Preprint
Article

Optimization of Thin Walls With Sharp Corners in SS316L and IN718 Alloys Manufactured with Laser Metal Deposition

Submitted:

17 November 2020

Posted:

18 November 2020

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In this work, the manufacture of thin walls with sharp corners has been optimized by adjusting the limits of a 3-axis cartesian kinematics through data recorded and analyzed off-line, such as axis speed, acceleration and the positioning of the X and Y axes. The study was carried out with two powder materials (SS316L and IN718) using the directed energy deposition process with laser. 1 mm thick walls were obtained with only one bead per layer and straight/sharp corners at 90º. After adjusting the in-position parameter G502 for positioning precision on the FAGOR 8070 CNC system, it has been possible to obtain walls with minimal accumulation of material in the corner, and with practically constant layer thickness and height, with a radii of internal curvature between 0.11 and 0.24 mm for two different precision configuration. The best results have been obtained by identifying the correct balance between the decrease in programmed speed and the precision in the positioning to reach the point defined as wall corner, with speed reductions of 29% for a programmed speed of 20 mm/s and 61% for a speed of 40 mm/s. The walls show minimal defects such as residual porosities, and the microstructure is adequate.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

273

Views

302

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated