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Abstract: This paper proposed a triangular inequality-based rewiring method for the Rapidly 

exploring Random Tree (RRT)-Connect robot path-planning algorithm that guarantees the planning 

time compared to the RRT algorithm, to bring it closer to the optimum. To check the proposed 

algorithm’s performance, this paper compared the RRT and RRT-Connect algorithms in various 

environments through simulation. From these experimental results, the proposed algorithm shows 

both quicker planning time and shorter path length than the RRT algorithm and shorter path length 

than the RRT-Connect algorithm with a similar number of samples and planning time. 
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1. Introduction 

With the recent fourth Industrial Revolution, interest in mobile robots has increased in various 

fields such as robotics, smart factories, and autonomous driving [1]. Classical mobile robot path-

planning algorithms can be classified into three broad categories [2]. The first is the Road Map 

Approach algorithm [3], which is easy to implement by designing a map that represents a path that 

can be moved and plan through it. The second is Cell Decomposition algorithm [4], which creates a 

path by dividing the configuration space into cells and connecting each cell using a graph. The last is 

the Artificial Potential Field algorithm [5], which creates an artificial potential field and directs the 

robot to the goal according to the flow of potential power. 

Optimality means always ensuring the optimal path. Clearance indicates a lower probability of 

collision between obstacles and the robot. Completeness means that if a path exists, it can always be 

found. Optimality, clearance and completeness are considered important in these classical algorithms 

and have been the main focus of study [6]. Particularly if completeness is not guaranteed by the robot 

path-planning algorithm, there is a problem that the path may not be found in finite time. This is a 

fatal problem in robot path planning. 

Recently, sampling-based path-planning algorithms [7–12] such as Rapidly Exploring Random 

Tree (RRT) [13], which is quicker and less computationally intensive than classical algorithms, have 

been attracting attention. The main purpose of sampling-based algorithms is to find a path that can 

reach the goal as quickly as possible using randomly extracted sample points (random sampling). 

Unlike classical algorithms, sampling-based algorithms have difficulty fully reflecting the optimality 

and completeness. Therefore, most sampling-based algorithms claim Probabilistic Completeness, 

which explains that they can be probabilistically close to complete when random sampling is 

repeated infinitely [14]. This means that it is difficult to guarantee the Planning time (First path finding 

time), which refers to how quickly the path can be planned from the start point to the goal point, and 

the Convergence rate, which means iterative sampling to bring the path closer to the optimum after 

the first path has been found. If the situation does not allow enough time to plan the path, it can create 

a path that is more different from the optimal path. Even so, the sampling-based algorithm is mainly 
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used in dynamic environments because it enables quicker path planning with very little planning 

time compared to classical algorithms. 

To overcome these limitations of planning time and convergence rate, many studies are being 

conducted to expand the RRT algorithm. The RRT-Connect [15] algorithm finds a connected path 

more quickly than the RRT algorithm by setting the start point and goal point as the roots of separate 

trees and expanding both trees alternately. In addition, there are algorithms that optimize paths 

based on the principle of triangular inequality, such as RRT*-Smart algorithm [16] and Quick-RRT* 

algorithm [17], to derive a path that is close to the optimal. Many algorithms [18–21] that extend the 

RRT algorithm have been studied. 

The above algorithms show more efficient performance by improving the RRT algorithm to 

overcome the limitations of sampling-based methods but they are still not perfect. Their limitations 

include being unable to derive the optimal length and there is room for improvement in terms of the 

number of operations and time. For example, the RRT* algorithm has rewiring(search for the parent 

node as a via point nearby a newly inserted node, where the addition of path length from the start 

point to the via point and path length from the via point to the newly inserted node in the tree is the 

optimized, and change the neighboring nodes to optimize the path length) and neighbor 

search(search for nodes nearby the node to be newly inserted in the tree) processes to obtain shorter 

path lengths than the RRT algorithm [18]. However, there is an efficiency trade-off in this process. In 

other words, while the convergence rate has improved, the planning time has significantly increased 

[22]. Therefore, the RRT* algorithm cannot be said to be better than the RRT algorithm in all 

performance metrics and it can be said that the RRT* algorithm gets closer to the optimum at the 

expense of planning time. 

To overcome the limitation of getting closer to the optimum at the expense of planning time, this 

paper proposes a triangular inequality-based RRT-Connect algorithm that finds an ancestor node as 

a via point, where the addition of path length from the start point to the via point and path length 

from the via point to the newly inserted node is the most optimized, based on the principle of 

triangular inequality and RRT-Connect. The proposed algorithm shortens the planning time while 

also pursuing optimization through rewiring. In addition, we will verify the efficiency by comparing 

the RRT and RRT-Connect algorithms from previous studies through simulation experiments. As a 

result, this paper shows that the proposed algorithm has a shorter path length than the RRT and RRT-

Connect algorithms without sacrificing other performance measures such as the number of sample 

or planning time. 

The scope of the research we will cover is how much more quickly it can find the path and how 

much shorter the path is. This is because in a dynamic environment, it is more important to find a 

navigable path. In a dynamic environment, there may not be enough time for convergence. In other 

words, the purpose of our proposed algorithm is to improve the RRT-Connect algorithm so that it 

can find a shorter path over the same planning time(computation time before convergence or 

computation time for first path finding). 

 

(a) 

 

(b) 

 

(c) 
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Figure 1. Overview of the algorithms in this paper: (a) RRT; (b) RRT-Connect; (c) the proposed 

algorithm. 

Figure 1 shows an overview of the three main algorithms covered in this paper: RRT, RRT-

Connect, and the proposed algorithm. In this figure, the start qstart and goal points are qgoal, respectively. 

The RRT algorithm in Figure 1 (a) shows that the path is expanded in a tree structure and the RRT-

Connect algorithm in Figure 1 (b) shows that the trees that are expanded at the start and goal points 

attract and connect each other. The proposed algorithm in Figure 1 (c) shows that the RRT-Connect 

algorithm was rewired into a triangular inequality during path planning. 

In this paper, Chapter 2 introduces the RRT algorithm, Chapter 3 introduces the RRT-Connect 

algorithm, and the triangular inequality-based RRT-Connect algorithm is proposed in Chapter 4. In 

detail, Section 4.1 shows the pseudocode of the proposed rewiring method through the principle of 

triangular inequality, which can be applied to the RRT-Connect algorithm, Section 4.2 shows the 

mathematical modeling of the proposed algorithm, Sections 4.3 and 4.4 show the pseudocode of each 

method of the RRT-Connect algorithm applying the proposed rewiring method, and Section 4.5 

shows the path-planning process for the proposed algorithm that applies the proposed rewire 

method to the RRT-Connect algorithm. Chapter 5 shows the experimental environment and results 

to check the performance of the proposed algorithm and Chapter 6 presents the conclusion. 

2. The Rapidly exploring Random Tree (RRT) Algorithm 

The Rapidly exploring Random Tree (RRT) algorithm [13] is the most representative sampling-

based path-planning algorithm. the RRT algorithm plans a path by gradually expanding a tree with 

a root node at the start point using random sampling. It is designed to handle Non-holonomic 

constraints and high degrees of freedom [12]. 

When a random sample is generated in the configuration space, it tries to connect at a point 

separated by a preset step length from the node nearest to the random sample among nodes 

constituting the tree with the step length. If tree connections are possible, nodes are added to create 

an extended tree. 

As mentioned in the introduction, this sampling-based path-planning algorithm uses randomly 

generated sample points to find a path that can reach the goal as quickly as possible, so it is difficult 

to sufficiently reflect the optimality and completeness. 

 

(a) 

 

(b) 

Figure 2. The RRT algorithm: (a) Process when qnew is created; (b) After the random sampling has 

ended. 

Figure 2 shows the path-planning process of the RRT algorithm. Figure 2 (a) shows that qnew is 

created at the node position qnear of the tree T nearest to the random sample position qrand. Figure 2 (b) 

shows the resultant path R among several candidate paths to the start position qstart and the goal 

position qgoal. 

3. The RRT-Connect Algorithm 
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Path planning through the RRT algorithm may have a disadvantage in that since random 

samples appear with the same probability in all regions, the tree easily extends even in a direction 

irrespective of the goal, resulting in a long planning time and inefficiency. The RRT-Connect 

algorithm [15] proposed later has two new ideas as the method to compensate for the disadvantage 

of the RRT algorithm. 

The first is that the start and goal points are each inserted as root nodes and extended in each 

direction alternately. The two trees extending from the start point and the goal point expand as if 

attracting one another, which prevents the tree and is a disadvantage of the RRT algorithm, is in a 

direction irrespective of the goal. This enhances the disadvantage of the planning time required to 

search for a path. The second is the concept of Extend, which continues extending to the other side of 

the tree if there are no collisions with obstacles when the tree extends. Through this, unlike the RRT 

algorithm that extends the maximum extension length when the sample is generated and is inserted 

into the tree, the tree continues to expand in the direction of the goal if there is no collision with an 

obstacle, so the path can be planned more quickly. 

Path planning through the RRT-Connect algorithm can find a path quicker than the RRT 

algorithm, but the Extend method does not work properly in complex environments with narrow 

paths and many obstacles and it can be difficult. In addition, the path planned using the RRT-Connect 

algorithm is far from the optimal length, so it does not properly reflect optimality. 

3.1. Pseudocode of the RRT-Connect Algorithm 

This section shows the pseudocode of the RRT-Connect algorithm used in the experiment in this 

paper that was designed based on [15] in which the RRT-Connect algorithm was proposed. The RRT-

Connect algorithm can be represented by a main algorithm (A1) and two main methods (A2 and 3). 

Algorithm 1. Pseudocode of the RRT-Connect Algorithm. 

Input: 

qstart ← Start Point Position 

qgoal ← Goal Point Position 

λ ← Step Length 

C ← Position Set of All Boundary Points in All Obstacles 

Ν ← Number of Random Samples 

Output: 

R ← Result of Path R 

Initialize: 

Ta ← Null Tree 

Tb ← Null Tree 

dshorter ← 0 

 

Begin RRT-Connect Procedure 

1 Ta ← Insert Root Node<qstart> to Ta 

2 Tb ← Insert Root Node<qgoal> to Tb 

3 While 1 ← n to N do 

4 Generate n-th Random Sample 

5 qrand ← Position of n-th Random Sample 

6 If Not Extend(Ta, Tb, qnewB ← Null, qrand, λ, C) then 

7         If Connect(Preach ← Null Path, Ta, Tb, qnewB, λ) then 

8 dreach ← Distance of Preach 

9 If dshorter = 0 or dshorter > dreach then 
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10 R ← Preach 

11 dshorter ← dreach 

12 Swap(Ta, Tb) 

End RRT-Connect Procedure 

Algorithm 1 shows the pseudocode of RRT-Connect algorithm. Both of the two initial trees Ta 

and Tb have qstart and qgoal as root nodes and these two trees randomly sample N times and aim to reach 

each other during their expansion. Unlike RRT, the RRT-Connect algorithm is divided into two 

methods: Extend and Connect. The Extend method (A2) creates qnew from qrand in Ta and extends from 

Tb to the qnew direction of Ta, and the Connect method (A3) determines whether the two trees Ta and 

Tb have reached each other; if they do, merge them into one tree to obtain a path Preach between the 

root nodes qstart and qgoal of the two trees. 

When a path is created by the Connect method, the distance dreach is calculated for the path Preach 

from qstart to qgoal. At this time, if dreach is smaller than dshorter(the shortest path length until now) or Preach 

is the first path found (i.e., dshorter = 0), the resultant path R becomes Preach, and dshorter becomes dreach. At 

the end of the next N sampling, R becomes the final planned path. If the number of random sampling 

remains, the above process is repeated. 

3.2. Pseudocode of the Extend method from the RRT-Connect Algorithm 

This section introduces the Extend method used in pseudocode (A1) of the RRT-Connect 

algorithm in Section 3.1. 

Algorithm 2. Pseudocode of the original Extend method from the RRT-Connect Algorithm. 

Input: 

Ta ← Tree Ta from RRT-Connect 

Tb ← Tree Tb from RRT-Connect 

qnewB ← Position qnewB from RRT-Connect 

qrand ← Position qrand from RRT-Connect 

λ ← Step Length λ from RRT-Connect 

C ← Position Set C from RRT-Connect 

Output: 

ftrap ← Result of Boolean ftrap 

Ta ← Result of Tree Ta    // Return by Reference 

Tb ← Result of Tree Tb    // Return by Reference 

qnewB ← Result of Position qnewB    // Return by Reference 

Initialize: 

ftrap ← False 

 

Begin Extend Procedure from RRT-Connect 

1 qnear ← Find Position of Nearest Node in Ta from qrand 

2 If Not isInside(qnear, qrand, λ) then 

3 
qnewA ← Position of the Intersection Point between the Line Segment connecting qrand and qnear and 

a Circle with Radius λ centered at qnear     // 2D: Circle, 3D: Sphere, … 

4 Else 

5 qnewA ← qrand 

6 If isTrapped(qnewA, qnear, C) then 

7 ftrap ← True 
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8 Else 

9 Ta ← Insert Node<qnewA> and Edge<qnewA, qnear> to Ta 

10 qnear ← Find Position of Nearest Node in Tb from qnewA 

11 If isInside(qnear, qnewA, λ) then 

12 qnewB ← qnear 

13 Else 

14 
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear, 

and Circle with Radius λ centered at qnear     // 2D: Circle, 3D: Sphere, … 

15 While Not isTrapped(qnewB, qnear, C) do 

16 Tb ← Insert Node<qnewB> and Edge<qnewB, qnear> to Tb 

17 If Not isInside(qnewA, qnewB, λ) then 

18 qnear ← qnewB 

19 
qnewB ← Position of Intersection Point between     // 2D: Circle, 3D: Sphere, … 

Line Segment connecting qnewA and qnear, and Circle with Radius λ centered at qnear 

20 Else 

21     Break 

End Extend Procedure from RRT-Connect 

Algorithm 2 shows the pseudocode of the Extend method in the RRT-Connect algorithm. The 

isInside function determines whether qrand is inside a circle (or n-sphere) with the node position qnear of 

the tree Ta nearest the qrand position as the center and λ as the radius. If it is not located inside (False), 

qnewA becomes the intersection of the circle (or n-sphere) with qnear as the center and λ as the radius, 

and the line segment connecting qrand and qnear. If it is determined that there is no obstacle between 

qnewA and qnear by the isTrapped function (False), qnewA is inserted into the tree as a child node of qnear of 

Ta. If there is an obstacle (True), the Extend method returns True (ftrap) and terminates. Otherwise, it 

proceeds with the remaining process and returns False (ftrap) when the process ends. 

This is the process of making Ta and Tb reach each other: First, the node Tb nearest to qnewA becomes 

the new qnear. At this time, using the isInside function, it is determined whether qnewA is inside a circle 

(or n-sphere) with qnear as the center and λ as the radius, and if it is located inside (True), qnewB becomes 

qnear and is located inside. If not (False), qnewB becomes the intersection of the circle (or n-sphere) with 

qnear as the center and λ as the radius and the line segment connecting qnewA and qnear. If qnewB is created, 

then the following process is repeated until it can determine whether there is an obstacle between 

qnewB and qnear by the isTrapped function and if there is the obstacle between them (True) or if qnewB 

reaches qnewA by the isInside function. 

If there is no obstacle between qnewB and qnear (False), insert qnewB into Tb as a child node of qnear. At 

this time, if the isInside function determines that qnewB has not reached the λ radius with qnewA as the 

center (False), qnear becomes qnewB and a new qnewB will created from this qnear. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2020                   doi:10.20944/preprints202011.0494.v3

https://doi.org/10.20944/preprints202011.0494.v3


Figure 3. The Extend method from RRT-Connect algorithm. 

Figure 3 shows the Extend method in the RRT-Connect algorithm. In detail, it shows that the first 

qnewA is created, and qnewB is created with radius of length λ in the direction of qnewA from the qnear position 

in the figure. Clearly, Tb extends in the Ta direction for reach. 

3.3. Pseudocode of the Connect method from the RRT-Connect Algorithm 

This section introduces the Connect method used in pseudocode (A1) of the RRT-Connect 

algorithm in Section 3.1. 

Algorithm 3. Pseudocode of the Original Connect Method from the RRT-Connect Algorithm. 

Input: 

Preach ← Path Preach from RRT-Connect 

Ta ← Tree Ta from RRT-Connect 

Tb ← Tree Tb from RRT-Connect 

qnewB ← Position qnewB from RRT-Connect 

λ ← Step Length λ from RRT-Connect 

Output:  

freach ← Result of Boolean freach 

Preach ← Result of Path Pmerged    // Return by Reference 

Initialize: 

freach ← False 

 

Begin Connect Procedure from RRT-Connect 

1 If isInside(qnewA, qnewB, λ) then 

2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta 

3 Pb ← Path from qnewB to Root Node [qgoal] in Tb 

4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb 

5 Pmerged ← Merge Path Pa to Pb via Pconnect 

6 freach ← True 

End Connect Procedure from RRT-Connect 

Algorithm 3 shows the pseudocode of the Connect method in the RRT-Connect algorithm. Here, 

Ta, Tb, and qnewB are from the Extend method (A2). 

The tree merging process is as follows: Create a path Pa from the root node (qstart) of Ta to the last 

inserted node (qnewA), and a path Pb from qnewB of Tb to the root node (qgoal). Then, create a path Pconnect 

from qnewB of Pb to the last inserted node (qnewA) of Ta and merge in the order of Pa, Pconnect, and Pb, thereby 

completing planning the path Pmerged from qstart to qgoal. After this, it returns True (ftrap), and the Connect 

method ends. 
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Figure 4. The Connect method from the RRT-Connect algorithm. 

Figure 4 shows the Connect method in the RRT-Connect algorithm. If the qnewB of Tb is extended 

in the direction of the qnewA by the Extend method shown in Figure 3, the point where the two trees 

merge (when qnewB has expanded in the direction of qnewA where Ta enters the λ radius centered at qnewA) 

with each other is the part marked as Connect. As a result, the path Pa becomes from the position qstart 

to the position qnewA in Ta, the path Pconnect goes from position qnewA to position qnewB and the path Pb goes 

from position qnewB to position qgoal in Tb. The merged path Pmerged goes from qstart to qgoal. 

4. Proposed Triangular Inequality-based RRT-Connect Algorithm 

The proposed triangular inequality-based RRT-Connect algorithm is a rewire based on the 

principle of triangular inequality between nodes on a path planned in the RRT-Connect algorithm, 

so it is closer to the optimal compared to the RRT-Connect. This is like the RRT*-Smart algorithm [16] 

and Quick-RRT* [17] algorithms, which shorten their paths using the triangular inequality principle 

for the RRT algorithm. In this paper, the rewire part based on the triangular inequality principle is 

called the Triangular-Rewiring method. 

The proposed triangular inequality-based RRT-Connect algorithm requires the following 

assumptions. 

[Assumptions] 

1. There is only one start point and one goal point even though the goal point may be changed 

incrementally as time goes on. 

2. The robot is capable of omnidirectional motion. 

Therefore, this chapter introduces the proposed Triangular-Rewiring method for the RRT-

Connect algorithm, and performs mathematical modeling to confirm the validity that the proposed 

Triangular-Rewiring method is always shorter when applied to the RRT-Connect algorithm. After 

checking through, we will propose how to apply the Triangular-Rewiring method to the RRT-Connect 

algorithm. 

The method of applying the RRT-Connect algorithm of the proposed Triangular-Rewiring 

method is proposed when a new node is inserted into the tree in the Extend method (A2) and Connect 

method (A3), the main methods of the RRT-Connect algorithm introduced in Chapter 3. It is inserted 

after rewiring (or after determining) through the Triangular-Rewiring method. That is, this chapter 

introduces the Extend and Connect methods to which the proposed Triangular-Rewiring method is 

applied. 

4.1. Pseudocode of the Proposed Triangular-Rewiring Method for the Improved RRT-Connect Algorithm 

This section introduces the Triangular-Rewiring method for the proposed triangular inequality-

based RRT-Connect algorithm. 

Algorithm 4. Pseudocode of the Proposed Triangular-Rewiring Method for the RRT-Connect Algorithm. 
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Input: 

qchild ← Position {qnew / qnewA / qnewB} from {Extend / Connect} 

qparent ← Position qnear from {Extend / Connect} 

T ← Tree {Tmerged / Ta / Tb} from {Extend / Connect} 

C ← Position Set C from {Extend / Connect} 

Output: 

{Tmerged / Ta / Tb}  ← Result of T 

 

Begin triangularRewiring Procedure from Extend, Connect 

1 qancestor ← Position of Parent Node of qparent in T 

2 If Not isTrapped(qancestor, qchild, C) then 

3 T ← Delete Node<qparent>, Edge<qparent, qchild> and Edge<qparent, qancestor> from T 

4 qparent ← qancestor 

5 qancestor ← Position of Parent Node of qancestor in T 

6 While Not qancestor = Null do 

7 If Not isTrapped(qancestor, qchild, C) then 

8 T ← Delete Node<qparent> and Edge<qparent, qancestor> from T 

9 qparent ← qancestor 

10 qancestor ← Position of Parent Node of qancestor in T 

11 Else 

12 Break 

13 T ← Insert Edge<qparent, qchild> to T 

14 Else 

15 T ← Insert Node<qchild> and Edge<qchild, qparent> to T 

End triangularRewiring Procedure from Extend, Connect 

Algorithm 4 shows the pseudocode of the Triangular-Rewiring method applicable in the Extend 

(A2) and Connect (A3) methods of the RRT-Connect algorithm. When inserting a new node and edge 

in Ta or Tb in the Extend method (A5), when a tree Tmerged (Pmerged) in which Ta and Tb trees are merged 

in the Connect method is created (A6), rewiring is performed on the tree T. 

In the Extend and Connect methods, qnew (or qnewA or qnewB) is inserted as a qchild and qnear is inserted 

as a candidate for the node’s parent node. From qparent, the node’s parent node (a second ancestor node 

candidate based on qchild) is called qancestor. Next, it is determined whether an obstacle exists between 

qancestor and qchild (using the isTrapped function). If there is an obstacle (True), the Triangular-Rewiring 

process is skipped and qchild is inserted into the child node of qparent in T such that the contents of the 

Extend and Connect methods from the RRT-Connect algorithm are the same. If there is no obstacle 

(False), the Triangular-Rewiring process proceeds. 

The Triangular-Rewiring process is as follows: Delete node where position qparent and the edges 

between qchild and qancestor nodes connected to qparent. In other words, it disconnects the existing qparent and 

qchild and prepares to connect qchild to qancestor, the candidate parent node of qchild. Again, qparent becomes its 

parent node qancestor and qancestor becomes the parent node of qancestor. Then, as previously done, determine 

whether an obstacle exists between qancestor and qchild (using the isTrapped function). This iterative 

process continues until no qancestor exists (When no parent node exists for the previous qancestor, i.e., when 

qancestor is qstart) or an obstacle exists between qchild and qancestor. Then, in tree T, the last created qparent is 

inserted as the parent node of qchild. 

4.2. Mathematical Modeling of the Proposed Triangular Inequality-based RRT-Connect Algorithm 
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This section introduces the mathematical modeling of the proposed triangular inequality-based 

RRT-Connect algorithm. The results show that the proposed algorithm is more efficient in terms of 

path length than the RRT-Connect algorithm. For reference, this mathematical modeling is based on 

a two-dimensional Euclidean space. 

Equations 1 and 2 define the path length 𝕕𝑛(𝑞𝑖) between an arbitrary node qi and its parent 

node in the RRT algorithm: 

𝐷(𝑞𝑖 , 𝜉(𝑞𝑖)) = √(𝜉(𝑞𝑖). 𝑥 − 𝑞𝑖 . 𝑥)
2 + (𝜉(𝑞𝑖). 𝑦 − 𝑞𝑖 . 𝑦)

2,                 (1) 

∴ 𝕕𝑛(𝑞𝑖) = 𝐷(𝜉
𝑛(𝑞𝑖), 𝜉

𝑛+1(𝑞𝑖)).                          (2) 

Here, qi refers to the i-th inserted arbitrary node and takes the x and y coordinate values of the 

node as an element. The ξ function receives an arbitrary node as a variable and returns the parent 

node of this node. Equation 1 obtains the distance between an arbitrary node qi and its parent node, 

which can be summarized as a function 𝕕𝑛 as in Equation 2. Here, n is the distance between the 

ancestor node and its parent node, based on an arbitrary node. That is, the ξ function to the power of 

n (n ≥ 0) can be represented as 𝜉𝑛(𝑞𝑖) ∶= (𝜉 ∘ 𝜉 ∘ … ∘ 𝜉⏞      )

𝑛

(𝑞𝑖); when n is 0, 𝜉0(𝑞𝑖) ∶= 𝑞𝑖 holds. 

In addition, consider starting with an arbitrary node qi and going back to the parent node to find 

the distance between the n-th ancestor node and the (n + 1)-th ancestor node; this can be represented 

as 𝐷(𝜉𝑛(𝑞𝑖), 𝜉
𝑛+1(𝑞𝑖)). 

Equations 3 and 4 show the path length 𝔻𝑅 from the start position qstart to the goal position qgoal 

by the RRT algorithm: 

𝜉𝛿+1(𝑞𝑔𝑜𝑎𝑙) = 𝑞𝑠𝑡𝑎𝑟𝑡,                                (3) 

∴ 𝔻𝑅 = ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 .                               (4) 

Equation 3 shows when the (δ + 1)-th ancestor node from qgoal is qstart, where δ is the upper limit 

of ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0  for obtaining the path length 𝔻𝑅 in Equation 4. In other words, Equation 4 is the 

sum of the distances from qgoal to the first ancestor node (parent node) of qgoal and the distance from 

the first ancestor node (parent node) of qgoal to the second ancestor of qgoal, …, and (δ – 1)-th ancestor 

node to the δ-th ancestor node (qstart). 

 

(a) 

 

(b) 

 

(c) 

Figure 5. Abstract process of the Triangular-Rewiring method: (a) Example tree; (b) After rewiring 

between qchild and qancestor; (c) At this time, α is the distance between qchild and qparent, β is the distance 

between qparent and qancestor, and γ is the distance between qchild and qancestor. 

Figure 5 shows an abstract process of the Triangular-Rewiring method. As shown in Figure 5 (a), 

if the parent node of qchild is qparent, the parent node of qparent is qancestor, and qancestor is the second ancestor 

of qchild, this can be represented as Equation 5: 

𝑞𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 = 𝜉(𝑞𝑝𝑎𝑟𝑒𝑛𝑡) = 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑).                         (5) 

If the distances between the edges connecting each node are the α between qchild and qparent, the β 

between qparent and qancestor, and the γ between qchild and qancestor is as shown in Figure 5 (c), this can be 

represented as Equation 6 using the principle of the triangular inequality: 
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𝛼 + 𝛽 ≥  𝛾.                                   (6) 

Equations 7 and 8 show the distance relationship between the ancestor nodes of qchild: 

𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛼, 𝐷(𝜉(𝑞𝑐ℎ𝑖𝑙𝑑), 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛽, 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉

2(𝑞𝑐ℎ𝑖𝑙𝑑)) = 𝛾,       (7) 

∴ 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉(𝑞𝑐ℎ𝑖𝑙𝑑)) + 𝐷(𝜉(𝑞𝑐ℎ𝑖𝑙𝑑), 𝜉
2(𝑞𝑐ℎ𝑖𝑙𝑑)) ≥ 𝐷(𝑞𝑐ℎ𝑖𝑙𝑑 , 𝜉

2(𝑞𝑐ℎ𝑖𝑙𝑑)),           (8) 

Equation 7 can be summarized as Equation 8 by substituting Equation 5, which represents the 

relationship between the n-th ancestor nodes of qchild, with the distance as Equation 1 in Equation 6, 

which represents the distance between each node as a triangular inequality. 

Equations 9–15 show that the path of the RRT algorithm applying the Triangular-Rewiring 

method is always shorter or equal to that planned by the original RRT algorithm. Equation 9 shows 

the sequence index kj to compare the distance 𝕦 when applying the Triangular-Rewiring method 

with distance 𝕕 when this method is not applied: 

𝑘𝑗 = 𝜏𝑗 + 𝑘′𝑗, 𝑘′𝑗 = {
0, 𝑗 = 0

𝑘𝑗−1 + 1, 𝑗 ≥ 1
,                         (9) 

Here, j is a sequence index for 𝕦. That is, kj can be considered a sequence index for 𝕕. Currently, 

𝜏𝑗 is the number of times that rewiring occurs in the j-th. 

If this is summarized by Equation 1 for a distance based on an arbitrary node qi, it is as Equation 

10. For example, as shown in Figure 5, if j is 0 and 1 a rewire occurs (𝜏0 = 1), it can be represented in 

combination with the distance relationship of Equation 8 for qchild, as in Equation 11: 

𝕦𝑘𝑗(𝑞𝑖) = 𝐷(𝜉
𝑘′𝑗(𝑞𝑖), 𝜉

𝑘𝑗+1(𝑞𝑖)),                          (10) 

𝕕0(𝑞𝑐ℎ𝑖𝑙𝑑) + 𝕕1(𝑞𝑐ℎ𝑖𝑙𝑑) = ∑ 𝕕𝑛(𝑞𝑐ℎ𝑖𝑙𝑑)
1
𝑛=0 ≥ 𝕦𝑘0=1(𝑞𝑐ℎ𝑖𝑙𝑑).               (11) 

The result of Equation 11 can be generalized as shown in Equation 12: 

∴ ∑ 𝕕𝑛(𝑞𝑖)
𝑘𝑗
𝑛=0 ≥ 𝕦𝑘𝑗(𝑞𝑖).                             (12) 

For 𝕕 based on an arbitrary node qi, the path length ∑ 𝕕𝑛
𝑘𝑗
𝑛=𝑗

 from the j-th to kj-th arbitrary 

sequence index is always longer or equal to the distance 𝕦𝑘𝑗 of the kj-th sequence index. That is, in 

an arbitrary path, it can be confirmed that the distance 𝕦  rewired by the Triangular-Rewiring 

method is at least equal (If the distances of 𝕕 and 𝕦 are the same, the rewired line segments are on 

a straight line) or always shorter than 𝕕 when not rewired. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 6. Detailed process of the Triangular-Rewiring method: (a) Each node q for index i (at this time, 

qstart is same as q7 and qgoal is same as q0); (b) Represent each node using the n-th ancestor 𝜉𝑛 of q0; (c) 

Each distance 𝕕𝑛  between the n-th and (n + 1)-th ancestor nodes of q0; (d) When the Triangular-

Rewiring method is applied and rewired by distance 𝕦𝑘𝑗; (e) Represent as the value of kj; (f) Represent 

each node by the n-th ancestor 𝜉𝑛 of q0 after method is applied. 

Figure 6 shows the Triangular-Rewiring process for the path from qstart to qgoal based on Equations 

5–12 (at this time, it is assumed that the node of the path shown in the figure is not positioned in a 

straight line). As shown in Figure 6 (b), a total of two rewires occurred (𝜏0 = 2) between q0 and q3 

(𝜉3(𝑞0)), and a total of one rewire occurred (𝜏3 = 1) between q5 (𝜉5(𝑞0)) and q7 (𝜉7(𝑞0)). In that case, 

as shown in Figure 6 (e), k0 is 2, k1 is 3, k2 is 4, and k3 is 6 according to Equation 9. 

Comparing Figures 6 (c) and 6 (e), according to Equation 7, the rewired distance 𝕦2(𝑞0) is 

shorter than the path length ∑ 𝕕𝑛(𝑞0)
2
𝑛=0  from 𝕕0  to 𝕕2  and the rewired distance 𝕦6(𝑞0)  is 

shorter than the path length ∑ 𝕕𝑛(𝑞0)
6
𝑛=5  from 𝕕5 to 𝕕6. That is, when comparing before applying 

the Triangular-Rewiring method in Figure 6 (a) and after applied this method in Figure 6 (f), the path 

afterward looks shorter. 

Equations 13 and 14 show the path length 𝔻𝑅  when the Triangular-Rewiring method is not 

applied and the path length 𝕌𝑅  when the method has been applied for an arbitrary path (start 

position: qstart, goal position: qgoal), as shown in Figure 6: 

𝑘𝜑 = 𝛿,                                     (13) 

𝔻𝑅 = ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0 = ∑ ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)

𝑘𝑗
𝑛=𝑘′𝑗

𝜑
𝑗=0 , 𝕌𝑅 = ∑ 𝕦𝑘𝑗(𝑞𝑔𝑜𝑎𝑙)

𝜑
𝑗=0 ,          (14) 

Equation 13 shows the upper limit when the index n of d is δ in Equation 3; when this is 

substituted into the sequence index kj, if kj is δ, j becomes φ. In that case, as in Equation 14, 𝔻𝑅 is 

used to compare the ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝛿
𝑛=0  shown in Equation 4 with 𝕌𝑅, reflecting the sequence kj. It can 

be represented as ∑ ∑ 𝕕𝑛(𝑞𝑔𝑜𝑎𝑙)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑
𝑗=0 , and 𝕌𝑅 can be represented as ∑ 𝕦𝑘𝑗(𝑞𝑔𝑜𝑎𝑙)

𝜑
𝑗=0 . 

Equation 15 shows when the equation summarized in Equation 14 is substituted into Equation 

12: 

∴ 𝔻𝑅 ≥ 𝕌𝑅.                                   (15) 

Finally, as can be confirmed using Equation 15, 𝕌𝑅  as a result of applying the Triangular-

Rewiring method to the distance of an arbitrary path (start position: qstart, goal position: qgoal) is at least 

equal (If the distances of 𝔻 and 𝕌 are the same, when the rewired line segments are on a straight 

line) to or always shorter than 𝔻𝑅; as a result, this method is not applied. 

Equations 16–18 show the path length 𝔻𝐴 of the path from the start position (root node) of Ta 

to the last (inserted node) position qnewA and the path length 𝕌𝐴 when the Triangular-Rewiring method 

has been applied to the path. In addition, it shows that 𝕌𝐴 is at least equal to or always shorter than 

𝔻𝐴: 
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𝜉𝛿𝐴+1(𝑞𝑛𝑒𝑤𝐴) = 𝑞𝑠𝑡𝑎𝑟𝑡, 𝑘𝜑𝐴 = 𝛿𝐴,                          (16) 

𝔻𝐴 = ∑ ∑ 𝕕𝑛(𝑞𝑛𝑒𝑤𝐴)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑𝐴
𝑗=0 , 𝕌𝐴 = ∑ 𝕦𝑘𝑗(𝑞𝑛𝑒𝑤𝐴)

𝜑𝐴
𝑗=0 ,                 (17) 

∴ 𝔻𝐴 ≥ 𝕌𝐴.                                   (18) 

Equations 19–21 show the path length 𝔻𝐵 of the path from the start position (root node) of Tb 

to the last (inserted node) position qnewB and the path length 𝕌𝐵 when the Triangular-Rewiring method 

has been applied to the path. In addition, it shows that 𝕌𝐵 is at least equal to or always shorter than 

𝔻𝐵: 

𝜉𝛿𝐵+1(𝑞𝑛𝑒𝑤𝐵) = 𝑞𝑔𝑜𝑎𝑙 , 𝑘𝜑𝐵 = 𝛿𝐵,                          (19) 

𝔻𝐵 = ∑ ∑ 𝕕𝑛(𝑞𝑛𝑒𝑤𝐵)
𝑘𝑗
𝑛=𝑘′𝑗

𝜑𝐵
𝑗=0 , 𝕌𝐵 = ∑ 𝕦𝑘𝑗(𝑞𝑛𝑒𝑤𝐵)

𝜑𝐵
𝑗=0 ,                 (20) 

∴ 𝔻𝐵 ≥ 𝕌𝐵.                                   (21) 

Therefore, Equations 16 and 19 can be derived from Equations 3 and 13, Equations 17 and 20 

from Equation 14, and Equations 18 and 21 from Equation 15. 

As a result, Equations 22 and 23 show that RRT-Connect with the proposed Triangular-Rewiring 

method is at least the same or better in terms of path length than the RRT-Connect algorithm without 

the method: 

𝔻𝑅 = 𝔻𝐴 +𝔻𝐵 + 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵), 𝕌𝑅 ≤ 𝕌𝐴 + 𝕌𝐵 + 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵),          (22) 

∴ 𝔻𝑅 ≥ 𝔻𝐴 +𝔻𝐵 ≥ 𝕌𝐴 + 𝕌𝐵 ≥ 𝕌𝑅.                        (23) 

𝔻𝑅  (Eq. 4), which refers to the path length of the RRT-Connect algorithm path without the 

Triangular-Rewiring method, is represented by the sum of the distance 𝔻𝐴 of the partial path Pa (Eq. 

17), the distance 𝔻𝐵 of the partial path Pb (Eq. 20), and the distance 𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵) between qnewA 

and qnewB as shown in Equation 22. 

𝕌𝑅  (Eq. 14), which refers to the path length of the RRT-Connect algorithm path with the 

Triangular-Rewiring method, is equal to or shorter than the sum of the distance 𝕌𝐴 of the partial path 

Pa for the RRT-Connect (Eq. 17), the distance 𝕌𝐵 of the partial path Pb (Eq. 20), and the distance 

𝐷(𝑞𝑛𝑒𝑤𝐴 , 𝑞𝑛𝑒𝑤𝐵) between qnewA and qnewB as shown in Equation 22. 

Here, Equation 23 shows that 𝕌𝑅 is at least equal to or shorter than 𝔻𝑅 in the RRT algorithm 

summarized in Equation 15, and it is used efficiently in the RRT-Connect algorithm. 

4.3. Pseudocode of Proposed Extend Method for the Improved RRT-Connect Algorithm 

This section introduces the Extend method in the proposed triangular inequality-based RRT-

Connect algorithm. This proposed Extend method (A5) replaces the Extend method (A3) in the 

pseudocode of the RRT-Connect algorithm (A2). 

Algorithm 5. Pseudocode of the Proposed Extend Method for the RRT-Connect Algorithm. 

Input: 

Ta ← Tree Ta from RRT-Connect 

Tb ← Tree Tb from RRT-Connect 

qnewB ← Position qnewB from RRT-Connect 

qrand ← Position qrand from RRT-Connect 

λ ← Step Length λ from RRT-Connect 

C ← Position Set C from RRT-Connect 
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Output: 

ftrap ← Result of Boolean ftrap 

Ta ← Result of Tree Ta    // Return by Reference 

Tb ← Result of Tree Tb    // Return by Reference 

qnewB ← Result of Position qnewB    // Return by Reference 

Initialize: 

ftrap ← False 

 

Begin Extend Procedure from RRT-Connect 

1 qnear ← Find Position of Nearest Node in Ta from qrand 

2 If Not isInside(qnear, qrand, λ) then 

3 
qnewA ← Position of Intersection Point between Line Segment connecting qrand and qnear, and 

Circle with Radius λ centered at qnear     // 2D: Circle, 3D: Sphere, … 

4 Else 

5 qnewA ← qrand 

6 If isTrapped(qnewA, qnear, C) then 

7 ftrap ← True 

8 Else 

9 Ta ← triangularRewiring(qnewA, qnear, Ta, C) 

10 qnear ← Find Position of Nearest Node in Tb from qnewA 

11 If isInside(qnear, qnewA, λ) then 

12 qnewB ← qnear 

13 Else 

14 
qnewB ← Position of Intersection Point between Line Segment connecting qnewA and qnear, 

and Circle with Radius λ centered at qnear     // 2D: Circle, 3D: Sphere, … 

15 While Not isTrapped(qnewB, qnear, C) do 

16 Tb ← triangularRewiring(qnewB, qnear, Tb, C) 

17 If Not isInside(qnewA, qnewB, λ) then 

18 qnear ← qnewB 

19 
qnewB ← Position of Intersection Point between     // 2D: Circle, 3D: Sphere, … 

Line Segment connecting qnewA and qnear, and Circle with Radius λ centered at qnear 

20 Else 

21     Break 

End Extend Procedure from RRT-Connect 

Algorithm 5 is the application of the Triangular-Rewiring method (A4) to the original Extend 

method (A2) of the RRT-Connect algorithm. Compared to the original Extend method, the part where 

a node is newly inserted in the tree in lines 9 and 16 is inserted through the Triangular-Rewiring 

method. Other than that, the contents are the same as the original Extend method. 
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Figure 7. Proposed Extend method for the RRT-Connect algorithm. 

Figure 7 shows the application of the Triangular-Rewiring method to Figure 3, which shows the 

Extend method of the RRT-Connect algorithm. In Ta, qnewA and qstart are rewired and qnear and qgoal, and 

qnewB and qgoal are rewired sequentially in the process of extending from Tb to Ta. 

4.4. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm 

This section introduces the Connect method in the proposed triangular inequality-based RRT-

Connect algorithm. This proposed Connect method (A6) replaces the Connect method (A4) in the 

pseudocode of the RRT-Connect algorithm (A2). 

Algorithm 6. Pseudocode of the Proposed Connect Method for the RRT-Connect Algorithm. 

Input: 

Preach ← Path Preach from RRT-Connect 

Ta ← Tree Ta from RRT-Connect 

Tb ← Tree Tb from RRT-Connect 

qnewB ← Position qnewB from RRT-Connect 

λ ← Step Length λ from RRT-Connect 

Output:  

freach ← Result of Boolean freach 

Preach ← Result of Path Pmerged    // Return by Reference 

Initialize: 

freach ← False 

 

Begin Connect Procedure from RRT-Connect 

1 If isInside(qnewA, qnewB, λ) then 

2 Pa ← Path from Root Node [qstart] to Last Inserted Node [qnewA] in Ta 

3 Pb ← Path from qnewB to Root Node [qgoal] in Tb 

4 Pconnect ← Path from Last Inserted Node [qnewA] in Ta to qnewB in Tb 

5 
Tmerged ← Tree Structure with Merge Path Pa to Pb via Pconnect 

// 1st Insert: qstart, …, n-th Insert: qnewA, (n + 1)-th Insert: qnewB, …, Last Insert: qgoal to Tmerged 

6 For i ← Inserted Index of qnewA in Tmerged to (Number of Node in Tmerged) – 1 do 

7 qnew ← (i – 1)-th Inserted Node in Tmerged 

8 qnear ← i-th Inserted Node in Tmerged 

9 Tmerged ← triangularRewiring(qnew, qnear, Tmerged, C) 

10 Pmerged ← Path from Root Node [qstart] to Last Inserted Node [qgoal] in Tmerged 

11 freach ← True 

End Connect Procedure from RRT-Connect 
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Algorithm 6 is an application of the Triangular-Rewiring method (A4) to the Connect method (A3) 

of the RRT-Connect algorithm. Compared to the original Connect method, it has been changed to 

apply the method to the merged tree by considering the Triangular-Rewiring method when merging 

the path, which is in lines 5–10. Other than that, the contents are the same as the original Connect 

method. 

When paths Pa and Pb merge in a tree structure of line 5, nodes on the path are inserted in the 

order of Pa, Pconnect, and Pb in the merged tree Tmerged. That is, in Tmerged, the root node becomes qstart, and 

when the n-th inserted node at a certain point is qnewA, which is the last inserted node of Ta, the (n + 1)-

th inserted node becomes qnewB, which is the last inserted node of Tb. In addition, the last inserted node 

of Tmerged becomes qgoal. 

Then, the Triangular-Rewiring method is applied to this Tmerged. Since it is applied to the tree itself, 

it determines whether rewiring is possible for all nodes inserted in the tree, and rewires and updates 

the tree if possible. However, since each node from Ta to Tb is inserted into Tmerged, it is not necessary 

to rewire Ta for which the Triangular-Rewiring process has already been performed. Therefore, the 

Triangular-Rewiring process proceeds in the direction of Tb from the qnewA sequence inserted in Tmerged. 

Here, if qnewA is the i-th inserted node, the first node pair to be determined is the (i - 1)-th node qnew (as 

qchild) and i-th node qnear (as qparent). When all nodes inserted in Tmerged have been determined, the tree 

structure Tmerged is converted into the path Pmerged and the method terminates (True). 

 

Figure 8. Proposed Connect method for the RRT-Connect algorithm. 

Figure 8 shows the Triangular-Rewiring method applied to Figure 4, which shows the Connect 

method of the RRT-Connect algorithm. When the paths Pa and Pb created from the trees Ta and Tb are 

merged and the Triangular-Rewiring method has been applied (assuming there is no obstacle between 

qstart and qgoal), the result is Pmerged in which qstart and qgoal are connected with a straight line. 

4.5. Process of the Proposed Triangular Inequality-based RRT-Connect Algorithm 

Figure 9 in this section shows the path-planning process of the proposed algorithm by applying 

the Triangular-Rewiring method to the Extend and Connect methods of the RRT-Connect algorithm. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 9. Detailed process of the proposed algorithm: (a) Start position qstart from tree Ta and goal 

position qgoal from tree Tb; (b) Create qnewA nearest to Ta from 1st random sampling position qrand and 

create qnewB from qgoal nearest to Tb; (c) Create new qnewA from qnear nearest to Tb from the second random 

sampling position qrand and rewire between qnewA and qgoal the ancestor of the qnewA; (d) Create a new 

qnewA from qnear nearest to Ta from the third random sampling position qrand and rewire between qnewA 

and qstart with the ancestor of qnewA; (e) Create new qnewA from qnear nearest to Ta from the fifth random 

sampling position qrand and connect between qnewA and qnewB nearest to Tb from qnewA; (f) Result of Path 

R from qstart to qgoal. 

Figure 9 shows planning a path from the start position qstart to the goal position qgoal through the 

proposed algorithm, as shown in Figure 9 (a). 

In Figure 9 (b), the first random sample is generated at position qrand and qnewA is created at a 

position separated by the length of λ from qstart in the direction of the position, and qnewA is extended 

once by the length of λ in the direction of qnewA from qgoal. At this time, since there is no intermediate 

node between qnewA and qstart, the Triangular-Rewiring process is skipped. 

In Figure 9 (c), a second random sample is generated at the qrand position, and in the direction of 

the position, qnewA is updated at a location separated by λ length from the nearest node qnear in the tree 

and rewired between qnewA and qgoal. In this case, since the tree on the opposite side collides with an 

obstacle to extend in the qnewA direction, the Extend process is skipped. In addition, it is assumed that 

Swap occurs between Ta with initial qstart as the root node and Tb with initial qgoal as the root node 

between each figure. 

In Figure 9 (d), as shown in Figure 9 (c), a third random sample is created at the qrand position 

and at a position separated by the length of λ in the position direction, at the node qnear that is nearest 

among nodes in the tree in the position direction, It shows updating qnewA to a position that is the 

length of λ and rewires it between qnewA and qstart. Here, since it also collides with an obstacle to extend 

in the direction of qnewA from the tree on the opposite side, the Extend process is skipped. 
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In Figure 9 (e), the fifth random sample is generated at the qrand position and qnewA is located at a 

position separated by the length of λ in the direction of the position, and qnewA is also at a position 

separated by the length of λ from the nearest node qnear among nodes in the tree toward the position. 

It is shown when updating that qnewA merges into one tree through the Connect process because qnewA 

is within range of the center of qnewB and the radius of λ. It is assumed that the fourth random sample 

between Figure 9 (d) and Figure 9 (e) is generated inside the obstacle, so the qnewA generation process 

is skipped. Figure 9 (f) shows the result of path R created as a merged tree by Connect as shown in 

Figure 9 (e). 

5. Experimental Results 

To verify the performance of the proposed triangular inequality-based RRT-Connect algorithm 

in this paper, the RRT algorithm, the RRT-Connect algorithm, and the proposed algorithm are 

compared in various environment maps shown in the experimental environment through the 

simulator. 

Each algorithm was implemented based on the pseudocode (A1–9) shown in Chapters 3 and 4 

(For the RRT algorithm, refer to the pseudocode (AS1) in Appendix A), and the performance 

measures used for comparison of various algorithms are Number of sampling (samples), Path length 

(pixels), and Planning time (milliseconds). And each performance measure is experimented with 50 

trials from the same start point to the same goal point until the first path has been found). Among the 

performance measures, as the number of samples decreases, the cost of recalculation in a dynamic 

environment also decreases, and the path length is a measure of the optimality of the path-planning 

algorithm. In addition, the Step length (λ) is 30 pixels. 

5.1. Experimental Environment 

This section introduces the environment map used in the simulation and the simulator used in 

the simulation with the computer’s performance. 

Figure 10 shows the eight environmental maps used in this experiment. The green circle (S) 

indicates the start point, the purple circle (G) indicates the goal point, and the black polygon on the 

yellow (blue in the analysis of the experimental results) border indicates to the obstacle. All maps are 

600 (horizontal) * 600 (vertical) pixels. 

 

(a) 

 

(b) 

 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

 

(g) 

 

(h) 
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Figure 10. Maps for the experiment: (a) Map 1; (b) Map 2; (c) Map 3; (d) Map 4; (e) Map 5; (f) Map 6; 

(g) Map 7; (h) Map 8. 

Many environmental maps were considered and used to verify the performance of various path-

planning algorithms including the RRT algorithm, [23–26]. Which environment map to use is 

important because the expected performance measure varies depending on the obstacles’ placement 

and shape among other properties. 

In this paper, to check the proposed algorithm’s performance, the eight maps shown in Figure 

10 were benchmarked in the experimental environment of the paper [27] proposed by Jihee Han in 

2017, and each map is expected to have the following features: 

Map 1 in Figure 10 (a) seems to be an environment in which it is easy to verify the completeness 

of the path-planning algorithm. Map 2 in Figure 10 (b) seems to be an environment in which it is also 

easy to verify the completeness of the path-planning algorithm, and the environment is mainly used 

to show the solution for the Local Minima problem [28] in the artificial potential field algorithm [26]. 

Map 3 in Figure 10 (c) seems to be an environment in which it is easy to verify the optimality and 

completeness of the path-planning algorithm and is an environment that is unfavorable to random 

sampling path-planning algorithms such as the RRT algorithm. Map 4 in Figure 10 (d) seems to be 

an environment in which it is easy to verify the optimality and the planning time for the path-

planning algorithm, and the Cell Decomposition algorithm, which increases the computation cost as 

the angle of obstacle increases, is an unfavorable environment [29]. Map 5 in Figure 10 (e) seems to 

be an environment in which it is also easy to verify the optimality and planning time of the path-

planning algorithm; for the same reason as Map 4, the cell decomposition algorithm is an unfavorable 

environment. Map 6 in Figure 10 (f) seems to be an environment in which it is easy to verify the 

optimality, completeness, and planning time of the path-planning algorithm, and it is an environment 

for comprehensively evaluating the performance. Map 7 in Figure 10 (g) seems to be an environment 

in which it is easy to verify the completeness and optimality of the path-planning algorithm, and for 

the same reason as Map 2, it is the environment used in the Artificial Potential Field algorithm. Lastly, 

Map 8 in Figure 10 (h) seems to be an environment in which it is easy to verify the completeness and 

planning time of the path-planning algorithm and yet is unfavorable to random sampling path-

planning algorithms such as the RRT algorithm. 

Since random sampling path-planning algorithms such as the RRT algorithm rely on 

probabilistic completeness, the number of samples and the planning time are extremely increased as 

long as there are narrow or fewer entrances for directions to the goal. 

Table 1. Computer performance for simulation. 

H/W Specification 

CPU Intel Core i7-6700k 4.00 GHz (8 CPUs) 

RAM 32768MB (32 GB DDR4) 

VGA Nvidia GeForce GTX 1080 (VRAM 8 GB) SLI (x2) 

Table 1 shows the specifications of the computer used in the simulation. The simulator was 

developed in C# language (Microsoft Visual Studio Community 2019 version 16.1.6; Microsoft .NET 

Framework version 4.8.03752), and except for the visual part, only a single thread was used for the 

calculation. Differences in planning time may occur depending on the computer’s performance 

capability. 

5.2. Experimental Results and Analysis for Each Map 

This section checks the experimental results (on average, the number of samples, path length, 

and planning time) of each algorithm: RRT, RRT-Connect, the proposed algorithm in the eight 

environment maps (Fig. 10) presented in the experimental environment. Each map shows a figure of 

the path-planning result (of one trial) for each algorithm and the experimental results for the 

performance measure are shown numerically in a table (The figure for each algorithm is for one trial 
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rather than the average of repeated trials and it may differ from the performance measure both 

visually and by the average numerical performance measure of the repeated trials shown in the table. 

In particular, the number of samples differs greatly). 

The values shown in Tables 2–9 can be expressed as Equations 24 and 25 as follows: 

𝐴𝑐𝑚𝑝(𝑖) = ∑ 𝑎𝑐𝑚𝑝𝑘
(𝑖)𝑇

𝑘=0 /𝑇,                        (24) 

Here, 𝐴𝑐𝑚𝑝(𝑖) refers to the performance value of each algorithm shown in Tables 2–9, cmp is the 

algorithm to be compared, i is the index of the environment map (X-axis in Figures 19–21 (b)), k is the 

repeat index, and T is the number of repeats (𝑎𝑐𝑚𝑝𝑘
(𝑖) is the value of the performance measure a for 

the k-th implementation of the cmp algorithm in Map i). Fifty repetitions are performed for the 

experiment in this paper. That is, Equation A shows the average value of the performance when it is 

repeated T times to check the performance of a certain algorithm in Map i, 

∴ 𝑥𝑐𝑚𝑝(𝑖) = 𝐴𝑐𝑚𝑝(𝑖) 𝐴𝑅𝑅𝑇(𝑖)⁄ ,                       (25) 

Here, 𝑥𝑐𝑚𝑝(𝑖) refers to the Y-axis in Figures 19–21 (a) and A is the value of the corresponding 

performance measure of the algorithm to be compared (𝐴𝑅𝑅𝑇  is the value of the RRT algorithm). 

In each path-planning result figure, the white circles indicate nodes on the path and the yellow 

line segments indicate edges between nodes. The gray circles and segments are paths (trees) that have 

been excluded during path planning. In each path-planning result table, based on 100% of the RRT 

algorithm for each performance measure, the difference is indicated along with the value of the 

corresponding performance measure unit. 

 

(a) 

 

(b) 

 

(c) 

Figure 11. Experimental result of Map 1: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 11 shows the path-planning results of Map 1 among the environmental maps for each 

algorithm. Visually, the number of samples looks similar to the RRT-Connect algorithm in Figure 11 

(b) and the proposed algorithm in Figure 11 (c) is comparable to the RRT algorithm in Figure 11 (a), 

and the path length looks similar for all three algorithms. 

Table 2. Experimental result of Map 1 (The parentheses to the right of each value are relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(1))). 

Performance (𝑨𝒄𝒎𝒑(𝟏)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 1,216 (100) 729 (60) 823 (68) 

Avg. Path length [px] 1,341 (100) 1,343 (100) 1,200 (89) 

Avg. Planning time [ms] 12 (100) 7 (58) 10 (83) 
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Table 2 shows the path-planning results (after repeating the trial 50 times) in Map 1 for each 

algorithm. The average number of samples is the smallest in RRT-Connect algorithm at 60%, and the 

proposed algorithm is 68% compared to the RRT algorithm, which is 8% less efficient than the RRT 

algorithm compared to the RRT-Connect algorithm. The average path length is shortest for the 

proposed algorithm at 89% compared to the RRT algorithm, with little difference in the RRT-Connect 

algorithm at 100%, and 11% less efficient than the proposed algorithm. The average planning time is 

the shortest for the RRT-Connect algorithm at 58% compared to the RRT algorithm, and the proposed 

algorithm is 83% compared to the RRT algorithm, i.e., 15% less efficient than the RRT algorithm. 

 

(a) 

 

(b) 

 

(c) 

Figure 12. Experimental results of Map 2: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 12 shows the path-planning results of Map 2 among the environmental maps for each 

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 12 

(b) and the proposed algorithm in Figure 12 (c) compared to the RRT algorithm in Figure 12 (a), and 

the path length looks shortest for the proposed algorithm. 

Table 3. Experimental result of Map 2 (The parentheses to the right of each value are the relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(2))). 

Performance (𝑨𝒄𝒎𝒑(𝟐)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 271 (100) 101 (37) 113 (42) 

Avg. Path length [px] 598 (100) 613 (98) 484 (81) 

Avg. Planning time [ms] 6 (100) 3 (50) 3 (50) 

Table 3 shows the path-planning result (after repeating the trials 50 times) in Map 2 for each 

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 37%, and the 

proposed algorithm is 42% compared to the RRT algorithm, which is 5% less efficient than RRT 

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed 

algorithm is the shortest at 81% compared to the RRT algorithm, while the RRT-Connect algorithm 

is 98%, which is 17% less efficient than the RRT algorithm compared to the proposed algorithm. The 

average planning time for the proposed algorithm and the RRT-Connect shows the same 

performance as the RRT algorithm. 
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(a) 

 

(b) 

 

(c) 

Figure 13. Experimental result of Map 3: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 13 shows the path planning results of Map 3 among the environmental maps for each 

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 13 

(b) and the proposed algorithm in Figure 13 (c) compared to the RRT algorithm in Figure 13 (a), and 

the path length looks shortest for the proposed algorithm. 

Table 4. Experimental result of Map 3 (The parentheses to the right of each value are the relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(3))). 

Performance (𝑨𝒄𝒎𝒑(𝟑)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 6,106 (100) 4,574 (75) 4,679 (77) 

Avg. Path length [px] 1,934 (100) 1,871 (97) 1,489 (77) 

Avg. Planning time [ms] 866 (100) 299 (35) 313 (36) 

Table 4 shows the result (after repeating the trial 50 times) of path planning in Map 3 for each 

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 75%, and the 

proposed algorithm is 77% compared to the RRT algorithm, which is 2% less efficient than the RRT 

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed 

algorithm is the shortest at 77% compared to the RRT algorithm and the RRT-Connect algorithm is 

97%, which is 20% less efficient than the RRT algorithm compared to the proposed algorithm. The 

average planning time is smallest for the RRT-Connect algorithm at 35%, and the proposed algorithm 

is 36% compared to the RRT algorithm, which is 1% less efficient than the RRT algorithm compared 

to the RRT-Connect algorithm. 

 

(a) 

 

(b) 

 

(c) 

Figure 14. Experimental result of Map 4: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 
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Figure 14 shows the path planning results of Map 4 among the environmental maps for each 

algorithm. Visually, the number of samples looks smallest for the RRT-Connect algorithm in Figure 

14 (b) compared to the others and the path length looks shortest for the proposed algorithm in Figure 

14 (c). 

Table 5. Experimental result of Map 4 (The parentheses to the right of each value are relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(4))). 

Performance (𝑨𝒄𝒎𝒑(𝟒)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 290 (100) 28 (10) 32 (11) 

Avg. Path length [px] 711 (100) 588 (83) 534 (75) 

Avg. Planning time [ms] 3 (100) 3 (100) 4 (133) 

Table 5 shows the result (after repeating the trial 50 times) of path planning in Map 4 for each 

algorithm. The average number of samples is smallest in the RRT-Connect algorithm at 10%, and the 

proposed algorithm is 11% compared to the RRT algorithm, which is 1% less efficient than the RRT 

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed 

algorithm is the shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is 

83%, which is 8% less efficient than the RRT algorithm compared to the proposed algorithm. The 

average planning time is not different by 100% compared to the RRT algorithm, and the proposed 

algorithm is 133% compared to the RRT algorithm, i.e., 33% less efficient than the others. 

 

(a) 

 

(b) 

 

(c) 

Figure 15. Experimental result of Map 5: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 15 shows the path planning results of Map 5 among the environmental maps for each 

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 15 

(b) and the proposed algorithm in Figure 15 (c) compared to the RRT algorithm in Figure 15 (a), and 

the path length looks similar for the RRT-Connect algorithm and the proposed algorithm. 

Table 6. Experimental result of Map 5 (The parentheses to the right of each value are the relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(5))). 

Performance (𝑨𝒄𝒎𝒑(𝟓)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 371 (100) 68 (18) 74 (20) 

Avg. Path length [px] 554 (100) 588 (106) 465 (84) 

Avg. Planning time [ms] 13 (100) 2 (15) 2 (15) 

Table 6 shows the results (after repeating the trial 50 times) of path planning in Map 5 for each 

algorithm. The average number of samples is smallest in RRT-Connect algorithm at 18%, and the 

proposed algorithm is 20% compared to the RRT algorithm, which is 9% less efficient than the RRT 
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algorithm compared to the RRT-Connect algorithm. The average path length of the proposed 

algorithm is the shortest at 84% compared to the RRT algorithm and the RRT-Connect algorithm is 

106%, which is 22% less efficient compared to the proposed algorithm. The average planning time for 

the proposed algorithm and the RRT-Connect algorithm is 15% over the RRT algorithm, showing the 

same performance. 

 

(a) 

 

(b) 

 

(c) 

Figure 16. Experimental result of Map 6: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 16 shows the path-planning results of Map 6 among the environmental maps for each 

algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 16 (c) 

compared to others, and the path length looks shortest for the proposed algorithm. 

Table 7. Experimental result of Map 6 (The parentheses to the right of each value are the relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(6))). 

Performance (𝑨𝒄𝒎𝒑(𝟔)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 541 (100) 184 (34) 140 (26) 

Avg. Path length [px] 886 (100) 778 (88) 668 (75) 

Avg. Planning time [ms] 9 (100) 6 (67) 4 (44) 

Table 7 shows the result (after repeating the trial 50 times) of path planning in Map 6 for each 

algorithm. The average number of samples is smallest in the proposed algorithm at 26% and the RRT-

Connect algorithm is 34% compared to the RRT algorithm, which is 8% less efficient than RRT 

algorithm compared to the proposed algorithm. The average path length of the proposed algorithm 

is the shortest at 75% compared to the RRT algorithm, and the RRT-Connect algorithm is 88%, which 

is 13% less efficient than the proposed algorithm. The average planning time is smallest in the 

proposed algorithm at 44%, and the RRT-Connect is 67% compared to the RRT algorithm, which is 

23% less efficient than the RRT algorithm compared to the proposed algorithm. 
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(a) (b) (c) 

Figure 17. Experimental result of Map 7: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 17 shows the path planning results of Map 7 among the environmental maps for each 

algorithm. Visually, the number of samples looks smallest for the proposed algorithm in Figure 17 (c) 

compared to others, and the path length looks shortest for the proposed algorithm. 

Table 8. Experimental result of Map 7 (The parentheses to the right of each value are relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(7))). 

Performance (𝑨𝒄𝒎𝒑(𝟕)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 436 (100) 235 (54) 244 (56) 

Avg. Path length [px] 898 (100) 862 (96) 674 (75) 

Avg. Planning time [ms] 5 (100) 4 (80) 3 (60) 

Table 8 shows the result (after repeating the trial 50 times) of path planning in Map 7 for each 

algorithm. The average number of samples is smallest in RRT-Connect algorithm at 54%, and the 

proposed algorithm is 56% compared to the RRT algorithm, which is 2% less efficient than RRT 

algorithm compared to the RRT-Connect algorithm. The average path length of the proposed 

algorithm is shortest at 75% compared to the RRT algorithm and the RRT-Connect algorithm is 96%, 

which is 21% less efficient compared to the proposed algorithm. The average planning time is 

smallest in the proposed algorithm at 60%, and RRT-Connect is 80% compared to the RRT algorithm, 

which makes it 20% less efficient than the RRT algorithm compared to the proposed algorithm. 

 

(a) 

 

(b) 

 

(c) 

Figure 18. Experimental result of Map 8: (a) RRT; (b) RRT-Connect; (c) the proposed algorithm. 

Figure 18 shows the path planning results of Map 8 among the environmental maps for each 

algorithm. Visually, the number of samples looks similar for the RRT-Connect algorithm in Figure 18 

(b) and the proposed algorithm in Figure 18 (c) compared to the RRT algorithm in Figure 18 (a), and 

the path length looks shortest for the proposed algorithm. 

Table 9. Experimental result of Map 8 (The parentheses to the right of each value are the relative ratios 

based on RRT 100% (𝑥𝑐𝑚𝑝(8))). 

Performance (𝑨𝒄𝒎𝒑(𝟖)) RRT RRT-Connect 
Proposed 

Algorithm 

Avg. Num. of Samples [samples] 17,033 (100) 3,031 (18) 2,954 (17) 

Avg. Path length [px] 1,611 (100) 1,576 (98) 1,358 (84) 
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Avg. Planning time [ms] 4,501 (100) 119 (3) 125 (3) 

Table 9 shows the result (after repeating the trial 50 times) of path planning in Map 8 for each 

algorithm. The average number of samples is smallest in the proposed algorithm at 17%, and the 

RRT-Connect algorithm is 18% compared to the RRT algorithm, which is 1% less efficient than RRT 

algorithm compared to the proposed algorithm. The average path length of the proposed algorithm 

is the shortest at 84% compared to the RRT algorithm, and the RRT-Connect algorithm is 98%, which 

is 14% less efficient compared to the proposed algorithm. The average planning time of the proposed 

algorithm and the RRT-Connect algorithm is 3% over the RRT algorithm, showing the same 

performance. 

5.3. Experimental Results and Analysis in Total 

This section comprehensively presents the experimental results (on average, number of samples, 

path length, and planning time) for each algorithm: RRT, RRT-Connect, and the proposed triangular 

inequality-based RRT-Connect algorithm, in the eight environmental maps (Fig. 10) shown in Section 

5.2. 

Figures 19 (a), 20 (a), and 21 (a) show the performances of the RRT-Connect algorithm and the 

proposed algorithm when the RRT algorithm’s performance is set to 100% for each environment map. 

The (b) of each figure shows the performance average of all environment maps for each algorithm. 

The values shown in (a) of Figures 19–21 can be expressed as in Equations 24 and 25 and the values 

shown in (b) can be expressed as Equation 26 below: 

𝑋𝑐𝑚𝑝 = ∑ 𝑥(𝑖)𝑐𝑚𝑝
𝑀
𝑖=0 𝑀⁄ ,                       (26) 

Here, 𝑋𝑐𝑚𝑝 refers to the Y-axis in (b) of Figures 19–21 and M is the number of environment maps 

used in the experiment. The experiment in this paper includes eight maps. That is, Equation 26 shows 

the average value of i for all maps in Equation 25. 

 

(a) 

 

(b) 

Figure 19. Experimental results in total for the average number of samples(for first path finding): (a) 

result of each map compared with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared with the 

RRT algorithm (𝑋𝑐𝑚𝑝). 

Figure 19 shows the average number of samples [%] compared with the RRT algorithm for Maps 

1–8 (after repeating the trial 50 times) and the average number of samples [%] compared with the 

average result of each algorithm for each map (after repeating the trials 50 times) when the result of 

RRT algorithm is considered 100%. 

As shown in Figure 19 (b), the average number of samples for all environment maps was 38% 

less in the RRT-Connect algorithm and 40% less in the proposed algorithm compared to the RRT 

algorithm. The proposed algorithm is 2% less efficient than the RRT-Connect algorithm. 
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Table 10. Experimental results in total for the average number of samples(for first path finding) [%]. 

Algorithm (cmp) 
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg. 

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 

RRT 100 100 100 100 100 100 100 100 100 

RRT-Connect 60 37 75 10 18 34 54 18 38 

Proposed 68 42 77 11 20 26 56 17 40 

Table 10 is the data table of Figure 19 (a). The proposed algorithm shows better performance 

than the RRT-Connect algorithm for Maps 6 and 8 and the RRT-Connect algorithm shows better 

performance than the proposed algorithm in Maps 1–5 and 7. However, the difference is not 

significant for most of the maps, such as showing a 2% difference from the map average. There are 

cases in which the proposed algorithm is 1–8% better than the RRT-Connect algorithm and there are 

cases in which the RRT-Connect algorithm is 1–8% better than the proposed algorithm. 

 

(a) 

 

(b) 

Figure 20. Experimental results in total for the average path length: (a) result of each map compared 

with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared with the RRT algorithm (𝑋𝑐𝑚𝑝). 

Figure 20 shows the average path length [%] compared to the RRT algorithm for Maps 1–8 (after 

repeating the trials 50 times), and the average path length [%] compared with the average result of 

each algorithm for each map (again after repeating the trials 50 times) where the result of the RRT 

algorithm was considered as 100%. 

As shown in Figure 20 (b), the average path length for all environment maps was 96% less in the 

RRT-Connect algorithm and 80% less in the proposed algorithm compared to the RRT algorithm. The 

proposed algorithm is 16% more efficient than the RRT-Connect algorithm.  

Table 11. Experimental results in total on the average path length [%]. 

Algorithm (cmp) 
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg. 

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 

RRT 100 100 100 100 100 100 100 100 100 

RRT-Connect 100 98 97 83 106 88 96 98 96 

Proposed 89 81 77 75 84 75 75 84 80 

Table 11 is the data table of Figure 20 (a). The proposed algorithm shows better performance 

than the RRT-Connect algorithm for all maps. The proposed algorithm is 8–21% better than the RRT-

Connect algorithm. 
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(a) 

 

(b) 

Figure 21. Experimental results in total on the average planning time: (a) result of each map compared 

with the RRT algorithm (𝑥𝑐𝑚𝑝(𝑖)); (b) average result compared to the RRT algorithm (𝑋𝑐𝑚𝑝). 

Figure 21 shows the average planning time [%] compared to the RRT algorithm for each map 

(after repeating the trials 50 times), and the average planning time [%] compared with the average 

result of each algorithm for each map (after repeating the trials 50 times) when the result of RRT 

algorithm is considered 100%. 

As shown in Figure 21 (b), the average planning time for all environment maps was 51% less in 

the RRT-Connect algorithm and 53% less in the proposed algorithm compared to the RRT algorithm. 

The proposed algorithm was 2% less efficient than the RRT-Connect algorithm. 

Table 12. Experimental results in total for the average planning time [%]. 

Algorithm (cmp) 
Performance ratio based on RRT (𝒙𝒄𝒎𝒑(𝒊)) Avg. 

(𝑿𝒄𝒎𝒑) Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8 

RRT 100 100 100 100 100 100 100 100 100 

RRT-Connect 58 50 35 100 15 67 80 3 51 

Proposed 83 50 36 133 15 44 60 3 53 

Table 12 is the data table of Figure 21 (a). The proposed algorithm shows the same or better 

performance for Maps 2 and 5–8 than the RRT-Connect algorithm. It shows worse performance for 

Maps 1, 3 and 4 than the RRT-Connect algorithm. However, most of the maps show no significant 

difference, such as showing a 2% difference from the map average. There are cases in which the 

proposed algorithm is 20–23% better than the RRT-Connect algorithm and there are cases where the 

RRT-Connect algorithm is 1–33% better than the proposed algorithm. 

6. Conclusion 

In this paper, we proposed a triangular inequality-based RRT-Connect algorithm using 

triangular inequality principles to overcome the limitations in the optimality of the RRT-Connect 

algorithm. We verified the validity of the Triangular-Rewiring method based on the triangular 

inequality principle and applied it to the RRT-Connect algorithm to bring it closer to the optimum. 

In addition, to check performance indicators such as the number of samples for finding the first path, 

path length, and planning time of the proposed algorithm, we compared between the RRT and RRT-

Connect algorithms across a total of eight environments through simulation. On average, the 

proposed algorithm showed 20% better efficiency than the RRT algorithm and 16% better efficiency 

than the RRT-Connect algorithm in path length and 47% better efficiency than the RRT algorithm in 

planning time but 2% worse efficiency than the RRT-Connect algorithm. In conclusion, the proposed 

algorithm showed shorter paths than the RRT-Connect algorithm with a similar number of samples 

and planning time. 
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However, one of the limitations of the proposed algorithm is the Kinodynamic planning 

problem [17]. When the intermediate node disappears by Triangular-Rewiring method, a non-

differentiable piecewise linear section with sharp corner may occurs, which cause a problem related 

with the kinematic constraint of the robot. 
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Appendix A. Details of the RRT Algorithm 

This section shows the pseudocode of the RRT algorithm used in the experiment of this paper, 

designed based on the paper [13] in which the RRT algorithm was proposed. The RRT algorithm can 

be represented by one main algorithm (AS1) and two additional functions (AS2 and AS3). 

A.1. Pseudocode of the RRT Algorithm 

This section shows the pseudocode of main algorithm (AS1) of the RRT algorithm used in the 

experiment of this paper, designed based on the paper [13] in which the RRT algorithm was proposed.  

Algorithm S1. Pseudocode of the RRT Algorithm. 

Input: 

qstart ← Position of Start Point 

qgoal ← Position of Goal Point 

λ ← Step Length 

C ← Position Set of All Boundary Points in All Obstacles 

N ← Number of Random Samples 

Output: 

R ← Result of Path R 

Initialize: 

T ← Null Tree 

dshorter ← 0 

 

Begin RRT Procedure 

1 T ← Insert Root Node<qstart> to T 

2 While 1 ← n to N do 

3     Generate n-th Random Sample 

4 qrand ← Position of n-th Random Sample 

5 qnear ← Find Position of Nearest Node in T from qrand 

6 If Not isInside(qnear, qrand, λ) then 
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7 
qnew ← Position of Intersection Point between Line Segment connecting qrand and qnear, 

and Circle with Radius λ centered at qnear     // 2D: Circle, 3D: Sphere, … 

8     Else 

9 qnew ← qrand 

10 If Not isTrapped(qnew, qnear, C) then 

11      T ← Insert Node<qnew> and Edge<qnew, qnear> to T 

12      If isInside(qnew, qgoal, λ) then 

13 T ← Insert Node<qgoal> and Edge<qnew, qgoal> to T 

14          Preach ← Path from Last Inserted Node [qgoal] to Root Node [qstart] in T 

15 dreach ← Distance of Preach 

16 If dshorter = 0 or dshorter > dreach then 

17 R ← Preach 

18 dshorter ← dreach 

19 T ← Delete Node<qgoal> and Edge<qnew, qgoal> from T 

End RRT Procedure 

The root node of the initial tree T has qstart, and this qstart is the start point. From this qstart to the 

goal position qgoal, random sample is generated N times, as required until the tree is expanded. qrand is 

position of generated random sample, in which the node nearest to the tree T is qnear. At this time, the 

position qnew created later varies depending on whether qrand is located inside a circle (or n-sphere), 

with qnear as the center and step length λ as the radius. The function that determines this is isInside 

(AS2), and if qrand is located inside the circle (or n-sphere) (True), qnew becomes qrand, and if it is not 

located inside (False), qnew becomes the intersection point between the line segment connecting qrand 

and qnear and the circle with λ centered at qnear. If there is no obstacle between qnew and qnear (False), qnew 

is inserted into the tree as a child node of qnear of T. Currently, the function that determines whether 

an obstacle exists between qnew and qnear is isTrapped (AS3) (in the isTrapped function, C refers to the set 

of obstacles). 

If qgoal is inside the radius of the λ with the newly inserted qnew as the center, it is considered to 

have reached the goal point (by isInside function). If it is reached (True), qgoal is inserted as a child node 

of node qnew of T. 

For the tree T thus completed, the distance dreach is calculated for the path Preach to qstart and qgoal. 

Currently, if dreach is smaller than the path length dshorter or reached first (dshorter = 0), the result path R 

becomes Preach, and dshorter becomes dreach. At the end of the next N sampling, R becomes the final planned 

path. 

If the number of random samples remains, the above process is repeated. At this time, qgoal and 

the edge connected to this node must be deleted from the tree, T. Otherwise, the tree structure will 

break due to cyclic. As a result, when a graph structure is formed, the cost of path search increases 

rapidly. 

A.2. Pseudocode of the functions used in the RRT Algorithm 

This section introduces additional functions used in pseudocode of the RRT algorithm (AS1) in 

Section A.1. The isTrapped (AS2) function determines whether an obstacle collides, and the isInside 

function (AS3) determines if the point exists inside the radius. 

Algorithm S2. Pseudocode of the isInside Function from the RRT Algorithm. 

Input: 

qcenter ← Position {qnear / qnew} from RRT 

qtarget ← Position {qrand / qgoal} from RRT 
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λ ← Step Length λ from RRT 

Output: 

f ← Result of Boolean f 

Initialize: 

f ← False 

 

Begin isInside Procedure from RRT 

1 d ← Distance of qcenter to qtarget 

2 If λ ≥ d then 

3 f ← True 

End isInside Procedure from RRT 

AS2 shows the isInside function among RRT pseudocodes shown in AS1. In the RRT algorithm, 

it is determined whether qrand exists inside a circle (or n-sphere) with qnear as the center and λ as the 

radius, or qgoal exists inside a circle (or n-sphere) with qnew as the center and λ as the radius. 

In the isInside function, the position to be determined (qrand, qgoal, ...) is called qtarget, and the center 

of radius (qnear, qnew, ...) is called qcenter. When the distance between qcenter and qtarget is d, if this d is less 

than or equal to λ, it is determined that qtarget is the inside position (True). 

Algorithm S3. Pseudocode of the isTrapped Function from the RRT Algorithm. 

Input: 

qnew ← Position qnew from RRT 

qnear ← Position qnear from RRT 

C ← Position Set of All Boundary Points in All Obstacles C from RRT 

Output: 

f ← Result of Boolean f 

Initialize: 

n ← 1 

f ← True 

 

Begin isTrapped Procedure from RRT 

1 lq ← Line Segment connecting qnew and qnear 

2 c ← Position Set of All Boundary Points of n-th Inserted Obstacle in C 

3 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c 

4 i ← 1 

5 While Not Intersect between lq and lc do 

6 lc ← Line Segment connecting i-th Inserted Position and (i + 1)-th Inserted Position in c 

7 i ← i + 1 

8 If i = (Number of Position in c) – 1 then 

9 If Intersect between lq and lc then 

10 Break 

11 n ← n + 1 

12 If n > (Number of Position Set in C) then 

13             f ← False 

14             Break 

15 Else 

16 c ← Position Set of All Boundary Points of n-th Inserted Obstacle in C 
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17 lc ← Line Segment connecting Last Inserted Position and 1st Inserted Position in c 

18 i ← 1 

End isTrapped Procedure from RRT 

Algorithm S3 shows the isTrapped function among RRT algorithm pseudocodes shown in 

Algorithm S1. In the RRT algorithm, it is used to determine whether an obstacle exists between the 

line segment connecting qnew and qnear. 

If the line segment connecting qnew and qnear is lq, and the set of positions formed by the n-th 

obstacle in the set of obstacles C is c, then lc is the i-th and (i + 1)-th positions inserted in c (and the last 

and 1st position). It is determined whether it intersects with lq for all line segments lc in the set of 

positions of all obstacles, c, that C has. Currently, if any intersect occurs, AS3 returns True and stops 

the procedure immediately. Otherwise, it determines all the line segments that can be lc and returns 

False. 

A.3. Basic Mathematical Modeling of the RRT Algorithm 

This chapter introduces basic mathematical modeling in the RRT algorithm. The following 

Equations, S1–S5, show that the coordinate value of qnew is calculated from the coordinate value of 

qrand in the RRT algorithm: 

𝑑 = √(𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x)
2 + (𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y)

2,                  (S1) 

|𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x|: |𝑞𝑛𝑒𝑤 . x − 𝑞𝑛𝑒𝑎𝑟 . x| = 𝑑 ∶ 𝜆,                    (S2) 

|𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y|: |𝑞𝑛𝑒𝑤 . y − 𝑞𝑛𝑒𝑎𝑟 . y| = 𝑑 ∶ 𝜆.                    (S3) 

Equations S2-S3 shows the relationship between d and λ in Equation S1 through the similarity 

ratios from qnear to qrand and from qnear to qnew: 

∴ 𝑞𝑛𝑒𝑤 . x = {
𝑞𝑟𝑎𝑛𝑑 . x, 𝑑 ≤ 𝜆

|(𝜆|𝑞𝑟𝑎𝑛𝑑 . x − 𝑞𝑛𝑒𝑎𝑟 . x| 𝑑⁄ ) + 𝑞𝑛𝑒𝑎𝑟 . x|, 𝑑 > 𝜆
,                (S4) 

∴ 𝑞𝑛𝑒𝑤 . y = {
𝑞𝑟𝑎𝑛𝑑 . y, 𝑑 ≤ 𝜆

|(𝜆|𝑞𝑟𝑎𝑛𝑑 . y − 𝑞𝑛𝑒𝑎𝑟 . y| 𝑑⁄ ) + 𝑞𝑛𝑒𝑎𝑟 . y|, 𝑑 > 𝜆
,                (S5) 

Through these equations, the x and y coordinate values of qnew can be derived as shown in 

Equations S4 and S5. In this case, d ≤ λ refers to a case where qrand exists in a position inside the λ 

radius. 
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