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Abstract: This paper proposed a triangular inequality-based rewiring method for the Rapidly
exploring Random Tree (RRT)-Connect robot path-planning algorithm that guarantees the planning
time compared to the RRT algorithm, to bring it closer to the optimum. To check the proposed
algorithm’s performance, this paper compared the RRT and RRT-Connect algorithms in various
environments through simulation. From these experimental results, the proposed algorithm shows
both quicker planning time and shorter path length than the RRT algorithm and shorter path length
than the RRT-Connect algorithm with a similar number of samples and planning time.
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1. Introduction

With the recent fourth Industrial Revolution, interest in mobile robots has increased in various
fields such as robotics, smart factories, and autonomous driving [1]. Classical mobile robot path-
planning algorithms can be classified into three broad categories [2]. The first is the Road Map
Approach algorithm [3], which is easy to implement by designing a map that represents a path that
can be moved and plan through it. The second is Cell Decomposition algorithm [4], which creates a
path by dividing the configuration space into cells and connecting each cell using a graph. The last is
the Artificial Potential Field algorithm [5], which creates an artificial potential field and directs the
robot to the goal according to the flow of potential power.

Optimality means always ensuring the optimal path. Clearance indicates a lower probability of
collision between obstacles and the robot. Completeness means that if a path exists, it can always be
found. Optimality, clearance and completeness are considered important in these classical algorithms
and have been the main focus of study [6]. Particularly if completeness is not guaranteed by the robot
path-planning algorithm, there is a problem that the path may not be found in finite time. This is a
fatal problem in robot path planning.

Recently, sampling-based path-planning algorithms [7-12] such as Rapidly Exploring Random
Tree (RRT) [13], which is quicker and less computationally intensive than classical algorithms, have
been attracting attention. The main purpose of sampling-based algorithms is to find a path that can
reach the goal as quickly as possible using randomly extracted sample points (random sampling).
Unlike classical algorithms, sampling-based algorithms have difficulty fully reflecting the optimality
and completeness. Therefore, most sampling-based algorithms claim Probabilistic Completeness,
which explains that they can be probabilistically close to complete when random sampling is
repeated infinitely [14]. This means that it is difficult to guarantee the Planning time (First path finding
time), which refers to how quickly the path can be planned from the start point to the goal point, and
the Convergence rate, which means iterative sampling to bring the path closer to the optimum after
the first path has been found. If the situation does not allow enough time to plan the path, it can create
a path that is more different from the optimal path. Even so, the sampling-based algorithm is mainly
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used in dynamic environments because it enables quicker path planning with very little planning
time compared to classical algorithms.

To overcome these limitations of planning time and convergence rate, many studies are being
conducted to expand the RRT algorithm. The RRT-Connect [15] algorithm finds a connected path
more quickly than the RRT algorithm by setting the start point and goal point as the roots of separate
trees and expanding both trees alternately. In addition, there are algorithms that optimize paths
based on the principle of triangular inequality, such as RRT*-Smart algorithm [16] and Quick-RRT*
algorithm [17], to derive a path that is close to the optimal. Many algorithms [18-21] that extend the
RRT algorithm have been studied.

The above algorithms show more efficient performance by improving the RRT algorithm to
overcome the limitations of sampling-based methods but they are still not perfect. Their limitations
include being unable to derive the optimal length and there is room for improvement in terms of the
number of operations and time. For example, the RRT* algorithm has rewiring(search for the parent
node as a via point nearby a newly inserted node, where the addition of path length from the start
point to the via point and path length from the via point to the newly inserted node in the tree is the
optimized, and change the neighboring nodes to optimize the path length) and neighbor
search(search for nodes nearby the node to be newly inserted in the tree) processes to obtain shorter
path lengths than the RRT algorithm [18]. However, there is an efficiency trade-off in this process. In
other words, while the convergence rate has improved, the planning time has significantly increased
[22]. Therefore, the RRT* algorithm cannot be said to be better than the RRT algorithm in all
performance metrics and it can be said that the RRT* algorithm gets closer to the optimum at the
expense of planning time.

To overcome the limitation of getting closer to the optimum at the expense of planning time, this
paper proposes a triangular inequality-based RRT-Connect algorithm that finds an ancestor node as
a via point, where the addition of path length from the start point to the via point and path length
from the via point to the newly inserted node is the most optimized, based on the principle of
triangular inequality and RRT-Connect. The proposed algorithm shortens the planning time while
also pursuing optimization through rewiring. In addition, we will verify the efficiency by comparing
the RRT and RRT-Connect algorithms from previous studies through simulation experiments. As a
result, this paper shows that the proposed algorithm has a shorter path length than the RRT and RRT-
Connect algorithms without sacrificing other performance measures such as the number of sample
or planning time.

The scope of the research we will cover is how much more quickly it can find the path and how
much shorter the path is. This is because in a dynamic environment, it is more important to find a
navigable path. In a dynamic environment, there may not be enough time for convergence. In other
words, the purpose of our proposed algorithm is to improve the RRT-Connect algorithm so that it
can find a shorter path over the same planning time(computation time before convergence or
computation time for first path finding).
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Figure 1. Overview of the algorithms in this paper: (a) RRT; (b) RRT-Connect; (c) the proposed
algorithm.

Figure 1 shows an overview of the three main algorithms covered in this paper: RRT, RRT-
Connect, and the proposed algorithm. In this figure, the start gstt and goal points are ggoa, respectively.
The RRT algorithm in Figure 1 (a) shows that the path is expanded in a tree structure and the RRT-
Connect algorithm in Figure 1 (b) shows that the trees that are expanded at the start and goal points
attract and connect each other. The proposed algorithm in Figure 1 (c) shows that the RRT-Connect
algorithm was rewired into a triangular inequality during path planning.

In this paper, Chapter 2 introduces the RRT algorithm, Chapter 3 introduces the RRT-Connect
algorithm, and the triangular inequality-based RRT-Connect algorithm is proposed in Chapter 4. In
detail, Section 4.1 shows the pseudocode of the proposed rewiring method through the principle of
triangular inequality, which can be applied to the RRT-Connect algorithm, Section 4.2 shows the
mathematical modeling of the proposed algorithm, Sections 4.3 and 4.4 show the pseudocode of each
method of the RRT-Connect algorithm applying the proposed rewiring method, and Section 4.5
shows the path-planning process for the proposed algorithm that applies the proposed rewire
method to the RRT-Connect algorithm. Chapter 5 shows the experimental environment and results
to check the performance of the proposed algorithm and Chapter 6 presents the conclusion.

2. The Rapidly exploring Random Tree (RRT) Algorithm

The Rapidly exploring Random Tree (RRT) algorithm [13] is the most representative sampling-
based path-planning algorithm. the RRT algorithm plans a path by gradually expanding a tree with
a root node at the start point using random sampling. It is designed to handle Non-holonomic
constraints and high degrees of freedom [12].

When a random sample is generated in the configuration space, it tries to connect at a point
separated by a preset step length from the node nearest to the random sample among nodes
constituting the tree with the step length. If tree connections are possible, nodes are added to create
an extended tree.

As mentioned in the introduction, this sampling-based path-planning algorithm uses randomly
generated sample points to find a path that can reach the goal as quickly as possible, so it is difficult
to sufficiently reflect the optimality and completeness.
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Figure 2. The RRT algorithm: (a) Process when gnw is created; (b) After the random sampling has
ended.

Figure 2 shows the path-planning process of the RRT algorithm. Figure 2 (a) shows that guew is
created at the node position guer of the tree T nearest to the random sample position graa. Figure 2 (b)
shows the resultant path R among several candidate paths to the start position gstrt and the goal
position ggoa.

3. The RRT-Connect Algorithm
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Path planning through the RRT algorithm may have a disadvantage in that since random
samples appear with the same probability in all regions, the tree easily extends even in a direction
irrespective of the goal, resulting in a long planning time and inefficiency. The RRT-Connect
algorithm [15] proposed later has two new ideas as the method to compensate for the disadvantage
of the RRT algorithm.

The first is that the start and goal points are each inserted as root nodes and extended in each
direction alternately. The two trees extending from the start point and the goal point expand as if
attracting one another, which prevents the tree and is a disadvantage of the RRT algorithm, is in a
direction irrespective of the goal. This enhances the disadvantage of the planning time required to
search for a path. The second is the concept of Extend, which continues extending to the other side of
the tree if there are no collisions with obstacles when the tree extends. Through this, unlike the RRT
algorithm that extends the maximum extension length when the sample is generated and is inserted
into the tree, the tree continues to expand in the direction of the goal if there is no collision with an
obstacle, so the path can be planned more quickly.

Path planning through the RRT-Connect algorithm can find a path quicker than the RRT
algorithm, but the Extend method does not work properly in complex environments with narrow
paths and many obstacles and it can be difficult. In addition, the path planned using the RRT-Connect
algorithm is far from the optimal length, so it does not properly reflect optimality.

3.1. Pseudocode of the RRT-Connect Algorithm

This section shows the pseudocode of the RRT-Connect algorithm used in the experiment in this
paper that was designed based on [15] in which the RRT-Connect algorithm was proposed. The RRT-
Connect algorithm can be represented by a main algorithm (A1) and two main methods (A2 and 3).

Algorithm 1. Pseudocode of the RRT-Connect Algorithm.

Input:

gstart < Start Point Position

gson < Goal Point Position

A « Step Length

C « Position Set of All Boundary Points in All Obstacles
N « Number of Random Samples
Output:

R < Result of Path R

Initialize:

Ta < Null Tree

Tv < Null Tree

dshorter < 0

Begin RRT-Connect Procedure
T. « Insert Root Node<gstart> to Ta

Ty + Insert Root Node<ggo> to T»

While1l < nto N do

Generate n-th Random Sample
grand + Position of n-th Random Sample
If Not Extend(Ts, Tv, gnews < Null, grana, A, C) then
If Connect(Preac < Null Path, Tu, Ts, guews, A) then

dreach < Distance of Preach

O OO0 NI O U bk WN -

If dshorter = 0 Or dshorter > dreacr then
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10 R <« Preach
11 dshorter +— dreach
12 Swap(Ta, Tv)

End RRT-Connect Procedure

Algorithm 1 shows the pseudocode of RRT-Connect algorithm. Both of the two initial trees Ta
and Tv have gstat and ggon as root nodes and these two trees randomly sample N times and aim to reach
each other during their expansion. Unlike RRT, the RRT-Connect algorithm is divided into two
methods: Extend and Connect. The Extend method (A2) creates guew from grand in Ta and extends from
Ty to the guew direction of Ts, and the Connect method (A3) determines whether the two trees T and
T» have reached each other; if they do, merge them into one tree to obtain a path Prac: between the
root nodes gstart and ggoat Of the two trees.

When a path is created by the Connect method, the distance dr.e: is calculated for the path Preacn
from gstart to ggoat. At this time, if dreaer is smaller than dsuorter(the shortest path length until now) or Preach
is the first path found (i.e., dsiorter = 0), the resultant path R becomes Preaci, and dsiorter becomes dreach. At
the end of the next N sampling, R becomes the final planned path. If the number of random sampling
remains, the above process is repeated.

3.2. Pseudocode of the Extend method from the RRT-Connect Algorithm

This section introduces the Extend method used in pseudocode (Al) of the RRT-Connect
algorithm in Section 3.1.

Algorithm 2. Pseudocode of the original Extend method from the RRT-Connect Algorithm.

Input:

T: < Tree T. from RRT-Connect

Ty + Tree Tv from RRT-Connect

gnews <+ Position gnews from RRT-Connect

Grand < Position grand from RRT-Connect

A « Step Length A from RRT-Connect

C + Position Set C from RRT-Connect

Output:

furay < Result of Boolean firap

Ts < Result of Tree Ts /I Return by Reference
Ty « Result of Tree Tv // Return by Reference
gnews < Result of Position guews // Return by Reference
Initialize:

f‘mp < False

Begin Extend Procedure from RRT-Connect
1 gner < Find Position of Nearest Node in T from grand
2 If Not isInside(quear, qrana, A) then

gnews < Position of the Intersection Point between the Line Segment connecting grand and gnear and

’ a Circle with Radius A centered at guear /1 2D: Circle, 3D: Sphere, ...
4 Else

5 GuewA = Grand

6 If isTrapped(qnewa, quear, C) then

7 forap < True
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8  Else

9 T: + Insert Node<gnwa> and Edge<guews, gnear> to Ta

10 gnear < Find Position of Nearest Node in T» from grewa

11 If isInside(qnear, gnews, A) then

12 Gnew < Gnear

13 Else

1 gnews <+ Position of Intersection Point between Line Segment connecting guewa and guear,
and Circle with Radius A centered at guear /I 2D: Circle, 3D: Sphere, ...

15 While Not isTrapped(gnews, qnear, C) do

16 Tv + Insert Node<guews> and Edge<guews, quea> to Th

17 If Not isInside(qnews, gnews, A) then

18 Qnear <= (newB

19 gnews <+ Position of Intersection Point between // 2D: Circle, 3D: Sphere, ...

Line Segment connecting gnewa and gnear, and Circle with Radius A centered at guear
20 Else
21 Break

End Extend Procedure from RRT-Connect

Algorithm 2 shows the pseudocode of the Extend method in the RRT-Connect algorithm. The
isInside function determines whether g is inside a circle (or n-sphere) with the node position guear of
the tree T. nearest the grmna position as the center and A as the radius. If it is not located inside (False),
gnews becomes the intersection of the circle (or n-sphere) with gner as the center and A as the radius,
and the line segment connecting grnd and guerr. If it is determined that there is no obstacle between
gnewa and guear by the isTrapped function (False), gnewa is inserted into the tree as a child node of guer of
T.. If there is an obstacle (True), the Extend method returns True (fip) and terminates. Otherwise, it
proceeds with the remaining process and returns False (fuay) when the process ends.

This is the process of making T and T» reach each other: First, the node T nearest to grewa becomes
the new guer. At this time, using the isInside function, it is determined whether guwa is inside a circle
(or n-sphere) with guer as the center and A as the radius, and if it is located inside (True), guews becomes
grear and is located inside. If not (False), gnws becomes the intersection of the circle (or n-sphere) with
gnear as the center and A as the radius and the line segment connecting gnewa and guear. If gnews is created,
then the following process is repeated until it can determine whether there is an obstacle between
grews and guesr by the isTrapped function and if there is the obstacle between them (True) or if gnews
reaches guewa by the islnside function.

If there is no obstacle between grews and gner (False), insert guews into Tv as a child node of guerr. At
this time, if the isInside function determines that guews has not reached the A radius with guewa as the
center (False), qnear becomes gnews and a new gnews will created from this guear.
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Figure 3. The Extend method from RRT-Connect algorithm.

Figure 3 shows the Extend method in the RRT-Connect algorithm. In detail, it shows that the first
gnewa is created, and guews is created with radius of length A in the direction of guews from the gnear position
in the figure. Clearly, Ts extends in the T. direction for reach.

3.3. Pseudocode of the Connect method from the RRT-Connect Algorithm

This section introduces the Connect method used in pseudocode (Al) of the RRT-Connect
algorithm in Section 3.1.

Algorithm 3. Pseudocode of the Original Connect Method from the RRT-Connect Algorithm.

Input:

Preach < Path Preach from RRT-Connect

Ta < Tree T. from RRT-Connect

Ty < Tree T» from RRT-Connect

gnews < Position gnews from RRT-Connect
A « Step Length A from RRT-Connect
Output:

freach < Result of Boolean freacn

Preacn < Result of Path Pmerged // Return by Reference
Initialize:

freach < False

Begin Connect Procedure from RRT-Connect

L If isInside(quewa, guees, A) then
P. < Path from Root Node [gstr] to Last Inserted Node [gnewa] in Ta
Py < Path from guews to Root Node [ggoa] in Tb

2
3
4 Peouneet + Path from Last Inserted Node [gnewa] in Ta to gnews in To
5 Puerged < Merge Path Pa to Po via Peonnect

6

fmzch <~ True

End Connect Procedure from RRT-Connect

Algorithm 3 shows the pseudocode of the Connect method in the RRT-Connect algorithm. Here,
Ts, Tv, and guews are from the Extend method (A2).

The tree merging process is as follows: Create a path P. from the root node (gstart) of Ta to the last
inserted node (guews), and a path Pv from guews of Tb to the root node (ggoa). Then, create a path Peonnect
from guews of Py to the last inserted node (gnwa) of Ta and merge in the order of Ps, Peonnect, and Py, thereby
completing planning the path Puerged from gstart to ggon. After this, it returns True (firp), and the Connect
method ends.
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Figure 4. The Connect method from the RRT-Connect algorithm.

Figure 4 shows the Connect method in the RRT-Connect algorithm. If the guews of Tb is extended
in the direction of the guwa by the Extend method shown in Figure 3, the point where the two trees
merge (when gns has expanded in the direction of gnewa where Ta enters the A radius centered at guewa)
with each other is the part marked as Connect. As a result, the path P. becomes from the position gstar
to the position guewa in Ts, the path Peounet goes from position guews to position guews and the path Py goes
from position guews to position ggen in Te. The merged path Puerged goes from gstart to ggoat.

4. Proposed Triangular Inequality-based RRT-Connect Algorithm

The proposed triangular inequality-based RRT-Connect algorithm is a rewire based on the
principle of triangular inequality between nodes on a path planned in the RRT-Connect algorithm,
so it is closer to the optimal compared to the RRT-Connect. This is like the RRT*-Smart algorithm [16]
and Quick-RRT* [17] algorithms, which shorten their paths using the triangular inequality principle
for the RRT algorithm. In this paper, the rewire part based on the triangular inequality principle is
called the Triangular-Rewiring method.

The proposed triangular inequality-based RRT-Connect algorithm requires the following
assumptions.

[Assumptions]

1. There is only one start point and one goal point even though the goal point may be changed
incrementally as time goes on.

2. The robot is capable of omnidirectional motion.

Therefore, this chapter introduces the proposed Triangular-Rewiring method for the RRT-
Connect algorithm, and performs mathematical modeling to confirm the validity that the proposed
Triangular-Rewiring method is always shorter when applied to the RRT-Connect algorithm. After
checking through, we will propose how to apply the Triangular-Rewiring method to the RRT-Connect
algorithm.

The method of applying the RRT-Connect algorithm of the proposed Triangular-Rewiring
method is proposed when a new node is inserted into the tree in the Extend method (A2) and Connect
method (A3), the main methods of the RRT-Connect algorithm introduced in Chapter 3. It is inserted
after rewiring (or after determining) through the Triangular-Rewiring method. That is, this chapter
introduces the Extend and Connect methods to which the proposed Triangular-Rewiring method is
applied.

4.1. Pseudocode of the Proposed Triangular-Rewiring Method for the Improved RRT-Connect Algorithm

This section introduces the Triangular-Rewiring method for the proposed triangular inequality-
based RRT-Connect algorithm.

Algorithm 4. Pseudocode of the Proposed Triangular-Rewiring Method for the RRT-Connect Algorithm.
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Input:

genita < Position {guew / gnewa [ guews} from {Extend | Connect}
Gparent < Position gnear from {Extend / Connect}

T « Tree {Twmergea [ Ta [ To} from {Extend | Connect}

C <+ Position Set C from {Extend / Connect}

Output:

{Twergea | Ta/ Ts} <+ Result of T

Begin triangularRewiring Procedure from Extend, Connect

1 Gancestor < Position of Parent Node of gparent in T

2 If Not isTrapped(qancestor, qeiig, C) then

3 T + Delete Node<gparent>, Edge<gparent, qenita> and Edge<gparent, qancestor> from T
4 Qparent <= Qancestor

5 Gancestor < Position of Parent Node of gancestor in T

6 While Not gocestor = Null do

7 If Not isTrapped(qancestor, qenii, C) then

8 T <« Delete Node<gparenr> and Edge<gparent, Gancestor> from T
9 Qparent <= QGancestor

10 Gancestor < Position of Parent Node of gancestor in T

11 Else

12 Break

13 T <« Insert Edge<gparent, genii>to T

14 Else

15 T « Insert Node<qei> and Edge<gchid, Qparent> to T

End triangularRewiring Procedure from Extend, Connect

Algorithm 4 shows the pseudocode of the Triangular-Rewiring method applicable in the Extend
(A2) and Connect (A3) methods of the RRT-Connect algorithm. When inserting a new node and edge
in Ta or Ty in the Extend method (A5), when a tree Twmerged (Pmerged) in which Ta and Tb trees are merged
in the Connect method is created (A6), rewiring is performed on the tree T.

In the Extend and Connect methods, guew (O gnewa OT gnews) is inserted as a genitd and guear is inserted
as a candidate for the node’s parent node. From gparent, the node’s parent node (a second ancestor node
candidate based on guia) is called gancestor. Next, it is determined whether an obstacle exists between
Gancestor and. genita (using the isTrapped function). If there is an obstacle (True), the Triangular-Rewiring
process is skipped and geia is inserted into the child node of gperen: in T such that the contents of the
Extend and Connect methods from the RRT-Connect algorithm are the same. If there is no obstacle
(False), the Triangular-Rewiring process proceeds.

The Triangular-Rewiring process is as follows: Delete node where position gperent and the edges
between ganitd and gancestor nodes connected to gparent. In other words, it disconnects the existing gparent and
gania and prepares to connect geitd to Gancestor, the candidate parent node of genit. Again, gparent becomes its
parent node Gancestor and gancestor becomes the parent node of gancestor. Then, as previously done, determine
whether an obstacle exists between gancestor and qenita (using the isTrapped function). This iterative
process continues until No gancestor exists (When no parent node exists for the previous gancestor, i.., when
Gancestor 1S Gstart) OF an obstacle exists between geiite and Guneestor. Then, in tree T, the last created gparent is
inserted as the parent node of gena.

4.2. Mathematical Modeling of the Proposed Triangular Inequality-based RRT-Connect Algorithm
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This section introduces the mathematical modeling of the proposed triangular inequality-based
RRT-Connect algorithm. The results show that the proposed algorithm is more efficient in terms of
path length than the RRT-Connect algorithm. For reference, this mathematical modeling is based on
a two-dimensional Euclidean space.

Equations 1 and 2 define the path length d,(gq;) between an arbitrary node gi and its parent
node in the RRT algorithm:

D(q;,¢(q:)) = /(€(@)-x — q;.0)? + (€(q:)-y — :-¥)?, 1)
« dn(q) = D(E™(q), €™ (q)). 2)

Here, gi refers to the i-th inserted arbitrary node and takes the x and y coordinate values of the
node as an element. The £ function receives an arbitrary node as a variable and returns the parent
node of this node. Equation 1 obtains the distance between an arbitrary node gi and its parent node,
which can be summarized as a function d, as in Equation 2. Here, n is the distance between the
ancestor node and its parent node, based on an arbitrary node. That is, the & function to the power of

n

n(n > 0) can be represented as £"(q;) := (0 €0 ...0&)(q;); whennis 0, é°(g;) := q; holds.

In addition, consider starting with an arbitrary node g: and going back to the parent node to find
the distance between the n-th ancestor node and the (n + 1)-th ancestor node; this can be represented
as D(f”(‘li)' an(CIi))

Equations 3 and 4 show the path length Dy from the start position gswr to the goal position ggo
by the RRT algorithm:

€6+1(qgoa1) = Gstarts ©)]
~Dg = Z;LO (d]n(ngal)- 4)

Equation 3 shows when the (0 + 1)-th ancestor node from g is gstart, Where 0 is the upper limit
of ¥9_, (dln(qgoal) for obtaining the path length Dy in Equation 4. In other words, Equation 4 is the
sum of the distances from gga to the first ancestor node (parent node) of gga and the distance from
the first ancestor node (parent node) of gga to the second ancestor of ggod, ..., and (0 — 1)-th ancestor
node to the 6-th ancestor node (gstart).

f,f"‘,’c'"“r‘ 7r[7" “vr‘.?/x' )/

ancestor triangularRewirin, ®

q st > \ ’ qmu‘psior 7
= o= -u...-...‘ [)

A enita P . gy b
chi qpm‘em qduM l]pm-mt o
(a) (b) (©)

Figure 5. Abstract process of the Triangular-Rewiring method: (a) Example tree; (b) After rewiring
between qeiitd and gancestor; (¢) At this time, a is the distance between genie and gparent, p is the distance
between gparent and Gancestor, and y is the distance between genitd and Gancestor.

Figure 5 shows an abstract process of the Triangular-Rewiring method. As shown in Figure 5 (a),
if the parent node of gt is Gparent, the parent node of gparent 1S Gancestor, and Gancestor is the second ancestor
of ganiia, this can be represented as Equation 5:

Qancestor = f(qparent) = fz (QChild)- (5)

If the distances between the edges connecting each node are the a between g and gparent, the
between gparent and Gancestor, and the y between ganid and Gancestor is as shown in Figure 5 (c), this can be
represented as Equation 6 using the principle of the triangular inequality:
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a+p=y. (6)
Equations 7 and 8 show the distance relationship between the ancestor nodes of geit:

D(Gcnitar € @enira)) = @ D€ (Gcnia) €% @enina)) = B, D(Gcnirar % (Genina)) =V, (7)
D(qchild' f(‘hhild)) + D(f(‘lchild)' fz(%hild)) = D(qchitar fz(thim))/ 8)

Equation 7 can be summarized as Equation 8 by substituting Equation 5, which represents the
relationship between the n-th ancestor nodes of gei, with the distance as Equation 1 in Equation 6,
which represents the distance between each node as a triangular inequality.

Equations 9-15 show that the path of the RRT algorithm applying the Triangular-Rewiring
method is always shorter or equal to that planned by the original RRT algorithm. Equation 9 shows
the sequence index kj to compare the distance w when applying the Triangular-Rewiring method
with distance d when this method is not applied:

0,j=0

ki +1, =1 ©)

kJZT]+k’], k’jz{]

Here, j is a sequence index for w. That is, kj can be considered a sequence index for d. Currently,
7; is the number of times that rewiring occurs in the j-th.

If this is summarized by Equation 1 for a distance based on an arbitrary node g; it is as Equation
10. For example, as shown in Figure 5, if j is 0 and 1 a rewire occurs (t, = 1), it can be represented in
combination with the distance relationship of Equation 8 for g, as in Equation 11:

g, (q;) = D(&"i(q:), € (q0), (10)
do (Genira) + 41 (Genira) = Th=o U (Geniza) = Wey=1(Genia)- (11)

The result of Equation 11 can be generalized as shown in Equation 12:
ki
Zn]=0 d,(gq;) = [mkj(qi)- (12)

For d based on an arbitrary node g;, the path length Z:’: jdyn from the j-th to k-th arbitrary
sequence index is always longer or equal to the distance wy; of the k-th sequence index. That is, in

an arbitrary path, it can be confirmed that the distance w rewired by the Triangular-Rewiring
method is at least equal (If the distances of d and w are the same, the rewired line segments are on
a straight line) or always shorter than d when not rewired.

(‘e 54(‘70)

a1 7, &0 £2(q,)

q goal=0

qsm1‘t=7
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Figure 6. Detailed process of the Triangular-Rewiring method: (a) Each node g for index i (at this time,
gstart is same as g7 and ggou is same as go); (b) Represent each node using the n-th ancestor ™ of go; (c)
Each distance d, between the n-th and (n + 1)-th ancestor nodes of qo; (d) When the Triangular-
Rewiring method is applied and rewired by distance wy;; (e) Represent as the value of kj; (f) Represent

each node by the n-th ancestor {" of qo after method is applied.

Figure 6 shows the Triangular-Rewiring process for the path from gswa to gz based on Equations
5-12 (at this time, it is assumed that the node of the path shown in the figure is not positioned in a
straight line). As shown in Figure 6 (b), a total of two rewires occurred (t, = 2) between qo and g3
(£3(qy)), and a total of one rewire occurred (t; = 1) between gs (£°(q,)) and g7 (£7(qp))- In that case,
as shown in Figure 6 (e), kois 2, k1 is 3, k2 is 4, and ks is 6 according to Equation 9.

Comparing Figures 6 (c) and 6 (e), according to Equation 7, the rewired distance wu,(q,) is
shorter than the path length Y%_,d,(q,) from d, to d, and the rewired distance wu4(q,) is
shorter than the path length ¥5_cd,(q,) from dg to d. That is, when comparing before applying
the Triangular-Rewiring method in Figure 6 (a) and after applied this method in Figure 6 (f), the path
afterward looks shorter.

Equations 13 and 14 show the path length D when the Triangular-Rewiring method is not
applied and the path length Up; when the method has been applied for an arbitrary path (start
position: gstrt, goal position: gge), as shown in Figure 6:

ky, =6, (13)
k.
Dg = Zg=0 (dln(qgoal) = Z?:o Zn]=klj (dln(qgoal)/ Ug = Z}p:o unkj(qgoal)r (14)

Equation 13 shows the upper limit when the index n of d is § in Equation 3; when this is
substituted into the sequence index kj, if kj is 6, j becomes ¢. In that case, as in Equation 14, Dy is

used to compare the ¥ (dln(CIgoaz) shown in Equation 4 with Uy, reflecting the sequence k;. It can
kj

@
be represented as ¥;_, ank,j

(dln(qgoal), and Up can be represented as Zfzo Uy, (qgoal)-

Equation 15 shows when the equation summarized in Equation 14 is substituted into Equation
12:

. Dy > Up. (15)

Finally, as can be confirmed using Equation 15, U; as a result of applying the Triangular-
Rewiring method to the distance of an arbitrary path (start position: gstr, goal position: gea) is at least
equal (If the distances of D and U are the same, when the rewired line segments are on a straight
line) to or always shorter than Dj; as a result, this method is not applied.

Equations 16-18 show the path length D, of the path from the start position (root node) of Ta
to the last (inserted node) position guews and the path length U, when the Triangular-Rewiring method
has been applied to the path. In addition, it shows that U, is at least equal to or always shorter than
Dy:
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§5A+1(qnewA) = Qstart k<pA = 0Oy, (16)

D, =34 %) d U, = 24 17
A Zj=02n=k/j n(qnewA)/ A j=o[mkj(CInewA)r ( )
Dy > Uy (18)

Equations 19-21 show the path length Dy of the path from the start position (root node) of Ts
to the last (inserted node) position guews and the path length Up when the Triangular-Rewiring method
has been applied to the path. In addition, it shows that Uy is at least equal to or always shorter than

Dg:
553+1(Qnew3) = 4goals k<p3 = bp, (19)
Dy =325 dy(Gnews)r Us = 5% te, (Gnows) 20
B j=0 n:klj nGnewn ), B j=0 kj Gnewn), ( )
"Dy > U, e1)

Therefore, Equations 16 and 19 can be derived from Equations 3 and 13, Equations 17 and 20
from Equation 14, and Equations 18 and 21 from Equation 15.

As a result, Equations 22 and 23 show that RRT-Connect with the proposed Triangular-Rewiring
method is at least the same or better in terms of path length than the RRT-Connect algorithm without
the method:

Dg =Dy + Dg + D(Gnewa qnewB)/ Ug < Uy + Ug + D(Gnewar Gnews): (22)
2 Dp=2Dy +Dg =20y, + U = Upg. (23)

Dr (Eq. 4), which refers to the path length of the RRT-Connect algorithm path without the
Triangular-Rewiring method, is represented by the sum of the distance D, of the partial path P. (Eq.
17), the distance Dy of the partial path P» (Eq. 20), and the distance D(qnewa, Gnews) between guewa
and gnews as shown in Equation 22.

Ug (Eq. 14), which refers to the path length of the RRT-Connect algorithm path with the
Triangular-Rewiring method, is equal to or shorter than the sum of the distance U, of the partial path
Pa for the RRT-Connect (Eq. 17), the distance Uy of the partial path P» (Eq. 20), and the distance
D(Gnewar Gnews) between gnewa and gnews as shown in Equation 22.

Here, Equation 23 shows that Uy is at least equal to or shorter than Dy in the RRT algorithm
summarized in Equation 15, and it is used efficiently in the RRT-Connect algorithm.

4.3. Pseudocode of Proposed Extend Method for the Improved RRT-Connect Algorithm

This section introduces the Extend method in the proposed triangular inequality-based RRT-
Connect algorithm. This proposed Extend method (A5) replaces the Extend method (A3) in the
pseudocode of the RRT-Connect algorithm (A2).

Algorithm 5. Pseudocode of the Proposed Extend Method for the RRT-Connect Algorithm.

Input:

T: < Tree Ta from RRT-Connect

To < Tree T from RRT-Connect

gnews <+ Position gnews from RRT-Connect
Grand < Position grand from RRT-Connect
A « Step Length A from RRT-Connect
C « Position Set C from RRT-Connect
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Output:
fimp < Result of BOOleanftmp

T. < Resultof Tree T»  // Return by Reference
To < Resultof Tree To  // Return by Reference

gnews < Result of Position guews // Return by Reference
Initialize:

ftrap « False

Begin Extend Procedure from RRT-Connect
1 guar + Find Position of Nearest Node in Tz from grand
2 If Not iSInSide(qnear, {rand, A) then

gnews < Position of Intersection Point between Line Segment connecting grand and gnear, and

’ Circle with Radius A centered at guear // 2D: Circle, 3D: Sphere, ...

4 Else

5 (newA < Grand

6 If isTrapped(gnewa, Gnear, C) then

7 foap < True

8  Else

9 Ta < triangularRewiring(qnewa, Gnear, Ta, C)

10 gner < Find Position of Nearest Node in T» from gnewa

11 If isInside(qnear, gnews, A) then

12 GnewB < (near

13 Else

1 gnews <+ Position of Intersection Point between Line Segment connecting guewa and guear,
and Circle with Radius A centered at guear // 2D: Circle, 3D: Sphere, ...

15 While Not isTrapped(guews, Gnear, C) do

16 Tv <+ triangularRewiring(qnews, Guear, Tv, C)

17 If Not isInside(qnews, qreos, A) then

18 Qnear <= (newB

19 gnews <+ Position of Intersection Point between // 2D: Circle, 3D: Sphere, ...

Line Segment connecting guewa and gner, and Circle with Radius A centered at guear
20 Else
21 Break

End Extend Procedure from RRT-Connect

Algorithm 5 is the application of the Triangular-Rewiring method (A4) to the original Extend
method (A2) of the RRT-Connect algorithm. Compared to the original Extend method, the part where
a node is newly inserted in the tree in lines 9 and 16 is inserted through the Triangular-Rewiring
method. Other than that, the contents are the same as the original Extend method.
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Figure 7. Proposed Extend method for the RRT-Connect algorithm.

Figure 7 shows the application of the Triangular-Rewiring method to Figure 3, which shows the
Extend method of the RRT-Connect algorithm. In Ty, grews and gstart are rewired and gnear and ggoa, and
gnews and geont are rewired sequentially in the process of extending from T to Ta.

4.4. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm
This section introduces the Connect method in the proposed triangular inequality-based RRT-

Connect algorithm. This proposed Connect method (A6) replaces the Connect method (A4) in the
pseudocode of the RRT-Connect algorithm (A2).

Algorithm 6. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm.
Input:

Preach < Path Preach from RRT—COI’ITIECt
Ta < Tree Ta from RRT-Connect
Tv < Tree Ty from RRT-Connect

gnews <+ Position gnews from RRT-Connect

A « Step Length A from RRT-Connect
Output:

freach < Result of Boolean freach

Preac < Result of Path Puerges // Return by Reference
Initialize:

frem:h < False

Begin Connect Procedure from RRT-Connect

L If isInside(quewa, quees, A) then

2 P. < Path from Root Node [gstr] to Last Inserted Node [gnewa] in Ta
3 Py « Path from guews to Root Node [ggoa] in Tt
4 Peouneet = Path from Last Inserted Node [gnewa] in Ta to gnews in To
s Tmerged < Tree Structure with Merge Path Ps to Pr via Peonnect
[/l 1st Insert: gstart, ..., n-th Insert: guews, (n + 1)-th Insert: guews, ..., Last Insert: ggon t0 Tmerged
6 Fori « Inserted Index of guewa in Timerged to (Number of Node in Therged) — 1 do
7 grew + (i — 1)-th Inserted Node in Timerged
8 gnear < i-th Inserted Node in Tinerged
9 Tmerged < triangularRewiring(qnew, qnear, Tmerged, C)
10 Puerged + Path from Root Node [gstart] to Last Inserted Node [ggon] in Timerged
11 freacn <~ True

End Connect Procedure from RRT-Connect
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Algorithm 6 is an application of the Triangular-Rewiring method (A4) to the Connect method (A3)
of the RRT-Connect algorithm. Compared to the original Connect method, it has been changed to
apply the method to the merged tree by considering the Triangular-Rewiring method when merging
the path, which is in lines 5-10. Other than that, the contents are the same as the original Connect
method.

When paths P: and P» merge in a tree structure of line 5, nodes on the path are inserted in the
order of Ps, Peomnect, and Py in the merged tree Timerge. That is, in Twmerged, the root node becomes gstart, and
when the n-th inserted node at a certain point is gnews, which is the last inserted node of Ty, the (1 + 1)-
th inserted node becomes guews, which is the last inserted node of Ti. In addition, the last inserted node
Of Tinerged becomes ggoal.

Then, the Triangular-Rewiring method is applied to this Tmerged. Since it is applied to the tree itself,
it determines whether rewiring is possible for all nodes inserted in the tree, and rewires and updates
the tree if possible. However, since each node from T to Tb is inserted into Timerges, it is not necessary
to rewire T. for which the Triangular-Rewiring process has already been performed. Therefore, the
Triangular-Rewiring process proceeds in the direction of T» from the guewa sequence inserted in Tomerged.
Here, if guewa is the i-th inserted node, the first node pair to be determined is the (i - 1)-th node gnew (as
geniid) and i-th node gner (@s gparent). When all nodes inserted in Twmerget have been determined, the tree
structure Tmerged is converted into the path Prerger and the method terminates (True).

P connect

Dstart triangularRewiring
P merged = {qstartl qgoal}

Figure 8. Proposed Connect method for the RRT-Connect algorithm.

Figure 8 shows the Triangular-Rewiring method applied to Figure 4, which shows the Connect
method of the RRT-Connect algorithm. When the paths P. and P» created from the trees T. and Tt are
merged and the Triangular-Rewiring method has been applied (assuming there is no obstacle between
Gstart and ggoar), the result is Puerged in which gstar and ggoa are connected with a straight line.

4.5. Process of the Proposed Triangular Inequality-based RRT-Connect Algorithm

Figure 9 in this section shows the path-planning process of the proposed algorithm by applying
the Triangular-Rewiring method to the Extend and Connect methods of the RRT-Connect algorithm.
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Figure 9. Detailed process of the proposed algorithm: (a) Start position gswr: from tree T. and goal
position gga from tree Tt; (b) Create gnewa nearest to Ta from 1%t random sampling position grant and
create gnews from ggon nearest to Tv; (c) Create new guewa from gner nearest to Tv from the second random
sampling position grnd and rewire between gnewa and ggoa the ancestor of the guews; (d) Create a new
gnewa from gneer nearest to Te from the third random sampling position grne and rewire between gnewa
and gs.rt with the ancestor of guews; (e) Create new guewa from gner nearest to Ta from the fifth random
sampling position g and connect between guews and grews nearest to Tv from gnews; (f) Result of Path

R from start to qgoal.

Figure 9 shows planning a path from the start position gsar to the goal position g through the
proposed algorithm, as shown in Figure 9 (a).

In Figure 9 (b), the first random sample is generated at position grnd and guews is created at a
position separated by the length of A from gstrt in the direction of the position, and grewa is extended
once by the length of A in the direction of guewa from ggoa. At this time, since there is no intermediate
node between guewa and gstart, the Triangular-Rewiring process is skipped.

In Figure 9 (c), a second random sample is generated at the g position, and in the direction of
the position, gnewa is updated at a location separated by A length from the nearest node guer in the tree
and rewired between gnewa and geoa. In this case, since the tree on the opposite side collides with an
obstacle to extend in the gnews direction, the Extend process is skipped. In addition, it is assumed that
Swap occurs between T. with initial gswr as the root node and Tv with initial g as the root node
between each figure.

In Figure 9 (d), as shown in Figure 9 (c), a third random sample is created at the g position
and at a position separated by the length of A in the position direction, at the node guer that is nearest
among nodes in the tree in the position direction, It shows updating gnewa to a position that is the
length of A and rewires it between gnewa and gsurt. Here, since it also collides with an obstacle to extend
in the direction of gnwa from the tree on the opposite side, the Extend process is skipped.
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In Figure 9 (e), the fifth random sample is generated at the grana position and gnews is located at a
position separated by the length of A in the direction of the position, and gnrwa is also at a position
separated by the length of A from the nearest node guer among nodes in the tree toward the position.
It is shown when updating that grwa merges into one tree through the Connect process because gnewa
is within range of the center of gnws and the radius of A. It is assumed that the fourth random sample
between Figure 9 (d) and Figure 9 (e) is generated inside the obstacle, so the gnwa generation process
is skipped. Figure 9 (f) shows the result of path R created as a merged tree by Connect as shown in
Figure 9 (e).

5. Experimental Results

To verify the performance of the proposed triangular inequality-based RRT-Connect algorithm
in this paper, the RRT algorithm, the RRT-Connect algorithm, and the proposed algorithm are
compared in various environment maps shown in the experimental environment through the
simulator.

Each algorithm was implemented based on the pseudocode (A1-9) shown in Chapters 3 and 4
(For the RRT algorithm, refer to the pseudocode (ASI) in Appendix A), and the performance
measures used for comparison of various algorithms are Number of sampling (samples), Path length
(pixels), and Planning time (milliseconds). And each performance measure is experimented with 50
trials from the same start point to the same goal point until the first path has been found). Among the
performance measures, as the number of samples decreases, the cost of recalculation in a dynamic
environment also decreases, and the path length is a measure of the optimality of the path-planning
algorithm. In addition, the Step length (A) is 30 pixels.

5.1. Experimental Environment

This section introduces the environment map used in the simulation and the simulator used in
the simulation with the computer’s performance.

Figure 10 shows the eight environmental maps used in this experiment. The green circle (S)
indicates the start point, the purple circle (G) indicates the goal point, and the black polygon on the
yellow (blue in the analysis of the experimental results) border indicates to the obstacle. All maps are
600 (horizontal) * 600 (vertical) pixels.

(e) () (8 (h)
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Figure 10. Maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6;
(g) Map 7; (h) Map 8.

Many environmental maps were considered and used to verify the performance of various path-
planning algorithms including the RRT algorithm, [23-26]. Which environment map to use is
important because the expected performance measure varies depending on the obstacles” placement
and shape among other properties.

In this paper, to check the proposed algorithm’s performance, the eight maps shown in Figure
10 were benchmarked in the experimental environment of the paper [27] proposed by Jihee Han in
2017, and each map is expected to have the following features:

Map 1 in Figure 10 (a) seems to be an environment in which it is easy to verify the completeness
of the path-planning algorithm. Map 2 in Figure 10 (b) seems to be an environment in which it is also
easy to verify the completeness of the path-planning algorithm, and the environment is mainly used
to show the solution for the Local Minima problem [28] in the artificial potential field algorithm [26].
Map 3 in Figure 10 (c) seems to be an environment in which it is easy to verify the optimality and
completeness of the path-planning algorithm and is an environment that is unfavorable to random
sampling path-planning algorithms such as the RRT algorithm. Map 4 in Figure 10 (d) seems to be
an environment in which it is easy to verify the optimality and the planning time for the path-
planning algorithm, and the Cell Decomposition algorithm, which increases the computation cost as
the angle of obstacle increases, is an unfavorable environment [29]. Map 5 in Figure 10 (e) seems to
be an environment in which it is also easy to verify the optimality and planning time of the path-
planning algorithm; for the same reason as Map 4, the cell decomposition algorithm is an unfavorable
environment. Map 6 in Figure 10 (f) seems to be an environment in which it is easy to verify the
optimality, completeness, and planning time of the path-planning algorithm, and it is an environment
for comprehensively evaluating the performance. Map 7 in Figure 10 (g) seems to be an environment
in which it is easy to verify the completeness and optimality of the path-planning algorithm, and for
the same reason as Map 2, it is the environment used in the Artificial Potential Field algorithm. Lastly,
Map 8 in Figure 10 (h) seems to be an environment in which it is easy to verify the completeness and
planning time of the path-planning algorithm and yet is unfavorable to random sampling path-
planning algorithms such as the RRT algorithm.

Since random sampling path-planning algorithms such as the RRT algorithm rely on
probabilistic completeness, the number of samples and the planning time are extremely increased as
long as there are narrow or fewer entrances for directions to the goal.

Table 1. Computer performance for simulation.

H/wW Specification

CPu Intel Core i7-6700k 4.00 GHz (8 CPUs)
RAM 32768MB (32 GB DDR4)

VGA Nvidia GeForce GTX 1080 (VRAM 8 GB) SLI (x2)

Table 1 shows the specifications of the computer used in the simulation. The simulator was
developed in C# language (Microsoft Visual Studio Community 2019 version 16.1.6; Microsoft NET
Framework version 4.8.03752), and except for the visual part, only a single thread was used for the
calculation. Differences in planning time may occur depending on the computer’s performance
capability.

5.2. Experimental Results and Analysis for Each Map

This section checks the experimental results (on average, the number of samples, path length,
and planning time) of each algorithm: RRT, RRT-Connect, the proposed algorithm in the eight
environment maps (Fig. 10) presented in the experimental environment. Each map shows a figure of
the path-planning result (of one trial) for each algorithm and the experimental results for the
performance measure are shown numerically in a table (The figure for each algorithm is for one trial
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rather than the average of repeated trials and it may differ from the performance measure both
visually and by the average numerical performance measure of the repeated trials shown in the table.
In particular, the number of samples differs greatly).

The values shown in Tables 2-9 can be expressed as Equations 24 and 25 as follows:

Acmp (l) = Z£=0 acmpk(i) /T, (24)

Here, Ay, (i) refers to the performance value of each algorithm shown in Tables 2-9, cmp is the
algorithm to be compared, i is the index of the environment map (X-axis in Figures 19-21 (b)), k is the
repeat index, and T is the number of repeats (acmp, (i) is the value of the performance measure a for

the k-th implementation of the cmp algorithm in Map i). Fifty repetitions are performed for the
experiment in this paper. That is, Equation A shows the average value of the performance when it is
repeated T times to check the performance of a certain algorithm in Map i,

< Xemp @ = Acmp () /Agrr (D, (25)

Here, X, (i) refers to the Y-axis in Figures 19-21 (a) and A is the value of the corresponding
performance measure of the algorithm to be compared (Agpr is the value of the RRT algorithm).

In each path-planning result figure, the white circles indicate nodes on the path and the yellow
line segments indicate edges between nodes. The gray circles and segments are paths (trees) that have
been excluded during path planning. In each path-planning result table, based on 100% of the RRT
algorithm for each performance measure, the difference is indicated along with the value of the
corresponding performance measure unit.

(a) (b) ()

Figure 11. Experimental result of Map 1: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 11 shows the path-planning results of Map 1 among the environmental maps for each
algorithm. Visually, the number of samples looks similar to the RRT-Connect algorithm in Figure 11
(b) and the proposed algorithm in Figure 11 (c) is comparable to the RRT algorithm in Figure 11 (a),
and the path length looks similar for all three algorithms.

Table 2. Experimental result of Map 1 (The parentheses to the right of each value are relative ratios
based on RRT 100% (X ¢y (1))).

Performance (Aemp(1)) RRT RRT-Connect Proposed
Algorithm
Avg. Num. of Samples [samples] 1,216 (100) 729 (60) 823 (68)
Avg. Path length [px] 1,341 (100) 1,343 (100) 1,200 (89)
Avg. Planning time [ms] 12 (100) 7 (58) 10 (83)
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Table 2 shows the path-planning results (after repeating the trial 50 times) in Map 1 for each
algorithm. The average number of samples is the smallest in RRT-Connect algorithm at 60%, and the
proposed algorithm is 68% compared to the RRT algorithm, which is 8% less efficient than the RRT
algorithm compared to the RRT-Connect algorithm. The average path length is shortest for the
proposed algorithm at 89% compared to the RRT algorithm, with little difference in the RRT-Connect
algorithm at 100%, and 11% less efficient than the proposed algorithm. The average planning time is
the shortest for the RRT-Connect algorithm at 58% compared to the RRT algorithm, and the proposed
algorithm is 83% compared to the RRT algorithm, i.e., 15% less efficient than the RRT algorithm.

(a) (b) (©)

Figure 12. Experimental results of Map 2: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 12 shows the path-planning results of Map 2 among the environmental maps for each
algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 12
(b) and the proposed algorithm in Figure 12 (c) compared to the RRT algorithm in Figure 12 (a), and
the path length looks shortest for the proposed algorithm.

Table 3. Experimental result of Map 2 (The parentheses to the right of each value are the relative ratios
based on RRT 100% (X (2))).

Performance (Acmp(2)) RRT RRT-Connect Prop(.)sed
Algorithm
Avg. Num. of Samples [samples] 271 (100) 101 (37) 113 (42)
Avg. Path length [px] 598 (100) 613 (98) 484 (81)
Avg. Planning time [ms] 6 (100) 3 (50) 3 (50)

Table 3 shows the path-planning result (after repeating the trials 50 times) in Map 2 for each
algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 37%, and the
proposed algorithm is 42% compared to the RRT algorithm, which is 5% less efficient than RRT
algorithm compared to the RRT-Connect algorithm. The average path length of the proposed
algorithm is the shortest at 81% compared to the RRT algorithm, while the RRT-Connect algorithm
is 98%, which is 17% less efficient than the RRT algorithm compared to the proposed algorithm. The
average planning time for the proposed algorithm and the RRT-Connect shows the same
performance as the RRT algorithm.
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() (b) (©

Figure 13. Experimental result of Map 3: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 13 shows the path planning results of Map 3 among the environmental maps for each
algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 13
(b) and the proposed algorithm in Figure 13 (c) compared to the RRT algorithm in Figure 13 (a), and
the path length looks shortest for the proposed algorithm.

Table 4. Experimental result of Map 3 (The parentheses to the right of each value are the relative ratios
based on RRT 100% (X ¢y (3)))-

Performance (Acmp(3)) RRT RRT-Connect Prop(.)sed

Algorithm

Avg. Num. of Samples [samples] 6,106 (100) 4,574 (75) 4,679 (77)
Avg. Path length [px] 1,934 (100) 1,871 (97) 1,489 (77)
Avg. Planning time [ms] 866 (100) 299 (35) 313 (36)

Table 4 shows the result (after repeating the trial 50 times) of path planning in Map 3 for each
algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 75%, and the
proposed algorithm is 77% compared to the RRT algorithm, which is 2% less efficient than the RRT
algorithm compared to the RRT-Connect algorithm. The average path length of the proposed
algorithm is the shortest at 77% compared to the RRT algorithm and the RRT-Connect algorithm is
97%, which is 20% less efficient than the RRT algorithm compared to the proposed algorithm. The
average planning time is smallest for the RRT-Connect algorithm at 35%, and the proposed algorithm
is 36% compared to the RRT algorithm, which is 1% less efficient than the RRT algorithm compared
to the RRT-Connect algorithm.

(a) (b) (©

Figure 14. Experimental result of Map 4: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.


https://doi.org/10.20944/preprints202011.0494.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 d0i:10.20944/preprints202011.0494.v3

Figure 14 shows the path planning results of Map 4 among the environmental maps for each
algorithm. Visually, the number of samples looks smallest for the RRT-Connect algorithm in Figure
14 (b) compared to the others and the path length looks shortest for the proposed algorithm in Figure
14 (c).

Table 5. Experimental result of Map 4 (The parentheses to the right of each value are relative ratios
based on RRT 100% (xX¢ymp(4)))-

Performance (Acmp(4)) RRT RRT-Connect Prop(.)sed
Algorithm
Avg. Num. of Samples [samples] 290 (100) 28 (10) 32(11)
Avg. Path length [px] 711 (100) 588 (83) 534 (75)
Avg. Planning time [ms] 3 (100) 3 (100) 4 (133)

Table 5 shows the result (after repeating the trial 50 times) of path planning in Map 4 for each
algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 10%, and the
proposed algorithm is 11% compared to the RRT algorithm, which is 1% less efficient than the RRT
algorithm compared to the RRT-Connect algorithm. The average path length of the proposed
algorithm is the shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is
83%, which is 8% less efficient than the RRT algorithm compared to the proposed algorithm. The
average planning time is not different by 100% compared to the RRT algorithm, and the proposed
algorithm is 133% compared to the RRT algorithm, i.e., 33% less efficient than the others.

(a) (b) (0

Figure 15. Experimental result of Map 5: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 15 shows the path planning results of Map 5 among the environmental maps for each
algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 15
(b) and the proposed algorithm in Figure 15 (c) compared to the RRT algorithm in Figure 15 (a), and
the path length looks similar for the RRT-Connect algorithm and the proposed algorithm.

Table 6. Experimental result of Map 5 (The parentheses to the right of each value are the relative ratios
based on RRT 100% (X (5)))-

Performance (Acmp(5)) RRT RRT-Connect :;;:g:;i
Avg. Num. of Samples [samples] 371 (100) 68 (18) 74 (20)
Avg. Path length [px] 554 (100) 588 (106) 465 (84)
Avg. Planning time [ms] 13 (100) 2 (15) 2(15)

Table 6 shows the results (after repeating the trial 50 times) of path planning in Map 5 for each
algorithm. The average number of samples is smallest in RRT-Connect algorithm at 18%, and the
proposed algorithm is 20% compared to the RRT algorithm, which is 9% less efficient than the RRT
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algorithm compared to the RRT-Connect algorithm. The average path length of the proposed
algorithm is the shortest at 84% compared to the RRT algorithm and the RRT-Connect algorithm is
106%, which is 22% less efficient compared to the proposed algorithm. The average planning time for
the proposed algorithm and the RRT-Connect algorithm is 15% over the RRT algorithm, showing the
same performance.

(@) (b) (©)
Figure 16. Experimental result of Map 6: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.
Figure 16 shows the path-planning results of Map 6 among the environmental maps for each

algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 16 (c)
compared to others, and the path length looks shortest for the proposed algorithm.

Table 7. Experimental result of Map 6 (The parentheses to the right of each value are the relative ratios
based on RRT 100% (X ¢y (6)))-

Performance (Acmp(6)) RRT RRT-Connect Prop(.)sed
Algorithm
Avg. Num. of Samples [samples] 541 (100) 184 (34) 140 (26)
Avg. Path length [px] 886 (100) 778 (88) 668 (75)
Avg. Planning time [ms] 9 (100) 6(67) 4 (44)

Table 7 shows the result (after repeating the trial 50 times) of path planning in Map 6 for each
algorithm. The average number of samples is smallest in the proposed algorithm at 26% and the RRT-
Connect algorithm is 34% compared to the RRT algorithm, which is 8% less efficient than RRT
algorithm compared to the proposed algorithm. The average path length of the proposed algorithm
is the shortest at 75% compared to the RRT algorithm, and the RRT-Connect algorithm is 88%, which
is 13% less efficient than the proposed algorithm. The average planning time is smallest in the
proposed algorithm at 44%, and the RRT-Connect is 67% compared to the RRT algorithm, which is
23% less efficient than the RRT algorithm compared to the proposed algorithm.
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(a) (b) (0

Figure 17. Experimental result of Map 7: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 17 shows the path planning results of Map 7 among the environmental maps for each
algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 17 (c)
compared to others, and the path length looks shortest for the proposed algorithm.

Table 8. Experimental result of Map 7 (The parentheses to the right of each value are relative ratios
based on RRT 100% (X ¢y (7)))-

Performance (Acmp(7)) RRT RRT-Connect Prop(.)sed
Algorithm
Avg. Num. of Samples [samples] 436 (100) 235 (54) 244 (56)
Avg. Path length [px] 898 (100) 862 (96) 674 (75)
Avg. Planning time [ms] 5 (100) 4 (80) 3 (60)

Table 8 shows the result (after repeating the trial 50 times) of path planning in Map 7 for each
algorithm. The average number of samples is smallest in RRT-Connect algorithm at 54%, and the
proposed algorithm is 56% compared to the RRT algorithm, which is 2% less efficient than RRT
algorithm compared to the RRT-Connect algorithm. The average path length of the proposed
algorithm is shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is 96%,
which is 21% less efficient compared to the proposed algorithm. The average planning time is
smallest in the proposed algorithm at 60%, and RRT-Connect is 80% compared to the RRT algorithm,
which makes it 20% less efficient than the RRT algorithm compared to the proposed algorithm.

(a) (b) (0

Figure 18. Experimental result of Map 8: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm.

Figure 18 shows the path planning results of Map 8 among the environmental maps for each
algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 18
(b) and the proposed algorithm in Figure 18 (c) compared to the RRT algorithm in Figure 18 (a), and
the path length looks shortest for the proposed algorithm.

Table 9. Experimental result of Map 8 (The parentheses to the right of each value are the relative ratios
based on RRT 100% (X (8))).

Proposed

P A 8 RRT RRT-C t
erformance (Acmp(8)) onnec Algorithm
Avg. Num. of Samples [samples] 17,033 (100) 3,031 (18) 2,954 (17)
Avg. Path length [px] 1,611 (100) 1,576 (98) 1,358 (84)
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Avg. Planning time [ms] 4,501 (100) 119 (3) 125 (3)

Table 9 shows the result (after repeating the trial 50 times) of path planning in Map 8 for each
algorithm. The average number of samples is smallest in the proposed algorithm at 17%, and the
RRT-Connect algorithm is 18% compared to the RRT algorithm, which is 1% less efficient than RRT
algorithm compared to the proposed algorithm. The average path length of the proposed algorithm
is the shortest at 84% compared to the RRT algorithm, and the RRT-Connect algorithm is 98%, which
is 14% less efficient compared to the proposed algorithm. The average planning time of the proposed

algorithm and the RRT-Connect algorithm is 3% over the RRT algorithm, showing the same
performance.

5.3. Experimental Results and Analysis in Total

This section comprehensively presents the experimental results (on average, number of samples,
path length, and planning time) for each algorithm: RRT, RRT-Connect, and the proposed triangular
inequality-based RRT-Connect algorithm, in the eight environmental maps (Fig. 10) shown in Section
5.2.

Figures 19 (a), 20 (a), and 21 (a) show the performances of the RRT-Connect algorithm and the
proposed algorithm when the RRT algorithm’s performance is set to 100% for each environment map.
The (b) of each figure shows the performance average of all environment maps for each algorithm.
The values shown in (a) of Figures 19-21 can be expressed as in Equations 24 and 25 and the values
shown in (b) can be expressed as Equation 26 below:

Xcmp = Zﬁo x(i)cmp/M: (26)

Here, X.p, refers to the Y-axisin (b) of Figures 19-21 and M is the number of environment maps
used in the experiment. The experiment in this paper includes eight maps. That is, Equation 26 shows
the average value of i for all maps in Equation 25.
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Figure 19. Experimental results in total for the average number of samples(for first path finding): (a)
result of each map compared with the RRT algorithm (x.py (©)); (b) average result compared with the
RRT algorithm (X¢pp).

Figure 19 shows the average number of samples [%] compared with the RRT algorithm for Maps
1-8 (after repeating the trial 50 times) and the average number of samples [%] compared with the
average result of each algorithm for each map (after repeating the trials 50 times) when the result of
RRT algorithm is considered 100%.

As shown in Figure 19 (b), the average number of samples for all environment maps was 38%
less in the RRT-Connect algorithm and 40% less in the proposed algorithm compared to the RRT
algorithm. The proposed algorithm is 2% less efficient than the RRT-Connect algorithm.
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Table 10. Experimental results in total for the average number of samples(for first path finding) [%].

Performance ratio based on RRT (xmp (i) Avg.
Algorithm (cmp)
Mapl Map2 Map3 Map4 Map5 Map6 Map7 Map$8 (Xcmp)
RRT 100 100 100 100 100 100 100 100 100
RRT-Connect 60 37 75 10 18 34 54 18 38
Proposed 68 42 77 11 20 26 56 17 40

Table 10 is the data table of Figure 19 (a). The proposed algorithm shows better performance
than the RRT-Connect algorithm for Maps 6 and 8 and the RRT-Connect algorithm shows better
performance than the proposed algorithm in Maps 1-5 and 7. However, the difference is not
significant for most of the maps, such as showing a 2% difference from the map average. There are
cases in which the proposed algorithm is 1-8% better than the RRT-Connect algorithm and there are
cases in which the RRT-Connect algorithm is 1-8% better than the proposed algorithm.
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Figure 20. Experimental results in total for the average path length: (a) result of each map compared
with the RRT algorithm (x¢pmy (i)); (b) average result compared with the RRT algorithm (X¢pp,).

Figure 20 shows the average path length [%] compared to the RRT algorithm for Maps 1-8 (after
repeating the trials 50 times), and the average path length [%] compared with the average result of
each algorithm for each map (again after repeating the trials 50 times) where the result of the RRT
algorithm was considered as 100%.

As shown in Figure 20 (b), the average path length for all environment maps was 96% less in the
RRT-Connect algorithm and 80% less in the proposed algorithm compared to the RRT algorithm. The
proposed algorithm is 16% more efficient than the RRT-Connect algorithm.

Table 11. Experimental results in total on the average path length [%].

Performance ratio based on RRT (X cmp (1)) Av
. g.
Algorithm (cmp)
Map1l Map2 Map3 Map4 Map5 Map6 Map7 Map38 Xemp)
RRT 100 100 100 100 100 100 100 100 100
RRT-Connect 100 98 97 83 106 88 96 98 96
Proposed 89 81 77 75 84 75 75 84 80

Table 11 is the data table of Figure 20 (a). The proposed algorithm shows better performance

than the RRT-Connect algorithm for all maps. The proposed algorithm is 8-21% better than the RRT-
Connect algorithm.
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Figure 21. Experimental results in total on the average planning time: (a) result of each map compared
with the RRT algorithm (x¢my (i)); (b) average result compared to the RRT algorithm (X¢p,y, ).

Figure 21 shows the average planning time [%] compared to the RRT algorithm for each map
(after repeating the trials 50 times), and the average planning time [%] compared with the average
result of each algorithm for each map (after repeating the trials 50 times) when the result of RRT
algorithm is considered 100%.

As shown in Figure 21 (b), the average planning time for all environment maps was 51% less in
the RRT-Connect algorithm and 53% less in the proposed algorithm compared to the RRT algorithm.
The proposed algorithm was 2% less efficient than the RRT-Connect algorithm.

Table 12. Experimental results in total for the average planning time [%].

Performance ratio based on RRT (X ¢y (0)) Avg.
Algorithm (cmp)
Map1l Map2 Map3 Map4 Map5 Map6 Map7 Map38 Xemp)
RRT 100 100 100 100 100 100 100 100 100
RRT-Connect 58 50 35 100 15 67 80 3 51
Proposed 83 50 36 133 15 44 60 3 53

Table 12 is the data table of Figure 21 (a). The proposed algorithm shows the same or better
performance for Maps 2 and 5-8 than the RRT-Connect algorithm. It shows worse performance for
Maps 1, 3 and 4 than the RRT-Connect algorithm. However, most of the maps show no significant
difference, such as showing a 2% difference from the map average. There are cases in which the
proposed algorithm is 20-23% better than the RRT-Connect algorithm and there are cases where the
RRT-Connect algorithm is 1-33% better than the proposed algorithm.

6. Conclusion

In this paper, we proposed a triangular inequality-based RRT-Connect algorithm using
triangular inequality principles to overcome the limitations in the optimality of the RRT-Connect
algorithm. We verified the validity of the Triangular-Rewiring method based on the triangular
inequality principle and applied it to the RRT-Connect algorithm to bring it closer to the optimum.
In addition, to check performance indicators such as the number of samples for finding the first path,
path length, and planning time of the proposed algorithm, we compared between the RRT and RRT-
Connect algorithms across a total of eight environments through simulation. On average, the
proposed algorithm showed 20% better efficiency than the RRT algorithm and 16% better efficiency
than the RRT-Connect algorithm in path length and 47% better efficiency than the RRT algorithm in
planning time but 2% worse efficiency than the RRT-Connect algorithm. In conclusion, the proposed

algorithm showed shorter paths than the RRT-Connect algorithm with a similar number of samples
and planning time.


https://doi.org/10.20944/preprints202011.0494.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 December 2020 d0i:10.20944/preprints202011.0494.v3

However, one of the limitations of the proposed algorithm is the Kinodynamic planning
problem [17]. When the intermediate node disappears by Triangular-Rewiring method, a non-
differentiable piecewise linear section with sharp corner may occurs, which cause a problem related
with the kinematic constraint of the robot.
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Appendix A. Details of the RRT Algorithm

This section shows the pseudocode of the RRT algorithm used in the experiment of this paper,
designed based on the paper [13] in which the RRT algorithm was proposed. The RRT algorithm can
be represented by one main algorithm (AS1) and two additional functions (AS2 and AS3).

A.1. Pseudocode of the RRT Algorithm

This section shows the pseudocode of main algorithm (AS1) of the RRT algorithm used in the
experiment of this paper, designed based on the paper [13] in which the RRT algorithm was proposed.

Algorithm S1. Pseudocode of the RRT Algorithm.

Input:

gstart < Position of Start Point

gson + Position of Goal Point

A « Step Length

C « Position Set of All Boundary Points in All Obstacles
N <« Number of Random Samples

Output:

R « Result of Path R

Initialize:

T < Null Tree

dshorter < 0

Begin RRT Procedure

1 T « Insert Root Node<gsur>to T

2 Whilel < ntoNdo

3 Generate n-th Random Sample

4 grmd < Position of n-th Random Sample

5 gnear < Find Position of Nearest Node in T from grand
6

If Not islnside(qnear, Grana, 1) then
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gnew < Position of Intersection Point between Line Segment connecting grand and guear,

7 and Circle with Radius A centered at guear /I 2D: Circle, 3D: Sphere, ...
8 Else

9 Gnew < Grand

10 If Not isTrapped(gnew, Gnear, C) then

11 T « Insert Node<g«> and Edge<guew, quear>to T

12 If isInside(qnew, qson, A) then

13 T «+ Insert Node<gg> and Edge<guew, ggoni> to T

14 Preacn + Path from Last Inserted Node [ggon] to Root Node [gstart] in T
15 dreach < Distance of Preach

16 If dshorter = 0 Or Oshorter > dreac then

17 R <+ Preach

18 shorter <= dreach

19 T « Delete Node<ggui> and Edge<gunew, o> from T

End RRT Procedure

The root node of the initial tree T has gstrt, and this gstar is the start point. From this gstr to the
goal position gga, random sample is generated N times, as required until the tree is expanded. grana is
position of generated random sample, in which the node nearest to the tree T is guer. At this time, the
position guew created later varies depending on whether grna is located inside a circle (or n-sphere),
with guer as the center and step length A as the radius. The function that determines this is islnside
(AS2), and if g is located inside the circle (or n-sphere) (True), gnew becomes grand, and if it is not
located inside (False), quew becomes the intersection point between the line segment connecting grand
and guer and the circle with A centered at guear. If there is no obstacle between gnew and guer (False), guew
is inserted into the tree as a child node of guer of T. Currently, the function that determines whether
an obstacle exists between guew and gneer is isTrapped (AS3) (in the isTrapped function, C refers to the set
of obstacles).

If ggont is inside the radius of the A with the newly inserted g as the center, it is considered to
have reached the goal point (by islnside function). If it is reached (True), gson is inserted as a child node
of node gnew of T.

For the tree T thus completed, the distance drae: is calculated for the path Preach to gstart and ggoa.
Currently, if drach is smaller than the path length dswrer or reached first (dswrer = 0), the result path R
becomes Preact, and dsnorier becomes dreach. At the end of the next N sampling, R becomes the final planned
path.

If the number of random samples remains, the above process is repeated. At this time, gsoa and
the edge connected to this node must be deleted from the tree, T. Otherwise, the tree structure will
break due to cyclic. As a result, when a graph structure is formed, the cost of path search increases
rapidly.

A.2. Pseudocode of the functions used in the RRT Algorithm

This section introduces additional functions used in pseudocode of the RRT algorithm (AS1) in
Section A.1. The isTrapped (AS2) function determines whether an obstacle collides, and the islnside
function (AS3) determines if the point exists inside the radius.

Algorithm S2. Pseudocode of the isInside Function from the RRT Algorithm.

Input:
eenter < Position {guear / quew} from RRT
Qtarget <= Position {Qt’and / CIgual} from RRT
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A « Step Length A from RRT
Output:

f + Result of Boolean f
Initialize:

f « False

Begin islnside Procedure from RRT

1 d < Distance of fcenter to target
2 If A2dthen

3 f < True
End isInside Procedure from RRT

AS2 shows the isInside function among RRT pseudocodes shown in AS1. In the RRT algorithm,
it is determined whether g exists inside a circle (or n-sphere) with guer as the center and A as the
radius, or gsa exists inside a circle (or n-sphere) with guew as the center and A as the radius.

In the isInside function, the position to be determined (grand, ggoa, ...) is called grarger, and the center
of radius (guear, Guew, ...) is called geenter. When the distance between geenter and grarger is d, if this d is less
than or equal to A, it is determined that gt is the inside position (True).

Algorithm S3. Pseudocode of the isTrapped Function from the RRT Algorithm.

Input:

gnew < Position gnew from RRT

Gnear < Position guesr from RRT

C « Position Set of All Boundary Points in All Obstacles C from RRT
Output:

f + Result of Boolean f

Initialize:

n <1

f < True

Begin isTrapped Procedure from RRT

1 Iy + Line Segment connecting guew and gnear

2 ¢ + Position Set of All Boundary Points of n-th Inserted Obstacle in C

3 I+ Line Segment connecting Last Inserted Position and 1st Inserted Position in ¢
4 i+1

5 While Not Intersect between Iy and I do

6 lc < Line Segment connecting i-th Inserted Position and (i + 1)-th Inserted Position in c
7 i~ i+l

8 If i = (Number of Position in c) — 1 then

9 If Intersect between I; and Ic then

10 Break

11 n <« n+l

12 If n > (Number of Position Set in C) then

13 f + False

14 Break

15 Else

16 ¢ « Position Set of All Boundary Points of n-th Inserted Obstacle in C
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17 lc + Line Segment connecting Last Inserted Position and 1st Inserted Position in ¢
18 i+~ 1
End isTrapped Procedure from RRT

Algorithm S3 shows the isTrapped function among RRT algorithm pseudocodes shown in
Algorithm S1. In the RRT algorithm, it is used to determine whether an obstacle exists between the
line segment connecting gnew and guear.

If the line segment connecting guew and guerr is I, and the set of positions formed by the n-th
obstacle in the set of obstacles C is ¢, then L is the i-th and (i + 1)-th positions inserted in ¢ (and the last
and 1+ position). It is determined whether it intersects with I; for all line segments [ in the set of
positions of all obstacles, c, that C has. Currently, if any intersect occurs, AS3 returns True and stops
the procedure immediately. Otherwise, it determines all the line segments that can be I- and returns
False.

A.3. Basic Mathematical Modeling of the RRT Algorithm

This chapter introduces basic mathematical modeling in the RRT algorithm. The following
Equations, S1-S5, show that the coordinate value of guew is calculated from the coordinate value of
grand in the RRT algorithm:

d= \/(qrand- X = Qnear- X)2 + (Qrand- Y = Qnear- Y)z/ (Sl)
|Grana-X — Gnear-X|: |Gnew- X — Gnear-Xl = d : 4, (82)
|Grana-Y = Gnear-Y|: |Gnew-Y — Gnear-yl = d : A. (83)

Equations 52-S3 shows the relationship between d and A in Equation S1 through the similarity
ratios from guear to grand and from guear to Gew:

Qrand- X d<2a
x= , s4
Gnew {lulqmnd.x ~ Gnear-X1/d) + Guear-xI, d > 1 (54)
Qrand- Y, d S /1
v= , S5
new-Y {I(Alqmna-y = Gnear-YI/d) + Qnear-yl, d > 2 (55)

Through these equations, the x and y coordinate values of guw can be derived as shown in
Equations 54 and S5. In this case, d < A refers to a case where g exists in a position inside the A
radius.
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