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Abstract
In this paper we introduced a parameter n to characterize the variation of the

speed of light between different inertial systems. In order to satisfy the well-known
fundamental principle and not violate some reliable experiments’ results, we should
impose some necessary constraints on n. Firstly and importantly, the introduction of n
should be in agree with the following three principles: (1)we can define the time in
the whole space with a prescribed clock synchronization, (2)the time-space is uniform
and the space is isotropic and (3)all the inertial systems are equivalent, which are the
inheritance of the special relativity (SR). With some constraints on n, we construct a
general coordinate transformation to meet the symmetry of inertial systems.

In recent years, many theories have shown the interest in the breakdown of the
Lorentz invariance at ultrahigh energy scale, such as the quantum gravity, which
imply that the energy of particle has a limited value (called the “Planck energy”)
rather than be infinite derived from the Lorentz model. So we construct an expression
for n to characterize the violation of Lorentz model. And further, by comparing with
the well-known rainbow model, we found that the "maximum energy" derived in our
paper is somewhat related to the "maximum energy" assumed in the rainbow model.
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1. Introduction
It is well known that the Special Relativity and General Relativity, implying the

Lorentz invariance, have already made great achievements, but at the same time the
Lorentz violating models are also of some astrophysical interest. In the past few
decades the scientific community has shown an intense interest in the theories that
contained and investigated the breakdown of Lorentz symmetry in many scenarios
[1-5] and also the so-called Deformed Special Relativities (DSR) [6]. For example, a
common feature of semi-classical approaches to quantum gravity is the violation of
Lorentz invariance due to a deviation from the usual relativistic dispersion relation
caused by a redefinition of the physical momentum and physical energy at the Planck
scale. And one of the intriguing predictions among various quantum gravity theories,
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such as loop quantum gravity, non-commutative geometry, and string theories, is the
existence of a maximum measurable energy that nears the Planck energy.

The introduction of “Planck energy or Planck length” in the usual relativistic
dispersion relation is considered to be an effective method of combining the relativity
and quantum mechanics. Therefor, in the double special relativity (DSR), the “Planck
energy or Planck length” is even simply assumed to be a second constant between
inertial frames besides the speed of light, and thus the particle’s energy-momentum
dispersion relation is modified as the following form (set c=1) [1,7,8]
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where E denotes the total energy of the particle, m0 denotes the rest mass, p is the
momentum, and ELV denotes the energy scale at which Lorentz violating effects
become strong, the couplings χs (s=1, 2) are determined by the dynamical framework
being studied.

Eq. (1) is also called the “rainbow model”, which means the theory indicates that
the space-time background depends on the energy of a test particle. Due to the large
scale of ELV, the variation of c is extremely small at low energy scale that it is very
difficult to measure by ordinary experiments. But a feasible approach to solve this
problem is to detect photons from the astrophysical objects, such as the Gamma Ray
Burst (GRB) events. In recent years, many physicists have used the rainbow model to
study the variation of the speed of light in GRB events [9-16]. For example, with the
first-order approximation of Eq.(1), Xu [15,16] analyzed the GRB 160509A event.
They claimed that there exists a linear relation between the variable speed of light and
the photon’s energy, and ELV≈3.6×1017 GeV was obtained.

The idea of rainbow model provide a new approach to explore the violation of
Lorentz model, and it inspired us that there may be another relationship between the
speed of light and the inertial systems. And in this paper we just try to discuss one
possible relationship between the speed of light and the inertial systems, that is, in
Sect. 2, we introduced a parameter n to characterize the variation of the speed of light
between different inertial systems, and with the constraints from some fundamental
principles, we construct a general coordinate transformation between inertial systems
to meet the symmetry of inertial systems. In Sect. 3, we construct an expression for n
to make the energy of particle have a limit value rather than be infinite derived from
the Lorentz model, and the idea is similar to the rainbow model. In Sect. 4, we
discussed the relationship between the two “maximum energy”, i.e., the “maximum
energy” assumed in the rainbow model and the “maximum energy” derived from this
paper. In Sect. 5 we summarized the paper.

2. Variable speed of light
It is well known that the above rainbow model presents that the speed of light

maybe associated with the photon’s energy [15,16], then here we proposed a general
hypothesis that: For a light source in vacuum, when it moves at a velocity v relative to
an observer in vacuum, then the observed (by the observer) speed of light emitted by
the light source is nc, where n is a dimensionless quantity, c is the speed of light in
vacuum. Obviously, in order not to violate some fundamental principles and
experiments’ results, we should impose some constraints on the parameter n as
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follows
1. Firstly, as stated in Einstein’s special relativity, using the speed of light it

should be possible to define the (proper) time (note that the only time that makes
sense in special relativity is the proper time measured by the clocks carried by
physical observers) in the whole space with a prescribed clock synchronization. That
is, for a specific inertial system, using the speed of light emitted by a light source that
fixed in the specific inertial system, we can calibrate the clock fixed in the inertial
system to synchronize. So it requires that

10  ),( cvn (2)

2. Secondly, according to the general concept of time and space that the
time-space is uniform and the space is isotropic, it requires that n(v,c) is independent
of the direction of vector v and c, namely,

),(),(),(),( cvncvncvncvn  (3)

3. In addition, we also follow the principle that all the inertial systems are
equivalent.

Based on the above assumptions on the speed of light, next we will derive the
coordinate transformation between the two inertial systems S(x,y,z,t) and S′(x′,y′,z′,t′).
And here we assume that S′ is moving at a velocity v relative to S.

Firstly, for simplicity, we assume that the three spatial coordinates of the two
coordinate systems are parallel to each other, and the direction of v is along the x-axis
or x'-axis, which derives that y=y', z=z'.

Secondly, since the time-space is uniform, the coordinate transformation between
S and S' should be in a linear form (note that in the rainbow model, the coordinate
transformation between S and S' is assumed to be in a nonlinear form), and we assume
that

)''( tvxx   (4)

Where γ=γ(v,c) is a proportionality factor.
The form of Eq. (4) should be invariant with the time reversal symmetry. Thus

we have
γ(v,c)= γ(-v,-c) (5)

Note that the above we didn’t distinguish the direction of vector v and c, i.e., the
direction of vector v and c maybe along the positive x-axis (or x'-axis) or along the
negative x-axis (or x'-axis). And if we distinguish the direction of vector v and c by
the positive and negative signs, we will obtain four different combinations, i.e., (v, c),
(v, -c), (-v, c), (-v, -c). Based on Eq. (5) we can obtain γ(v, c)=γ(-v, -c), γ(-v, c)=γ(v,
-c).

Now we will solve the expression for γ. If the light signal is emitted by the light
source at the moment that the origin of S and S' are coincides, then based on the above
assumption on the speed of light, we will obtain
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The first formula of Eq. (6) represents that when the light source is fixed in S,
then for the observer in S, the observed speed of light is c (based on Eq. (2)), while for
another observer in S', the observed speed of light is nc.

Similarly, since S and S' are equivalent, when the light source is fixed in S', then
for the observer in S', the observed speed of light is c, while for another observer in S,
the observed speed of light is nc, which case corresponds to the second formula of Eq.
(6).

Based on Eqs. (4)~ (6) and with some simple calculations, it is easy to obtain the
coordinate transformation between S and S′
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where 22 /1/1),( kvcv  , )/(),( vccvccv  nnk .

From Eq. (7) it can be seen that ),(),( cvkcvk  , ),(),-( cvkcvk  , and
),(),( cvcv   , ),(),-( cvcv   , which satisfy Eq. (5).

Here, in order for the readers to better understand the meaning of Eq. (7), we
need to reiterate the meaning of the speed of light. Based on Eq. (7) we can obtain
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As stated above that the direction of vector v and c maybe along the positive
x-axis (or x'-axis) or along the negative x-axis (or x'-axis), and if we distinguish the
direction of vector v and c by the positive and negative signs, we will obtain four
different combinations, i.e., (v, c), (v, -c), (-v, c), (-v, -c). Then based on Eq. (8), we
have

Case 1: Note that the above we assumed that S′ is moving at a velocity v relative
to S.When the light source is fixed in S, then for the observer in S, the observed speed
of light is c, while for the observer in S′, it has
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Case 2: Similarly, since S and S' are equivalent, when the light source is fixed in
S′, then for the observer in S', the observed speed of light is c, while for the observer
in S, it has (note that in this case the velocity of S relative to the light source is -v)
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Eq. (9) and Eq. (10) can be also expressed in a vector form
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Eq. (11) shows all the meaning of the speed of light, and it also indicates that Eq.
(7) is just the solution of Eq. (6).

Obviously, it can be seen that the forms of Eq. (7) are similar to the Lorentz
transformation, i.e., replacing c in the Lorentz transformation with k we can obtain Eq.
(7). And it is easy to prove that the Maxwell’s Equations are also covariant based on
Eq. (7).

Based on Eq. (7) we can obtain the time-space metric
2222 xddtkds  (12)

Correspondingly, the particle’s energy-momentum dispersion relation is
2
0

222 EkE  p (13)

Where E0=m0k2 denotes the particle’s energy, E=γm0k2 is the total energy of the
particle, p=γm0v denotes the particle’s momentum.

3. Particle’s "maximum energy"
As we know, in Lorentz model, the particle’s energy tends to be infinite when the

particle’s velocity is close to the speed of light, however, the idea of DSR or the
rainbow model introduces a new constant as the energy limit of the particles, ie., the
Planck energy. In this paper, as Eq. (7) shown that if n≡1 then Eq. (7) returns to the
Lorentz model. But here we would like to discuss another interesting case where n is
not always equal to 1, as the general Lorentz violating models suggested [1-6].

Inspired by the idea of rainbow model, we found that Eq. (7) has implied that it
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is possible that the particle’s energy have a limit. That is, based on Eq. (7), the
time-space scaling factor is
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Eq. (14) inspires us that, when v=c, if we assume n=0 simultaneously, then it is
possible that γ does not tend to be infinite. So here we can try to construct an
expression for n. Since n has been constrained in Eq. (2) and Eq. (3), that is
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Based on Eq. (15), we can only take a few but finite kinds of expressions for n,
and the following expression for n is one of them

)1(
1
1 22 /1 cv


 Q
Q

n (16)

where Q is a constant.
Besides Eq. (16) one may consider another expression for n, but as we know

there are many experiments restricting the violation of Lorentz model [18-26], so we
should choose an expression for n to not violate the previous experiments’ results.
Figure 1 shows the n~v curve when taking 610)/1( eQ  randomly as an example.

Fig. 1 n(v)~v curve when taking 610)/1( eQ  (setting c=1)
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Thus, based on Eq. (16), the time-space scaling factor limit and the particle’s
total energy limit are respectively

1
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4. Comparing with the rainbow model
It can be seen from Fig.1 that the modified particle’s energy-momentum

dispersion relation will return to the Lorentz case at low or medium energy. So next
we will discuss the behavior of particles with ultrahigh energy.

When v~c for an ultra-relativistic particle, it can be obtained from Eq. (16) that
(setting c=1)
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Based on Eq. (19) we can obtain
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Eq. (20) shows that for an ultra-relativistic particle governed by Eqs. (13) and
(16), its velocity is proportional to its energy.

Multiplying mc2 on both sides of Eq. (20), we can obtain
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where p is the particle’s momentum.
Note that when Q~0, it is easy to prove that E=mk2≈mc2 due to k≈c. Then Eq. (21)

can be written as
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On the other hand, in the framework of the DSR or rainbow model, for an
ultra-relativistic particle, i.e., v~c, Eq. (1) can be rewritten as
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Comparing Eq. (22) and Eq. (23), we can obtain that
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Eq. (24) shows that with Eq. (16), the disperse relation in this paper, i.e., Eq. (13),
is deeply associate with the disperse relation in rainbow model. But the two
“maximum energy”, i.e., ELV and EQG, are fundamentally different. That is, ELV is
independent of the particle’s rest mass, while EQG is depend on the particle’s rest mass,
which means that different particles have different “maximum energy” .

Further, based on Eq. (24) we can obtain that
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5. Discussions and Conclusions
To this day, physicists are still trying to use ultrahigh energy events to test the

Lorenz model, and an important sign for the violation of Lorenz model is that the
local speed of light is variable. In this paper we present a parameter n to characterize
the violation of Lorentz model. And given that a typical application of the Lorenz
violation model is the quantum gravity, in this paper we try to construct an expression
for n to make the particle’s energy have a limit. Therefor, we can finally test the value
of Q to check the energy scale of violation of the Lorenz model (if Q≡0 then n≡1, Eq.
(7) returns to the Lorentz case).

But with regret, it seems that the existing experiments still cannot specific the
value of Q. The key point is that the value of Q needs to be obtained in the massive
particle’s experiments, while it is currently difficult to increase the energy of massive
particles to be a larger scale due to the limit of technical means. As a general rule,
what we can still do is we can obtained the upper limit of Q. For example, based on T.
Alvager’s experiments [28], it is easy to obtain that

610)/1( eQ  , and the
corresponding time-space scaling factor γ limit is bigger than 1414.2. In addition, Eq.
(24) or Eq. (25) can also help us obtain the upper limit of Q indirectly in some
experiments aiming to test the rainbow model.

However, the important idea of this paper is presenting a new perspective to
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characterize the violation of Lorentz model. Compared with the rainbow model, the
model in this paper is more concise in form, that is, there is only one undecided
parameter (the value of Q) involved in the model in this paper, while Eq. (1) has at
least three parameters to be decided. Although Eq. (24) shows the relationship
between the two models, the two models are not equivalent.

Obviously, if Q is not equal to 0, then it will affect the black hole model derived
from the General Relativity. We intend to continue this research in the next paper.
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