: Circle, 3D: Sphere, …

15 While Not isTrapped(qnewB, qnear, C) do

16 Tb ← Insert Node<qnewB> and Edge<qnewB, qnear> to Tb

17 If Not isInside(qnewA, qnewB, λ) then

18 qnear ← qnewB

19
qnewB ← Position of Intersection Point between // 2D: Circle, 3D: Sphere, …

Line Segment connecting qnewA and qnear, and Circle with Radius λ centered at qnear

20 Else

21 Break

End Extend Procedure from RRT-Connect

Algorithm 2 shows the pseudocode of the Extend method in the RRT-Connect algorithm. The

isInside function determines whether qrand is inside a circle (or n-sphere) with the node position qnear of

the tree Ta nearest the qrand position as the center and λ as the radius. If it is not located inside (False),

qnewA becomes the intersection of the circle (or n-sphere) with qnear as the center and λ as the radius,

and the line segment connecting qrand and qnear. If it is determined that there is no obstacle between

qnewA and qnear by the isTrapped function (False), qnewA is inserted into the tree as a child node of qnear of

Ta. If there is an obstacle (True), the Extend method returns True (ftrap) and terminates. Otherwise, it

proceeds with the remaining process and returns False (ftrap) when the process ends.

This is the process of making Ta and Tb reach each other: First, the node Tb nearest to qnewA becomes

the new qnear. At this time, using the isInside function, it is determined whether qnewA is inside a circle

(or n-sphere) with qnear as the center and λ as the radius, and if it is located inside (True), qnewB becomes

qnear and is located inside. If not (False), qnewB becomes the intersection of the circle (or n-sphere) with

qnear as the center and λ as the radius and the line segment connecting qnewA and qnear. If qnewB is created,

then the following process is repeated until it can determine whether there is an obstacle between

qnewB and qnear by the isTrapped function and if there is the obstacle between them (True) or if qnewB

reaches qnewA by the isInside function.

If there is no obstacle between qnewB and qnear (False), insert qnewB into Tb as a child node of qnear. At

this time, if the isInside function determines that qnewB has not reached the λ radius with qnewA as the

center (False), qnear becomes qnewB and a new qnewB will created from this qnear.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 3. The Extend method from RRT-Connect algorithm.

Figure 3 shows the Extend method in the RRT-Connect algorithm. In detail, it shows that the first

qnewA is created, and qnewB is created with radius of length λ in the direction of qnewA from the qnear position

in the figure. Clearly, Tb extends in the Ta direction for reach.

3.3. Pseudocode of the Connect method from the RRT-Connect Algorithm

This section introduces the Connect method used in pseudocode (A1) of the RRT-Connect

algorithm in Section 3.1.

Algorithm 3. Pseudocode of the Original Connect Method from the RRT-Connect Algorithm.

Input:

Preach ← Path Preach from RRT-Connect

Ta ← Tree Ta from RRT-Connect

Tb ← Tree Tb from RRT-Connect

qnewB ← Position qnewB from RRT-Connect

λ ← Step Length λ from RRT-Connect

Output:

freach ← Result of Boolean freach

Preach ← Result of Path Pmerged // Return by Reference

Initialize:

freach ← False

Begin Connect Procedure from RRT-Connect

1 If isInside(qnewA, qnewB, λ) then

2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta

3 Pb ← Path from qnewB to Root Node [qgoal] in Tb

4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb

5 Pmerged ← Merge Path Pa to Pb via Pconnect

6 freach ← True

End Connect Procedure from RRT-Connect

Algorithm 3 shows the pseudocode of the Connect method in the RRT-Connect algorithm. Here,

Ta, Tb, and qnewB are from the Extend method (A2).

The tree merging process is as follows: Create a path Pa from the root node (qstart) of Ta to the last

inserted node (qnewA), and a path Pb from qnewB of Tb to the root node (qgoal). Then, create a path Pconnect

from qnewB of Pb to the last inserted node (qnewA) of Ta and merge in the order of Pa, Pconnect, and Pb, thereby

completing planning the path Pmerged from qstart to qgoal. After this, it returns True (ftrap), and the Connect

method ends.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 4. The Connect method from the RRT-Connect algorithm.

Figure 4 shows the Connect method in the RRT-Connect algorithm. If the qnewB of Tb is extended

in the direction of the qnewA by the Extend method shown in Figure 3, the point where the two trees

merge (when qnewB has expanded in the direction of qnewA where Ta enters the λ radius centered at qnewA)

with each other is the part marked as Connect. As a result, the path Pa becomes from the position qstart

to the position qnewA in Ta, the path Pconnect goes from position qnewA to position qnewB and the path Pb goes

from position qnewB to position qgoal in Tb. The merged path Pmerged goes from qstart to qgoal.

4. Proposed Triangular Inequality-based RRT-Connect Algorithm

The proposed triangular inequality-based RRT-Connect algorithm is a rewire based on the

principle of triangular inequality between nodes on a path planned in the RRT-Connect algorithm,

so it is closer to the optimal compared to the RRT-Connect. This is like the RRT*-Smart algorithm [16]

and Quick-RRT* [17] algorithms, which shorten their paths using the triangular inequality principle

for the RRT algorithm. In this paper, the rewire part based on the triangular inequality principle is

called the Triangular-Rewiring method.

The proposed triangular inequality-based RRT-Connect algorithm requires the following

assumptions.

[Assumptions]

1. There is only one start point and one goal point even though the goal point may be changed

incrementally as time goes on.

2. The robot is capable of omnidirectional motion.

Therefore, this chapter introduces the proposed Triangular-Rewiring method for the RRT-

Connect algorithm, and performs mathematical modeling to confirm the validity that the proposed

Triangular-Rewiring method is always shorter when applied to the RRT-Connect algorithm. After

checking through, we will propose how to apply the Triangular-Rewiring method to the RRT-Connect

algorithm.

The method of applying the RRT-Connect algorithm of the proposed Triangular-Rewiring

method is proposed when a new node is inserted into the tree in the Extend method (A2) and Connect

method (A3), the main methods of the RRT-Connect algorithm introduced in Chapter 3. It is inserted

after rewiring (or after determining) through the Triangular-Rewiring method. That is, this chapter

introduces the Extend and Connect methods to which the proposed Triangular-Rewiring method is

applied.

4.1. Pseudocode of the Proposed Triangular-Rewiring Method for the Improved RRT-Connect Algorithm

This section introduces the Triangular-Rewiring method for the proposed triangular inequality-

based RRT-Connect algorithm.

Algorithm 4. Pseudocode of the Proposed Triangular-Rewiring Method for the RRT-Connect Algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Input:

qchild ← Position {qnew / qnewA / qnewB} from {Extend / Connect}

qparent ← Position qnear from {Extend / Connect}

T ← Tree {Tmerged / Ta / Tb} from {Extend / Connect}

C ← Position Set C from {Extend / Connect}

Output:

{Tmerged / Ta / Tb} ← Result of T

Begin triangularRewiring Procedure from Extend, Connect

1 qancestor ← Position of Parent Node of qparent in T

2 If Not isTrapped(qancestor, qchild, C) then

3 T ← Delete Node<qparent>, Edge<qparent, qchild> and Edge<qparent, qancestor> from T

4 qparent ← qancestor

5 qancestor ← Position of Parent Node of qancestor in T

6 While Not qancestor = Null do

7 If Not isTrapped(qancestor, qchild, C) then

8 T ← Delete Node<qparent> and Edge<qparent, qancestor> from T

9 qparent ← qancestor

10 qancestor ← Position of Parent Node of qancestor in T

11 Else

12 Break

13 T ← Insert Edge<qparent, qchild> to T

14 Else

15 T ← Insert Node<qchild> and Edge<qchild, qparent> to T

End triangularRewiring Procedure from Extend, Connect

Algorithm 4 shows the pseudocode of the Triangular-Rewiring method applicable in the Extend

(A2) and Connect (A3) methods of the RRT-Connect algorithm. When inserting a new node and edge

in Ta or Tb in the Extend method (A5), when a tree Tmerged (Pmerged) in which Ta and Tb trees are merged

in the Connect method is created (A6), rewiring is performed on the tree T.

In the Extend and Connect methods, qnew (or qnewA or qnewB) is inserted as a qchild and qnear is inserted

as a candidate for the node’s parent node. From qparent, the node’s parent node (a second ancestor node

candidate based on qchild) is called qancestor. Next, it is determined whether an obstacle exists between

qancestor and qchild (using the isTrapped function). If there is an obstacle (True), the Triangular-Rewiring

process is skipped and qchild is inserted into the child node of qparent in T such that the contents of the

Extend and Connect methods from the RRT-Connect algorithm are the same. If there is no obstacle

(False), the Triangular-Rewiring process proceeds.

The Triangular-Rewiring process is as follows: Delete node where position qparent and the edges

between qchild and qancestor nodes connected to qparent. In other words, it disconnects the existing qparent and

qchild and prepares to connect qchild to qancestor, the candidate parent node of qchild. Again, qparent becomes its

parent node qancestor and qancestor becomes the parent node of qancestor. Then, as previously done, determine

whether an obstacle exists between qancestor and qchild (using the isTrapped function). This iterative

process continues until no qancestor exists (When no parent node exists for the previous qancestor, i.e., when

qancestor is qstart) or an obstacle exists between qchild and qancestor. Then, in tree T, the last created qparent is

inserted as the parent node of qchild.

4.2. Mathematical Modeling of the Proposed Triangular Inequality-based RRT-Connect Algorithm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

This section introduces the mathematical modeling of the proposed triangular inequality-based

RRT-Connect algorithm. The results show that the proposed algorithm is more efficient in terms of

path length than the RRT-Connect algorithm. For reference, this mathematical modeling is based on

a two-dimensional Euclidean space.

Equations 1 and 2 define the path length 𝕕𝑛(𝑞𝑖) between an arbitrary node qi and its parent

node in the RRT algorithm:

𝐷(𝑞𝑖 , 𝜉(𝑞𝑖)) = √(𝜉(𝑞𝑖). 𝑥 − 𝑞𝑖 . 𝑥)
2 + (𝜉(𝑞𝑖). 𝑦 − 𝑞𝑖 . 𝑦)

2, (1)

∴ 𝕕𝑛(𝑞𝑖) = 𝐷(𝜉
𝑛(𝑞𝑖), 𝜉

𝑛+1(𝑞𝑖)). (2)

Here, qi refers to the i-th inserted arbitrary node and takes the x and y coordinate values of the

node as an element. The ξ function receives an arbitrary node as a variable and returns the parent

node of this node. Equation 1 obtains the distance between an arbitrary node qi and its parent node,

which can be summarized as a function 𝕕𝑛 as in Equation 2. Here, n is the distance between the

ancestor node and its parent node, based on an arbitrary node. That is, the ξ function to the power of

n (n ≥ 0) can be represented as 𝜉𝑛(𝑞𝑖) ∶= (𝜉 ∘ 𝜉 ∘ … ∘ 𝜉⏞)

𝑛

(𝑞𝑖); when n is 0, 𝜉0(𝑞𝑖) ∶= 𝑞𝑖 holds.

In addition, consider starting with an arbitrary node qi and going back to the parent node to find

the distance between the n-th ancestor node and the (n + 1)-th ancestor node; this can be represented

as 𝐷(𝜉𝑛(𝑞𝑖), 𝜉
𝑛+1(𝑞𝑖)).

Equations 3 and 4 show the path length 𝔻𝑅 from the start position qstart to the goal position qgoal

by the RRT algorithm:

𝜉𝛿+1(𝑞𝑔𝑜𝑎𝑙) = 𝑞𝑠𝑡𝑎𝑟𝑡, (3)

∴ 𝔻𝑅 = ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 . (4)

Equation 3 shows when the (δ + 1)-th ancestor node from qgoal is qstart, where δ is the upper limit

of ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 for obtaining the path length 𝔻𝑅 in Equation 4. In other words, Equation 4 is the

sum of the distances from qgoal to the first ancestor node (parent node) of qgoal and the distance from

the first ancestor node (parent node) of qgoal to the second ancestor of qgoal, …, and (δ – 1)-th ancestor

node to the δ-th ancestor node (qstart).

(a)

(b)

(c)

Figure 5. Abstract process of the Triangular-Rewiring method: (a) Example tree; (b) After rewiring

between qchild and qancestor; (c) At this time, α is the distance between qchild and qparent, β is the distance

between qparent and qancestor, and γ is the distance between qchild and qancestor.

Figure 5 shows an abstract process of the Triangular-Rewiring method. As shown in Figure 5 (a),

if the parent node of qchild is qparent, the parent node of qparent is qancestor, and qancestor is the second ancestor

of qchild, this can be represented as Equation 5:

𝑞𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝜉(𝑞𝑝𝑎𝑟𝑒𝑛𝑡) = 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑). (5)

If the distances between the edges connecting each node are the α between qchild and qparent, the β

between qparent and qancestor, and the γ between qchild and qancestor is as shown in Figure 5 (c), this can be

represented as Equation 6 using the principle of the triangular inequality:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

𝛼 + 𝛽 ≥ 𝛾. (6)

Equations 7 and 8 show the distance relationship between the ancestor nodes of qchild:

𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛼, 𝐷(𝜉(𝑞𝑐ℎ𝑖𝑙𝑑), 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛽, 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉

2(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛾, (7)

∴ 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉(𝑞𝑐ℎ𝑖𝑙𝑑)) + 𝐷(𝜉(𝑞𝑐ℎ𝑖𝑙𝑑), 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑)) ≥ 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉

2(𝑞𝑐ℎ𝑖𝑙𝑑)), (8)

Equation 7 can be summarized as Equation 8 by substituting Equation 5, which represents the

relationship between the n-th ancestor nodes of qchild, with the distance as Equation 1 in Equation 6,

which represents the distance between each node as a triangular inequality.

Equations 9–15 show that the path of the RRT algorithm applying the Triangular-Rewiring

method is always shorter or equal to that planned by the original RRT algorithm. Equation 9 shows

the sequence index kj to compare the distance 𝕦 when applying the Triangular-Rewiring method

with distance 𝕕 when this method is not applied:

𝑘𝑗 = 𝜏𝑗 + 𝑘′𝑗, 𝑘′𝑗 = {
0, 𝑗 = 0

𝑘𝑗−1 + 1, 𝑗 ≥ 1
, (9)

Here, j is a sequence index for 𝕦. That is, kj can be considered a sequence index for 𝕕. Currently,

𝜏𝑗 is the number of times that rewiring occurs in the j-th.

If this is summarized by Equation 1 for a distance based on an arbitrary node qi, it is as Equation

10. For example, as shown in Figure 5, if j is 0 and 1 a rewire occurs (𝜏0 = 1), it can be represented in

combination with the distance relationship of Equation 8 for qchild, as in Equation 11:

𝕦𝑘𝑗(𝑞𝑖) = 𝐷(𝜉
𝑘′𝑗(𝑞𝑖), 𝜉

𝑘𝑗+1(𝑞𝑖)), (10)

𝕕0(𝑞𝑐ℎ𝑖𝑙𝑑) + 𝕕1(𝑞𝑐ℎ𝑖𝑙𝑑) = ∑ 𝕕𝑛(𝑞𝑐ℎ𝑖𝑙𝑑)
1
𝑛=0 ≥ 𝕦𝑘0=1(𝑞𝑐ℎ𝑖𝑙𝑑). (11)

The result of Equation 11 can be generalized as shown in Equation 12:

∴ ∑ 𝕕𝑛(𝑞𝑖)
𝑘𝑗
𝑛=0 ≥ 𝕦𝑘𝑗(𝑞𝑖). (12)

For 𝕕 based on an arbitrary node qi, the path length ∑ 𝕕𝑛
𝑘𝑗
𝑛=𝑗

 from the j-th to kj-th arbitrary

sequence index is always longer or equal to the distance 𝕦𝑘𝑗 of the kj-th sequence index. That is, in

an arbitrary path, it can be confirmed that the distance 𝕦 rewired by the Triangular-Rewiring

method is at least equal (If the distances of 𝕕 and 𝕦 are the same, the rewired line segments are on

a straight line) or always shorter than 𝕕 when not rewired.

(a)

(b)

(c)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

(d)

(e)

(f)

Figure 6. Detailed process of the Triangular-Rewiring method: (a) Each node q for index i (at this time,

qstart is same as q7 and qgoal is same as q0); (b) Represent each node using the n-th ancestor 𝜉𝑛 of q0; (c)

Each distance 𝕕𝑛 between the n-th and (n + 1)-th ancestor nodes of q0; (d) When the Triangular-

Rewiring method is applied and rewired by distance 𝕦𝑘𝑗; (e) Represent as the value of kj; (f) Represent

each node by the n-th ancestor 𝜉𝑛 of q0 after method is applied.

Figure 6 shows the Triangular-Rewiring process for the path from qstart to qgoal based on Equations

5–12 (at this time, it is assumed that the node of the path shown in the figure is not positioned in a

straight line). As shown in Figure 6 (b), a total of two rewires occurred (𝜏0 = 2) between q0 and q3

(𝜉3(𝑞0)), and a total of one rewire occurred (𝜏3 = 1) between q5 (𝜉5(𝑞0)) and q7 (𝜉7(𝑞0)). In that case,

as shown in Figure 6 (e), k0 is 2, k1 is 3, k2 is 4, and k3 is 6 according to Equation 9.

Comparing Figures 6 (c) and 6 (e), according to Equation 7, the rewired distance 𝕦2(𝑞0) is

shorter than the path length ∑ 𝕕𝑛(𝑞0)
2
𝑛=0 from 𝕕0 to 𝕕2 and the rewired distance 𝕦6(𝑞0) is

shorter than the path length ∑ 𝕕𝑛(𝑞0)
6
𝑛=5 from 𝕕5 to 𝕕6. That is, when comparing before applying

the Triangular-Rewiring method in Figure 6 (a) and after applied this method in Figure 6 (f), the path

afterward looks shorter.

Equations 13 and 14 show the path length 𝔻𝑅 when the Triangular-Rewiring method is not

applied and the path length 𝕌𝑅 when the method has been applied for an arbitrary path (start

position: qstart, goal position: qgoal), as shown in Figure 6:

𝑘𝜑 = 𝛿, (13)

𝔻𝑅 = ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 = ∑ ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)

𝑘𝑗
𝑛=𝑘′𝑗

𝜑
𝑗=0 , 𝕌𝑅 = ∑ 𝕦𝑘𝑗(𝑞𝑔𝑜𝑎𝑙)

𝜑
𝑗=0 , (14)

Equation 13 shows the upper limit when the index n of d is δ in Equation 3; when this is

substituted into the sequence index kj, if kj is δ, j becomes φ. In that case, as in Equation 14, 𝔻𝑅 is

used to compare the ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 shown in Equation 4 with 𝕌𝑅, reflecting the sequence kj. It can

be represented as ∑ ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑
𝑗=0 , and 𝕌𝑅 can be represented as ∑ 𝕦𝑘𝑗(𝑞𝑔𝑜𝑎𝑙)

𝜑
𝑗=0 .

Equation 15 shows when the equation summarized in Equation 14 is substituted into Equation

12:

∴ 𝔻𝑅 ≥ 𝕌𝑅. (15)

Finally, as can be confirmed using Equation 15, 𝕌𝑅 as a result of applying the Triangular-

Rewiring method to the distance of an arbitrary path (start position: qstart, goal position: qgoal) is at least

equal (If the distances of 𝔻 and 𝕌 are the same, when the rewired line segments are on a straight

line) to or always shorter than 𝔻𝑅; as a result, this method is not applied.

Equations 16–18 show the path length 𝔻𝐴 of the path from the start position (root node) of Ta

to the last (inserted node) position qnewA and the path length 𝕌𝐴 when the Triangular-Rewiring method

has been applied to the path. In addition, it shows that 𝕌𝐴 is at least equal to or always shorter than

𝔻𝐴:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

𝜉𝛿𝐴+1(𝑞𝑛𝑒𝑤𝐴) = 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑘𝜑𝐴 = 𝛿𝐴, (16)

𝔻𝐴 = ∑ ∑ 𝕕𝑛(𝑞𝑛𝑒𝑤𝐴)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑𝐴
𝑗=0 , 𝕌𝐴 = ∑ 𝕦𝑘𝑗(𝑞𝑛𝑒𝑤𝐴)

𝜑𝐴
𝑗=0 , (17)

∴ 𝔻𝐴 ≥ 𝕌𝐴. (18)

Equations 19–21 show the path length 𝔻𝐵 of the path from the start position (root node) of Tb

to the last (inserted node) position qnewB and the path length 𝕌𝐵 when the Triangular-Rewiring method

has been applied to the path. In addition, it shows that 𝕌𝐵 is at least equal to or always shorter than

𝔻𝐵:

𝜉𝛿𝐵+1(𝑞𝑛𝑒𝑤𝐵) = 𝑞𝑔𝑜𝑎𝑙 , 𝑘𝜑𝐵 = 𝛿𝐵, (19)

𝔻𝐵 = ∑ ∑ 𝕕𝑛(𝑞𝑛𝑒𝑤𝐵)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑𝐵
𝑗=0 , 𝕌𝐵 = ∑ 𝕦𝑘𝑗(𝑞𝑛𝑒𝑤𝐵)

𝜑𝐵
𝑗=0 , (20)

∴ 𝔻𝐵 ≥ 𝕌𝐵. (21)

Therefore, Equations 16 and 19 can be derived from Equations 3 and 13, Equations 17 and 20

from Equation 14, and Equations 18 and 21 from Equation 15.

As a result, Equations 22 and 23 show that RRT-Connect with the proposed Triangular-Rewiring

method is at least the same or better in terms of path length than the RRT-Connect algorithm without

the method:

𝔻𝑅 = 𝔻𝐴 +𝔻𝐵 + 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵), 𝕌𝑅 ≤ 𝕌𝐴 + 𝕌𝐵 + 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵), (22)

∴ 𝔻𝑅 ≥ 𝔻𝐴 +𝔻𝐵 ≥ 𝕌𝐴 + 𝕌𝐵 ≥ 𝕌𝑅. (23)

𝔻𝑅 (Eq. 4), which refers to the path length of the RRT-Connect algorithm path without the

Triangular-Rewiring method, is represented by the sum of the distance 𝔻𝐴 of the partial path Pa (Eq.

17), the distance 𝔻𝐵 of the partial path Pb (Eq. 20), and the distance 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵) between qnewA

and qnewB as shown in Equation 22.

𝕌𝑅 (Eq. 14), which refers to the path length of the RRT-Connect algorithm path with the

Triangular-Rewiring method, is equal to or shorter than the sum of the distance 𝕌𝐴 of the partial path

Pa for the RRT-Connect (Eq. 17), the distance 𝕌𝐵 of the partial path Pb (Eq. 20), and the distance

𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵) between qnewA and qnewB as shown in Equation 22.

Here, Equation 23 shows that 𝕌𝑅 is at least equal to or shorter than 𝔻𝑅 in the RRT algorithm

summarized in Equation 15, and it is used efficiently in the RRT-Connect algorithm.

4.3. Pseudocode of Proposed Extend Method for the Improved RRT-Connect Algorithm

This section introduces the Extend method in the proposed triangular inequality-based RRT-

Connect algorithm. This proposed Extend method (A5) replaces the Extend method (A3) in the

pseudocode of the RRT-Connect algorithm (A2).

Algorithm 5. Pseudocode of the Proposed Extend Method for the RRT-Connect Algorithm.

Input:

Ta ← Tree Ta from RRT-Connect

Tb ← Tree Tb from RRT-Connect

qnewB ← Position qnewB from RRT-Connect

qrand ← Position qrand from RRT-Connect

λ ← Step Length λ from RRT-Connect

C ← Position Set C from RRT-Connect

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Output:

ftrap ← Result of Boolean ftrap

Ta ← Result of Tree Ta // Return by Reference

Tb ← Result of Tree Tb // Return by Reference

qnewB ← Result of Position qnewB // Return by Reference

Initialize:

ftrap ← False

Begin Extend Procedure from RRT-Connect

1 qnear ← Find Position of Nearest Node in Ta from qrand

2 If Not isInside(qnear, qrand, λ) then

3
qnewA ← Position of Intersection Point between Line Segment connecting qrand and qnear, and

Circle with Radius λ centered at qnear // 2D: Circle, 3D: Sphere, …

4 Else

5 qnewA ← qrand

6 If isTrapped(qnewA, qnear, C) then

7 ftrap ← True

8 Else

9 Ta ← triangularRewiring(qnewA, qnear, Ta, C)

10 qnear ← Find Position of Nearest Node in Tb from qnewA

11 If isInside(qnear, qnewA, λ) then

12 qnewB ← qnear

13 Else

14
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear,

and Circle with Radius λ centered at qnear // 2D: Circle, 3D: Sphere, …

15 While Not isTrapped(qnewB, qnear, C) do

16 Tb ← triangularRewiring(qnewB, qnear, Tb, C)

17 If Not isInside(qnewA, qnewB, λ) then

18 qnear ← qnewB

19
qnewB ← Position of Intersection Point between // 2D: Circle, 3D: Sphere, …

Line Segment connecting qnewA and qnear, and Circle with Radius λ centered at qnear

20 Else

21 Break

End Extend Procedure from RRT-Connect

Algorithm 5 is the application of the Triangular-Rewiring method (A4) to the original Extend

method (A2) of the RRT-Connect algorithm. Compared to the original Extend method, the part where

a node is newly inserted in the tree in lines 9 and 16 is inserted through the Triangular-Rewiring

method. Other than that, the contents are the same as the original Extend method.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 7. Proposed Extend method for the RRT-Connect algorithm.

Figure 7 shows the application of the Triangular-Rewiring method to Figure 3, which shows the

Extend method of the RRT-Connect algorithm. In Ta, qnewA and qstart are rewired and qnear and qgoal, and

qnewB and qgoal are rewired sequentially in the process of extending from Tb to Ta.

4.4. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm

This section introduces the Connect method in the proposed triangular inequality-based RRT-

Connect algorithm. This proposed Connect method (A6) replaces the Connect method (A4) in the

pseudocode of the RRT-Connect algorithm (A2).

Algorithm 6. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm.

Input:

Preach ← Path Preach from RRT-Connect

Ta ← Tree Ta from RRT-Connect

Tb ← Tree Tb from RRT-Connect

qnewB ← Position qnewB from RRT-Connect

λ ← Step Length λ from RRT-Connect

Output:

freach ← Result of Boolean freach

Preach ← Result of Path Pmerged // Return by Reference

Initialize:

freach ← False

Begin Connect Procedure from RRT-Connect

1 If isInside(qnewA, qnewB, λ) then

2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta

3 Pb ← Path from qnewB to Root Node [qgoal] in Tb

4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb

5
Tmerged ← Tree Structure with Merge Path Pa to Pb via Pconnect

// 1st Insert: qstart, …, n-th Insert: qnewA, (n + 1)-th Insert: qnewB, …, Last Insert: qgoal to Tmerged

6 For i ← Inserted Index of qnewA in Tmerged to (Number of Node in Tmerged) – 1 do

7 qnew ← (i – 1)-th Inserted Node in Tmerged

8 qnear ← i-th Inserted Node in Tmerged

9 Tmerged ← triangularRewiring(qnew, qnear, Tmerged, C)

10 Pmerged ← Path from Root Node [qstart] to Last Inserted Node [qgoal] in Tmerged

11 freach ← True

End Connect Procedure from RRT-Connect

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Algorithm 6 is an application of the Triangular-Rewiring method (A4) to the Connect method (A3)

of the RRT-Connect algorithm. Compared to the original Connect method, it has been changed to

apply the method to the merged tree by considering the Triangular-Rewiring method when merging

the path, which is in lines 5–10. Other than that, the contents are the same as the original Connect

method.

When paths Pa and Pb merge in a tree structure of line 5, nodes on the path are inserted in the

order of Pa, Pconnect, and Pb in the merged tree Tmerged. That is, in Tmerged, the root node becomes qstart, and

when the n-th inserted node at a certain point is qnewA, which is the last inserted node of Ta, the (n + 1)-

th inserted node becomes qnewB, which is the last inserted node of Tb. In addition, the last inserted node

of Tmerged becomes qgoal.

Then, the Triangular-Rewiring method is applied to this Tmerged. Since it is applied to the tree itself,

it determines whether rewiring is possible for all nodes inserted in the tree, and rewires and updates

the tree if possible. However, since each node from Ta to Tb is inserted into Tmerged, it is not necessary

to rewire Ta for which the Triangular-Rewiring process has already been performed. Therefore, the

Triangular-Rewiring process proceeds in the direction of Tb from the qnewA sequence inserted in Tmerged.

Here, if qnewA is the i-th inserted node, the first node pair to be determined is the (i - 1)-th node qnew (as

qchild) and i-th node qnear (as qparent). When all nodes inserted in Tmerged have been determined, the tree

structure Tmerged is converted into the path Pmerged and the method terminates (True).

Figure 8. Proposed Connect method for the RRT-Connect algorithm.

Figure 8 shows the Triangular-Rewiring method applied to Figure 4, which shows the Connect

method of the RRT-Connect algorithm. When the paths Pa and Pb created from the trees Ta and Tb are

merged and the Triangular-Rewiring method has been applied (assuming there is no obstacle between

qstart and qgoal), the result is Pmerged in which qstart and qgoal are connected with a straight line.

4.5. Process of the Proposed Triangular Inequality-based RRT-Connect Algorithm

Figure 9 in this section shows the path-planning process of the proposed algorithm by applying

the Triangular-Rewiring method to the Extend and Connect methods of the RRT-Connect algorithm.

(a)

(b)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

(c)

(d)

(e)

(f)

Figure 9. Detailed process of the proposed algorithm: (a) Start position qstart from tree Ta and goal

position qgoal from tree Tb; (b) Create qnewA nearest to Ta from 1st random sampling position qrand and

create qnewB from qgoal nearest to Tb; (c) Create new qnewA from qnear nearest to Tb from the second random

sampling position qrand and rewire between qnewA and qgoal the ancestor of the qnewA; (d) Create a new

qnewA from qnear nearest to Ta from the third random sampling position qrand and rewire between qnewA

and qstart with the ancestor of qnewA; (e) Create new qnewA from qnear nearest to Ta from the fifth random

sampling position qrand and connect between qnewA and qnewB nearest to Tb from qnewA; (f) Result of Path

R from qstart to qgoal.

Figure 9 shows planning a path from the start position qstart to the goal position qgoal through the

proposed algorithm, as shown in Figure 9 (a).

In Figure 9 (b), the first random sample is generated at position qrand and qnewA is created at a

position separated by the length of λ from qstart in the direction of the position, and qnewA is extended

once by the length of λ in the direction of qnewA from qgoal. At this time, since there is no intermediate

node between qnewA and qstart, the Triangular-Rewiring process is skipped.

In Figure 9 (c), a second random sample is generated at the qrand position, and in the direction of

the position, qnewA is updated at a location separated by λ length from the nearest node qnear in the tree

and rewired between qnewA and qgoal. In this case, since the tree on the opposite side collides with an

obstacle to extend in the qnewA direction, the Extend process is skipped. In addition, it is assumed that

Swap occurs between Ta with initial qstart as the root node and Tb with initial qgoal as the root node

between each figure.

In Figure 9 (d), as shown in Figure 9 (c), a third random sample is created at the qrand position

and at a position separated by the length of λ in the position direction, at the node qnear that is nearest

among nodes in the tree in the position direction, It shows updating qnewA to a position that is the

length of λ and rewires it between qnewA and qstart. Here, since it also collides with an obstacle to extend

in the direction of qnewA from the tree on the opposite side, the Extend process is skipped.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

In Figure 9 (e), the fifth random sample is generated at the qrand position and qnewA is located at a

position separated by the length of λ in the direction of the position, and qnewA is also at a position

separated by the length of λ from the nearest node qnear among nodes in the tree toward the position.

It is shown when updating that qnewA merges into one tree through the Connect process because qnewA

is within range of the center of qnewB and the radius of λ. It is assumed that the fourth random sample

between Figure 9 (d) and Figure 9 (e) is generated inside the obstacle, so the qnewA generation process

is skipped. Figure 9 (f) shows the result of path R created as a merged tree by Connect as shown in

Figure 9 (e).

5. Experimental Results

To verify the performance of the proposed triangular inequality-based RRT-Connect algorithm

in this paper, the RRT algorithm, the RRT-Connect algorithm, and the proposed algorithm are

compared in various environment maps shown in the experimental environment through the

simulator.

Each algorithm was implemented based on the pseudocode (A1–9) shown in Chapters 3 and 4

(For the RRT algorithm, refer to the pseudocode (AS1) in Appendix A), and the performance

measures used for comparison of various algorithms are Number of sampling (samples), Path length

(pixels), and Planning time (milliseconds). And each performance measure is experimented with 50

trials from the same start point to the same goal point until the first path has been found). Among the

performance measures, as the number of samples decreases, the cost of recalculation in a dynamic

environment also decreases, and the path length is a measure of the optimality of the path-planning

algorithm. In addition, the Step length (λ) is 30 pixels.

5.1. Experimental Environment

This section introduces the environment map used in the simulation and the simulator used in

the simulation with the computer’s performance.

Figure 10 shows the eight environmental maps used in this experiment. The green circle (S)

indicates the start point, the purple circle (G) indicates the goal point, and the black polygon on the

yellow (blue in the analysis of the experimental results) border indicates to the obstacle. All maps are

600 (horizontal) * 600 (vertical) pixels.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 10. Maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6;

(g) Map 7; (h) Map 8.

Many environmental maps were considered and used to verify the performance of various path-

planning algorithms including the RRT algorithm, [23–26]. Which environment map to use is

important because the expected performance measure varies depending on the obstacles’ placement

and shape among other properties.

In this paper, to check the proposed algorithm’s performance, the eight maps shown in Figure

10 were benchmarked in the experimental environment of the paper [27] proposed by Jihee Han in

2017, and each map is expected to have the following features:

Map 1 in Figure 10 (a) seems to be an environment in which it is easy to verify the completeness

of the path-planning algorithm. Map 2 in Figure 10 (b) seems to be an environment in which it is also

easy to verify the completeness of the path-planning algorithm, and the environment is mainly used

to show the solution for the Local Minima problem [28] in the artificial potential field algorithm [26].

Map 3 in Figure 10 (c) seems to be an environment in which it is easy to verify the optimality and

completeness of the path-planning algorithm and is an environment that is unfavorable to random

sampling path-planning algorithms such as the RRT algorithm. Map 4 in Figure 10 (d) seems to be

an environment in which it is easy to verify the optimality and the planning time for the path-

planning algorithm, and the Cell Decomposition algorithm, which increases the computation cost as

the angle of obstacle increases, is an unfavorable environment [29]. Map 5 in Figure 10 (e) seems to

be an environment in which it is also easy to verify the optimality and planning time of the path-

planning algorithm; for the same reason as Map 4, the cell decomposition algorithm is an unfavorable

environment. Map 6 in Figure 10 (f) seems to be an environment in which it is easy to verify the

optimality, completeness, and planning time of the path-planning algorithm, and it is an environment

for comprehensively evaluating the performance. Map 7 in Figure 10 (g) seems to be an environment

in which it is easy to verify the completeness and optimality of the path-planning algorithm, and for

the same reason as Map 2, it is the environment used in the Artificial Potential Field algorithm. Lastly,

Map 8 in Figure 10 (h) seems to be an environment in which it is easy to verify the completeness and

planning time of the path-planning algorithm and yet is unfavorable to random sampling path-

planning algorithms such as the RRT algorithm.

Since random sampling path-planning algorithms such as the RRT algorithm rely on

probabilistic completeness, the number of samples and the planning time are extremely increased as

long as there are narrow or fewer entrances for directions to the goal.

Table 1. Computer performance for simulation.

H/W Specification

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs)

RAM 32768MB (32 GB DDR4)

VGA Nvidia GeForce GTX 1080 (VRAM 8 GB) SLI (x2)

Table 1 shows the specifications of the computer used in the simulation. The simulator was

developed in C# language (Microsoft Visual Studio Community 2019 version 16.1.6; Microsoft .NET

Framework version 4.8.03752), and except for the visual part, only a single thread was used for the

calculation. Differences in planning time may occur depending on the computer’s performance

capability.

5.2. Experimental Results and Analysis for Each Map

This section checks the experimental results (on average, the number of samples, path length,

and planning time) of each algorithm: RRT, RRT-Connect, the proposed algorithm in the eight

environment maps (Fig. 10) presented in the experimental environment. Each map shows a figure of

the path-planning result (of one trial) for each algorithm and the experimental results for the

performance measure are shown numerically in a table (The figure for each algorithm is for one trial

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

rather than the average of repeated trials and it may differ from the performance measure both

visually and by the average numerical performance measure of the repeated trials shown in the table.

In particular, the number of samples differs greatly).

The values shown in Tables 2–9 can be expressed as Equations 24 and 25 as follows:

𝐴𝑐𝑚𝑝(𝑖) = ∑ 𝑎𝑐𝑚𝑝𝑘
(𝑖)𝑇

𝑘=0 /𝑇, (24)

Here, 𝐴𝑐𝑚𝑝(𝑖) refers to the performance value of each algorithm shown in Tables 2–9, cmp is the

algorithm to be compared, i is the index of the environment map (X-axis in Figures 19–21 (b)), k is the

repeat index, and T is the number of repeats (𝑎𝑐𝑚𝑝𝑘
(𝑖) is the value of the performance measure a for

the k-th implementation of the cmp algorithm in Map i). Fifty repetitions are performed for the

experiment in this paper. That is, Equation A shows the average value of the performance when it is

repeated T times to check the performance of a certain algorithm in Map i,

∴ 𝑥𝑐𝑚𝑝(𝑖) = 𝐴𝑐𝑚𝑝(𝑖) 𝐴𝑅𝑅𝑇(𝑖)⁄ , (25)

Here, 𝑥𝑐𝑚𝑝(𝑖) refers to the Y-axis in Figures 19–21 (a) and A is the value of the corresponding

performance measure of the algorithm to be compared (𝐴𝑅𝑅𝑇 is the value of the RRT algorithm).

In each path-planning result figure, the white circles indicate nodes on the path and the yellow

line segments indicate edges between nodes. The gray circles and segments are paths (trees) that have

been excluded during path planning. In each path-planning result table, based on 100% of the RRT

algorithm for each performance measure, the difference is indicated along with the value of the

corresponding performance measure unit.

(a)

(b)

(c)

Figure 11. Experimental result of Map 1: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 11 shows the path-planning results of Map 1 among the environmental maps for each

algorithm. Visually, the number of samples looks similar to the RRT-Connect algorithm in Figure 11

(b) and the proposed algorithm in Figure 11 (c) is comparable to the RRT algorithm in Figure 11 (a),

and the path length looks similar for all three algorithms.

Table 2. Experimental result of Map 1 (The parentheses to the right of each value are relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(1))).

Performance (𝑨𝒄𝒎𝒑(𝟏)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 1,216 (100) 729 (60) 823 (68)

Avg. Path length [px] 1,341 (100) 1,343 (100) 1,200 (89)

Avg. Planning time [ms] 12 (100) 7 (58) 10 (83)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Table 2 shows the path-planning results (after repeating the trial 50 times) in Map 1 for each

algorithm. The average number of samples is the smallest in RRT-Connect algorithm at 60%, and the

proposed algorithm is 68% compared to the RRT algorithm, which is 8% less efficient than the RRT

algorithm compared to the RRT-Connect algorithm. The average path length is shortest for the

proposed algorithm at 89% compared to the RRT algorithm, with little difference in the RRT-Connect

algorithm at 100%, and 11% less efficient than the proposed algorithm. The average planning time is

the shortest for the RRT-Connect algorithm at 58% compared to the RRT algorithm, and the proposed

algorithm is 83% compared to the RRT algorithm, i.e., 15% less efficient than the RRT algorithm.

(a)

(b)

(c)

Figure 12. Experimental results of Map 2: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 12 shows the path-planning results of Map 2 among the environmental maps for each

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 12

(b) and the proposed algorithm in Figure 12 (c) compared to the RRT algorithm in Figure 12 (a), and

the path length looks shortest for the proposed algorithm.

Table 3. Experimental result of Map 2 (The parentheses to the right of each value are the relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(2))).

Performance (𝑨𝒄𝒎𝒑(𝟐)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 271 (100) 101 (37) 113 (42)

Avg. Path length [px] 598 (100) 613 (98) 484 (81)

Avg. Planning time [ms] 6 (100) 3 (50) 3 (50)

Table 3 shows the path-planning result (after repeating the trials 50 times) in Map 2 for each

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 37%, and the

proposed algorithm is 42% compared to the RRT algorithm, which is 5% less efficient than RRT

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed

algorithm is the shortest at 81% compared to the RRT algorithm, while the RRT-Connect algorithm

is 98%, which is 17% less efficient than the RRT algorithm compared to the proposed algorithm. The

average planning time for the proposed algorithm and the RRT-Connect shows the same

performance as the RRT algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

(a)

(b)

(c)

Figure 13. Experimental result of Map 3: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 13 shows the path planning results of Map 3 among the environmental maps for each

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 13

(b) and the proposed algorithm in Figure 13 (c) compared to the RRT algorithm in Figure 13 (a), and

the path length looks shortest for the proposed algorithm.

Table 4. Experimental result of Map 3 (The parentheses to the right of each value are the relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(3))).

Performance (𝑨𝒄𝒎𝒑(𝟑)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 6,106 (100) 4,574 (75) 4,679 (77)

Avg. Path length [px] 1,934 (100) 1,871 (97) 1,489 (77)

Avg. Planning time [ms] 866 (100) 299 (35) 313 (36)

Table 4 shows the result (after repeating the trial 50 times) of path planning in Map 3 for each

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 75%, and the

proposed algorithm is 77% compared to the RRT algorithm, which is 2% less efficient than the RRT

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed

algorithm is the shortest at 77% compared to the RRT algorithm and the RRT-Connect algorithm is

97%, which is 20% less efficient than the RRT algorithm compared to the proposed algorithm. The

average planning time is smallest for the RRT-Connect algorithm at 35%, and the proposed algorithm

is 36% compared to the RRT algorithm, which is 1% less efficient than the RRT algorithm compared

to the RRT-Connect algorithm.

(a)

(b)

(c)

Figure 14. Experimental result of Map 4: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Figure 14 shows the path planning results of Map 4 among the environmental maps for each

algorithm. Visually, the number of samples looks smallest for the RRT-Connect algorithm in Figure

14 (b) compared to the others and the path length looks shortest for the proposed algorithm in Figure

14 (c).

Table 5. Experimental result of Map 4 (The parentheses to the right of each value are relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(4))).

Performance (𝑨𝒄𝒎𝒑(𝟒)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 290 (100) 28 (10) 32 (11)

Avg. Path length [px] 711 (100) 588 (83) 534 (75)

Avg. Planning time [ms] 3 (100) 3 (100) 4 (133)

Table 5 shows the result (after repeating the trial 50 times) of path planning in Map 4 for each

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 10%, and the

proposed algorithm is 11% compared to the RRT algorithm, which is 1% less efficient than the RRT

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed

algorithm is the shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is

83%, which is 8% less efficient than the RRT algorithm compared to the proposed algorithm. The

average planning time is not different by 100% compared to the RRT algorithm, and the proposed

algorithm is 133% compared to the RRT algorithm, i.e., 33% less efficient than the others.

(a)

(b)

(c)

Figure 15. Experimental result of Map 5: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 15 shows the path planning results of Map 5 among the environmental maps for each

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 15

(b) and the proposed algorithm in Figure 15 (c) compared to the RRT algorithm in Figure 15 (a), and

the path length looks similar for the RRT-Connect algorithm and the proposed algorithm.

Table 6. Experimental result of Map 5 (The parentheses to the right of each value are the relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(5))).

Performance (𝑨𝒄𝒎𝒑(𝟓)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 371 (100) 68 (18) 74 (20)

Avg. Path length [px] 554 (100) 588 (106) 465 (84)

Avg. Planning time [ms] 13 (100) 2 (15) 2 (15)

Table 6 shows the results (after repeating the trial 50 times) of path planning in Map 5 for each

algorithm. The average number of samples is smallest in RRT-Connect algorithm at 18%, and the

proposed algorithm is 20% compared to the RRT algorithm, which is 9% less efficient than the RRT

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed

algorithm is the shortest at 84% compared to the RRT algorithm and the RRT-Connect algorithm is

106%, which is 22% less efficient compared to the proposed algorithm. The average planning time for

the proposed algorithm and the RRT-Connect algorithm is 15% over the RRT algorithm, showing the

same performance.

(a)

(b)

(c)

Figure 16. Experimental result of Map 6: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 16 shows the path-planning results of Map 6 among the environmental maps for each

algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 16 (c)

compared to others, and the path length looks shortest for the proposed algorithm.

Table 7. Experimental result of Map 6 (The parentheses to the right of each value are the relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(6))).

Performance (𝑨𝒄𝒎𝒑(𝟔)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 541 (100) 184 (34) 140 (26)

Avg. Path length [px] 886 (100) 778 (88) 668 (75)

Avg. Planning time [ms] 9 (100) 6 (67) 4 (44)

Table 7 shows the result (after repeating the trial 50 times) of path planning in Map 6 for each

algorithm. The average number of samples is smallest in the proposed algorithm at 26% and the RRT-

Connect algorithm is 34% compared to the RRT algorithm, which is 8% less efficient than RRT

algorithm compared to the proposed algorithm. The average path length of the proposed algorithm

is the shortest at 75% compared to the RRT algorithm, and the RRT-Connect algorithm is 88%, which

is 13% less efficient than the proposed algorithm. The average planning time is smallest in the

proposed algorithm at 44%, and the RRT-Connect is 67% compared to the RRT algorithm, which is

23% less efficient than the RRT algorithm compared to the proposed algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

(a) (b) (c)

Figure 17. Experimental result of Map 7: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 17 shows the path planning results of Map 7 among the environmental maps for each

algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 17 (c)

compared to others, and the path length looks shortest for the proposed algorithm.

Table 8. Experimental result of Map 7 (The parentheses to the right of each value are relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(7))).

Performance (𝑨𝒄𝒎𝒑(𝟕)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 436 (100) 235 (54) 244 (56)

Avg. Path length [px] 898 (100) 862 (96) 674 (75)

Avg. Planning time [ms] 5 (100) 4 (80) 3 (60)

Table 8 shows the result (after repeating the trial 50 times) of path planning in Map 7 for each

algorithm. The average number of samples is smallest in RRT-Connect algorithm at 54%, and the

proposed algorithm is 56% compared to the RRT algorithm, which is 2% less efficient than RRT

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed

algorithm is shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is 96%,

which is 21% less efficient compared to the proposed algorithm. The average planning time is

smallest in the proposed algorithm at 60%, and RRT-Connect is 80% compared to the RRT algorithm,

which makes it 20% less efficient than the RRT algorithm compared to the proposed algorithm.

(a)

(b)

(c)

Figure 18. Experimental result of Map 8: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 18 shows the path planning results of Map 8 among the environmental maps for each

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 18

(b) and the proposed algorithm in Figure 18 (c) compared to the RRT algorithm in Figure 18 (a), and

the path length looks shortest for the proposed algorithm.

Table 9. Experimental result of Map 8 (The parentheses to the right of each value are the relative ratios

based on RRT 100% (𝑥𝑐𝑚𝑝(8))).

Performance (𝑨𝒄𝒎𝒑(𝟖)) RRT RRT-Connect
Proposed

Algorithm

Avg. Num. of Samples [samples] 17,033 (100) 3,031 (18) 2,954 (17)

Avg. Path length [px] 1,611 (100) 1,576 (98) 1,358 (84)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Avg. Planning time [ms] 4,501 (100) 119 (3) 125 (3)

Table 9 shows the result (after repeating the trial 50 times) of path planning in Map 8 for each

algorithm. The average number of samples is smallest in the proposed algorithm at 17%, and the

RRT-Connect algorithm is 18% compared to the RRT algorithm, which is 1% less efficient than RRT

algorithm compared to the proposed algorithm. The average path length of the proposed algorithm

is the shortest at 84% compared to the RRT algorithm, and the RRT-Connect algorithm is 98%, which

is 14% less efficient compared to the proposed algorithm. The average planning time of the proposed

algorithm and the RRT-Connect algorithm is 3% over the RRT algorithm, showing the same

performance.

5.3. Experimental Results and Analysis in Total

This section comprehensively presents the experimental results (on average, number of samples,

path length, and planning time) for each algorithm: RRT, RRT-Connect, and the proposed triangular

inequality-based RRT-Connect algorithm, in the eight environmental maps (Fig. 10) shown in Section

5.2.

Figures 19 (a), 20 (a), and 21 (a) show the performances of the RRT-Connect algorithm and the

proposed algorithm when the RRT algorithm’s performance is set to 100% for each environment map.

The (b) of each figure shows the performance average of all environment maps for each algorithm.

The values shown in (a) of Figures 19–21 can be expressed as in Equations 24 and 25 and the values

shown in (b) can be expressed as Equation 26 below:

𝑋𝑐𝑚𝑝 = ∑ 𝑥(𝑖)𝑐𝑚𝑝
𝑀
𝑖=0 𝑀⁄ , (26)

Here, 𝑋𝑐𝑚𝑝 refers to the Y-axis in (b) of Figures 19–21 and M is the number of environment maps

used in the experiment. The experiment in this paper includes eight maps. That is, Equation 26 shows

the average value of i for all maps in Equation 25.

(a)

(b)

Figure 19. Experimental results in total for the average number of samples(for first path finding): (a)

result of each map compared with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared with the

RRT algorithm (𝑋𝑐𝑚𝑝).

Figure 19 shows the average number of samples [%] compared with the RRT algorithm for Maps

1–8 (after repeating the trial 50 times) and the average number of samples [%] compared with the

average result of each algorithm for each map (after repeating the trials 50 times) when the result of

RRT algorithm is considered 100%.

As shown in Figure 19 (b), the average number of samples for all environment maps was 38%

less in the RRT-Connect algorithm and 40% less in the proposed algorithm compared to the RRT

algorithm. The proposed algorithm is 2% less efficient than the RRT-Connect algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

Table 10. Experimental results in total for the average number of samples(for first path finding) [%].

Algorithm (cmp)
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg.

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100

RRT-Connect 60 37 75 10 18 34 54 18 38

Proposed 68 42 77 11 20 26 56 17 40

Table 10 is the data table of Figure 19 (a). The proposed algorithm shows better performance

than the RRT-Connect algorithm for Maps 6 and 8 and the RRT-Connect algorithm shows better

performance than the proposed algorithm in Maps 1–5 and 7. However, the difference is not

significant for most of the maps, such as showing a 2% difference from the map average. There are

cases in which the proposed algorithm is 1–8% better than the RRT-Connect algorithm and there are

cases in which the RRT-Connect algorithm is 1–8% better than the proposed algorithm.

(a)

(b)

Figure 20. Experimental results in total for the average path length: (a) result of each map compared

with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared with the RRT algorithm (𝑋𝑐𝑚𝑝).

Figure 20 shows the average path length [%] compared to the RRT algorithm for Maps 1–8 (after

repeating the trials 50 times), and the average path length [%] compared with the average result of

each algorithm for each map (again after repeating the trials 50 times) where the result of the RRT

algorithm was considered as 100%.

As shown in Figure 20 (b), the average path length for all environment maps was 96% less in the

RRT-Connect algorithm and 80% less in the proposed algorithm compared to the RRT algorithm. The

proposed algorithm is 16% more efficient than the RRT-Connect algorithm.

Table 11. Experimental results in total on the average path length [%].

Algorithm (cmp)
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg.

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100

RRT-Connect 100 98 97 83 106 88 96 98 96

Proposed 89 81 77 75 84 75 75 84 80

Table 11 is the data table of Figure 20 (a). The proposed algorithm shows better performance

than the RRT-Connect algorithm for all maps. The proposed algorithm is 8–21% better than the RRT-

Connect algorithm.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

(a)

(b)

Figure 21. Experimental results in total on the average planning time: (a) result of each map compared

with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared to the RRT algorithm (𝑋𝑐𝑚𝑝).

Figure 21 shows the average planning time [%] compared to the RRT algorithm for each map

(after repeating the trials 50 times), and the average planning time [%] compared with the average

result of each algorithm for each map (after repeating the trials 50 times) when the result of RRT

algorithm is considered 100%.

As shown in Figure 21 (b), the average planning time for all environment maps was 51% less in

the RRT-Connect algorithm and 53% less in the proposed algorithm compared to the RRT algorithm.

The proposed algorithm was 2% less efficient than the RRT-Connect algorithm.

Table 12. Experimental results in total for the average planning time [%].

Algorithm (cmp)
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg.

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

RRT 100 100 100 100 100 100 100 100 100

RRT-Connect 58 50 35 100 15 67 80 3 51

Proposed 83 50 36 133 15 44 60 3 53

Table 12 is the data table of Figure 21 (a). The proposed algorithm shows the same or better

performance for Maps 2 and 5–8 than the RRT-Connect algorithm. It shows worse performance for

Maps 1, 3 and 4 than the RRT-Connect algorithm. However, most of the maps show no significant

difference, such as showing a 2% difference from the map average. There are cases in which the

proposed algorithm is 20–23% better than the RRT-Connect algorithm and there are cases where the

RRT-Connect algorithm is 1–33% better than the proposed algorithm.

6. Conclusion

In this paper, we proposed a triangular inequality-based RRT-Connect algorithm using

triangular inequality principles to overcome the limitations in the optimality of the RRT-Connect

algorithm. We verified the validity of the Triangular-Rewiring method based on the triangular

inequality principle and applied it to the RRT-Connect algorithm to bring it closer to the optimum.

In addition, to check performance indicators such as the number of samples for finding the first path,

path length, and planning time of the proposed algorithm, we compared between the RRT and RRT-

Connect algorithms across a total of eight environments through simulation. On average, the

proposed algorithm showed 20% better efficiency than the RRT algorithm and 16% better efficiency

than the RRT-Connect algorithm in path length and 47% better efficiency than the RRT algorithm in

planning time but 2% worse efficiency than the RRT-Connect algorithm. In conclusion, the proposed

algorithm showed shorter paths than the RRT-Connect algorithm with a similar number of samples

and planning time.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

However, one of the limitations of the proposed algorithm is the Kinodynamic planning

problem [17]. When the intermediate node disappears by Triangular-Rewiring method, a non-

differentiable piecewise linear section with sharp corner may occurs, which cause a problem related

with the kinematic constraint of the robot.

Author Contributions: Idea and conceptualization: J.-G.K. , D.-W.L. and J.-W.J.; methodology: J.-G.K., D.-W.L.

and J.-W.J.; software: J.-G.K., D.-W.L. and J.-W.J.; experiment: J.-G.K., D.-W.L., W.-J.J. and J.-W.J.; validation: J.-

G.K., D.-W.L., Y.-S.C. and J.-W.J.; investigation: J.-G.K.; D.-W.L., Y.-S.C., W.-J.J. and J.-W.J.; resources: J.-G.K. and

J.-W.J.; writing: J.-G.K., D.-W.L., Y.-S.C., W.-J.J. and J.-W.J.; visualization: J.-G.K. and J.-W.J.; project

administration: J.-W.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Research Foundation of Korea(NRF) grant funded by the

Korea government(MSIT) (No. 2020R1F1A1074974), the KIAT(Korea Institute for Advancement of Technology)

grant funded by the Korea Government(MOTIE : Ministry of Trade Industry and Energy). (No. N0001884, HRD

program for Embedded Software R&D), the AURI(Korea Association of University, Research institute and

Industry) grant funded by the Korea Government(MSS : Ministry of SMEs and Startups). (No.S2938281, HRD

program for Enterprise linkages R&D) and the MSIT(Ministry of Science and ICT), Korea, under the

ITRC(Information Technology Research Center) support program(IITP-2020-2020-0-01789) supervised by the

IITP(Institute for Information & Communications Technology Planning & Evaluation).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Details of the RRT Algorithm

This section shows the pseudocode of the RRT algorithm used in the experiment of this paper,

designed based on the paper [13] in which the RRT algorithm was proposed. The RRT algorithm can

be represented by one main algorithm (AS1) and two additional functions (AS2 and AS3).

A.1. Pseudocode of the RRT Algorithm

This section shows the pseudocode of main algorithm (AS1) of the RRT algorithm used in the

experiment of this paper, designed based on the paper [13] in which the RRT algorithm was proposed.

Algorithm S1. Pseudocode of the RRT Algorithm.

Input:

qstart ← Position of Start Point

qgoal ← Position of Goal Point

λ ← Step Length

C ← Position Set of All Boundary Points in All Obstacles

N ← Number of Random Samples

Output:

R ← Result of Path R

Initialize:

T ← Null Tree

dshorter ← 0

Begin RRT Procedure

1 T ← Insert Root Node<qstart> to T

2 While 1 ← n to N do

3 Generate n-th Random Sample

4 qrand ← Position of n-th Random Sample

5 qnear ← Find Position of Nearest Node in T from qrand

6 If Not isInside(qnear, qrand, λ) then

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

7
qnew ← Position of Intersection Point between Line Segment connecting qrand and qnear,

and Circle with Radius λ centered at qnear // 2D: Circle, 3D: Sphere, …

8 Else

9 qnew ← qrand

10 If Not isTrapped(qnew, qnear, C) then

11 T ← Insert Node<qnew> and Edge<qnew, qnear> to T

12 If isInside(qnew, qgoal, λ) then

13 T ← Insert Node<qgoal> and Edge<qnew, qgoal> to T

14 Preach ← Path from Last Inserted Node [qgoal] to Root Node [qstart] in T

15 dreach ← Distance of Preach

16 If dshorter = 0 or dshorter > dreach then

17 R ← Preach

18 dshorter ← dreach

19 T ← Delete Node<qgoal> and Edge<qnew, qgoal> from T

End RRT Procedure

The root node of the initial tree T has qstart, and this qstart is the start point. From this qstart to the

goal position qgoal, random sample is generated N times, as required until the tree is expanded. qrand is

position of generated random sample, in which the node nearest to the tree T is qnear. At this time, the

position qnew created later varies depending on whether qrand is located inside a circle (or n-sphere),

with qnear as the center and step length λ as the radius. The function that determines this is isInside

(AS2), and if qrand is located inside the circle (or n-sphere) (True), qnew becomes qrand, and if it is not

located inside (False), qnew becomes the intersection point between the line segment connecting qrand

and qnear and the circle with λ centered at qnear. If there is no obstacle between qnew and qnear (False), qnew

is inserted into the tree as a child node of qnear of T. Currently, the function that determines whether

an obstacle exists between qnew and qnear is isTrapped (AS3) (in the isTrapped function, C refers to the set

of obstacles).

If qgoal is inside the radius of the λ with the newly inserted qnew as the center, it is considered to

have reached the goal point (by isInside function). If it is reached (True), qgoal is inserted as a child node

of node qnew of T.

For the tree T thus completed, the distance dreach is calculated for the path Preach to qstart and qgoal.

Currently, if dreach is smaller than the path length dshorter or reached first (dshorter = 0), the result path R

becomes Preach, and dshorter becomes dreach. At the end of the next N sampling, R becomes the final planned

path.

If the number of random samples remains, the above process is repeated. At this time, qgoal and

the edge connected to this node must be deleted from the tree, T. Otherwise, the tree structure will

break due to cyclic. As a result, when a graph structure is formed, the cost of path search increases

rapidly.

A.2. Pseudocode of the functions used in the RRT Algorithm

This section introduces additional functions used in pseudocode of the RRT algorithm (AS1) in

Section A.1. The isTrapped (AS2) function determines whether an obstacle collides, and the isInside

function (AS3) determines if the point exists inside the radius.

Algorithm S2. Pseudocode of the isInside Function from the RRT Algorithm.

Input:

qcenter ← Position {qnear / qnew} from RRT

qtarget ← Position {qrand / qgoal} from RRT

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

λ ← Step Length λ from RRT

Output:

f ← Result of Boolean f

Initialize:

f ← False

Begin isInside Procedure from RRT

1 d ← Distance of qcenter to qtarget

2 If λ ≥ d then

3 f ← True

End isInside Procedure from RRT

AS2 shows the isInside function among RRT pseudocodes shown in AS1. In the RRT algorithm,

it is determined whether qrand exists inside a circle (or n-sphere) with qnear as the center and λ as the

radius, or qgoal exists inside a circle (or n-sphere) with qnew as the center and λ as the radius.

In the isInside function, the position to be determined (qrand, qgoal, ...) is called qtarget, and the center

of radius (qnear, qnew, ...) is called qcenter. When the distance between qcenter and qtarget is d, if this d is less

than or equal to λ, it is determined that qtarget is the inside position (True).

Algorithm S3. Pseudocode of the isTrapped Function from the RRT Algorithm.

Input:

qnew ← Position qnew from RRT

qnear ← Position qnear from RRT

C ← Position Set of All Boundary Points in All Obstacles C from RRT

Output:

f ← Result of Boolean f

Initialize:

n ← 1

f ← True

Begin isTrapped Procedure from RRT

1 lq ← Line Segment connecting qnew and qnear

2 c ← Position Set of All Boundary Points of n-th Inserted Obstacle in C

3 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c

4 i ← 1

5 While Not Intersect between lq and lc do

6 lc ← Line Segment connecting i-th Inserted Position and (i + 1)-th Inserted Position in c

7 i ← i + 1

8 If i = (Number of Position in c) – 1 then

9 If Intersect between lq and lc then

10 Break

11 n ← n + 1

12 If n > (Number of Position Set in C) then

13 f ← False

14 Break

15 Else

16 c ← Position Set of All Boundary Points of n-th Inserted Obstacle in C

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

17 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c

18 i ← 1

End isTrapped Procedure from RRT

Algorithm S3 shows the isTrapped function among RRT algorithm pseudocodes shown in

Algorithm S1. In the RRT algorithm, it is used to determine whether an obstacle exists between the

line segment connecting qnew and qnear.

If the line segment connecting qnew and qnear is lq, and the set of positions formed by the n-th

obstacle in the set of obstacles C is c, then lc is the i-th and (i + 1)-th positions inserted in c (and the last

and 1st position). It is determined whether it intersects with lq for all line segments lc in the set of

positions of all obstacles, c, that C has. Currently, if any intersect occurs, AS3 returns True and stops

the procedure immediately. Otherwise, it determines all the line segments that can be lc and returns

False.

A.3. Basic Mathematical Modeling of the RRT Algorithm

This chapter introduces basic mathematical modeling in the RRT algorithm. The following

Equations, S1–S5, show that the coordinate value of qnew is calculated from the coordinate value of

qrand in the RRT algorithm:

𝑑 = √(𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x)
2 + (𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y)

2, (S1)

|𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x|: |𝑞𝑛𝑒𝑤 . x − 𝑞𝑛𝑒𝑎𝑟 . x| = 𝑑 ∶ 𝜆, (S2)

|𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y|: |𝑞𝑛𝑒𝑤 . y − 𝑞𝑛𝑒𝑎𝑟 . y| = 𝑑 ∶ 𝜆. (S3)

Equations S2-S3 shows the relationship between d and λ in Equation S1 through the similarity

ratios from qnear to qrand and from qnear to qnew:

∴ 𝑞𝑛𝑒𝑤 . x = {
𝑞𝑟𝑎𝑛𝑑 . x, 𝑑 ≤ 𝜆

|(𝜆|𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x| 𝑑⁄) + 𝑞𝑛𝑒𝑎𝑟 . x|, 𝑑 > 𝜆
, (S4)

∴ 𝑞𝑛𝑒𝑤 . y = {
𝑞𝑟𝑎𝑛𝑑 . y, 𝑑 ≤ 𝜆

|(𝜆|𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y| 𝑑⁄) + 𝑞𝑛𝑒𝑎𝑟 . y|, 𝑑 > 𝜆
, (S5)

Through these equations, the x and y coordinate values of qnew can be derived as shown in

Equations S4 and S5. In this case, d ≤ λ refers to a case where qrand exists in a position inside the λ

radius.

References

1. Schwab, K. The Fourth Industrial Revolution. Currency, 2017.

2. Sariff, N.; Buniyamin, N. An overview of autonomous mobile robot path planning algorithms. In

Proceedings of the IEEE 4th Student Conference on Research and Development, Selangor, Malaysia, 28-29

June 2006; pp. 183-188.

3. Roy, D. Visibility graph based spatial path planning of robots using configuration space algorithms.

International Journal of Robotics and Automation. 2009, 24, 1-9.

4. Katevas, N.I.; Tzafestas, S.G.; Pnevmatikatos, C.G. The approximate cell decomposition with local node

refinement global path planning method: path nodes refinement and curve parametric interpolation.

Journal of Intelligent and Robotic Systems. 1998, 22(3-4), 289-314.

5. Warren, C. W. Global Path Planning using Artificial Potential Fields. In Proceedings of the International

Conference on Robotics and Automation, Arizona, USA, 14-19 May 1989; Volume 1, pp. 316-321.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

6. LaValle, S.M. Motion planning part II: wild frontiers. IEEE Robotics Automation Magazine. 2011, 18(2), 108-

118.

7. Mac, T.T.; Copot, C.; Tran, D.T.; De Keyser, R. Heuristic approaches in robot path planning: a survey.

Robotics and Autonomous Systems. 2016, 86, 13-28.

8. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques

for self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles. 2016, 1(1), 33-55.

9. Karaman, S.; Frazzoli, E. Incremental sampling based algorithms for optimal motion planning. Robotics

Science and Systems VI. 2010, 104(2).

10. Brunner, M.; Bruggemann, B.; Schulz, D. Hierarchical Rough Terrain Motion Planning using an Optimal

Sampling based Method. In Proceedings of the IEEE International Conference on Robotics and Automation,

Karlsruhe, Germany, 6-10 May 2013; pp. 5539-5544.

11. Adiyatov, O.; Varol, H.A. Rapidly-exploring Random Tree Based Memory Efficient Motion Planning. In

Proceedings of the IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4-

7 August 2013; pp. 354–359.

12. LaValle, S.M.; Kuffner Jr, J.J. Randomized kinodynamic planning. The International Journal of Robotics

Research. 2001, 20(5). 378–400.

13. LaValle, S.M. Rapidly-exploring random trees: A new tool for path planning. Springer: London, UK, 1998.

14. Englot, B.; Hover, F.S. Sampling based coverage path planning for inspection of complex structures. 2012.

15. Kuffner Jr, J.J.; LaValle, S.M. RRT-connect: An Efficient Approach to Single-query Path Planning. In

Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, USA, 24-28

April 2000; Volume 2, pp. 995-1001.

16. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. Rrt∗-smart: Rapid Convergence Implementation of rrt∗

towards Optimal Solution. In Proceedings of the IEEE International Conference on Mechatronics and

Automation, Chengdu, China, 5-8 August 2012; pp. 1651-1656.

17. Jeong, I.-B.; Lee, S.-J.; Kim, J.-H. Quick-RRT*: triangular inequality based implementation of RRT* with

improved initial solution and convergence rate. Expert Systems with Applications. 2019, 123, 82-90.

18. Karaman, S.; Frazzoli, E. Sampling based algorithms for optimal motion planning. International Journal of

Robotics Research. 2011, 30(7), 846-894.

19. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling based Path Planning

Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Illinois, USA, 14-18 September 2014; pp. 2997-

3004.

20. Klemm, S.; Oberländer, J.; Hermann, A.; Roennau, A.; Schamm, T.; Zollner, J.M.; Dillmann, R. RRT*-

Connect: Faster, Asymptotically Optimal Motion Planning. In Proceedings of the IEEE International

Conference on Robotics and Biomimetics, Zhuhai, China, 6-9 December 2015; pp. 1670-1677.

21. Choudhury, S.; Scherer, S.; Singh, S. RRT*-AR: Sampling based Alternate Routes Planning with

Applications to Autonomous Emergency Landing of a Helicopter. In Proceedings of the IEEE International

Conference on Robotics and Automation, Karlsruhe, Germany, 6-10 May 2013; pp. 3947–3952.

22. Noreen, I.; Amna K.; Zulfiqar H. A comparison of RRT, RRT* and RRT*-smart path planning algorithms.

International Journal of Computer Science and Network Security. 2016, 16(10), 20.

23. da Silva Arantes, M.; Toledo, C.F.M.; Williams, B.C.; Ono, M. Collision-free encoding for chance-

constrained nonconvex path planning. IEEE Transaction on Robotics. 2019, 35(2), 433-448.

24. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous

environment using an enhanced genetic algorithm. Expert Systems with Applications. 2019, 115, 106-120.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

25. Sung, I.; Choi, B.; Nielsen, P. On the training of a neural network for online path planning with offline path

planning algorithms. International Journal of Information Management. 2020, 102142.

26. Jeon, G.-Y.; Jung, J.-W. Water sink model for robot motion planning. Sensors. 2019, 19(6), 1269.

27. Han, J. Mobile robot path planning with surrounding point set and path improvement. Applied Soft

Computing. 2017, 57, 35-47.

28. Yoon, H.U.; Lee, D.-W. Subplanner algorithm to escape from local minima for artificial potential function

based robotic path planning. International Journal of Fuzzy Logic and Intelligent Systems. 2018, 18(4), 263-275.

29. Jung, J.-W.; So, B.-C.; Kang, J.-G.; Lim, D.-W.; Son, Y. Expanded Douglas–Peucker polygonal approximation

and opposite angle based exact cell decomposition for path planning with curvilinear obstacles. Applied

Sciences. 2019, 9(4), 638.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3

