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Abstract: This paper presents an exact solution to the Timoshenko beam theory (TBT) for first-order analysis, second-
order analysis, and stability. The TBT covers cases associated with small deflections based on shear deformation
considerations, whereas the Euler—Bernoulli beam theory (EBBT) neglects shear deformations. Thus, the Euler—
Bernoulli beam is a special case of the Timoshenko beam. The moment—curvature relationship is one of the governing
equations of the EBBT, and closed-form expressions of efforts and deformations are available in the literature.
However, neither an equivalent to the moment—curvature relationship of EBBT nor closed-form expressions of efforts
and deformations can be found in the TBT. In this paper, a moment—shear force—curvature relationship, the equivalent
in TBT of the moment—curvature relationship of EBBT, was presented. Based on this relationship, first-order and
second-order analyses were conducted, and closed-form expressions of efforts and deformations were derived for
various load cases. Furthermore, beam stability was analyzed and buckling loads were calculated. Finally, first-order
and second-order element stiffness matrices were determined.

Keywords: Timoshenko beam; moment—shear force—curvature relationship; closed-form solutions; non-uniform

heating; stability; second-order element stiffness matrix; elastic Winkler foundation

1. Introduction

The Timoshenko beam theory (TBT) was developed by Stephen Timoshenko (1921) early in the 20™ century. The
model accounts for shear deformations, making it suitable for describing the behavior of thick beams, whereas the

Euler-Bernoulli beam theory (EBBT) neglects them. If the shear modulus of the beam material approaches infinity, the
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beam becomes rigid in shear and the TBT converges towards EBBT. Thus, the Euler—Bernoulli beam is a special case of
the Timoshenko beam. First-order analysis of the Timoshenko beam is routinely performed; the principle of
virtual work yields accurate results and is easy to apply. Unfortunately, second-order analysis of the Timoshenko beam
cannot be modeled with the principle of virtual work. Various studies have focused on the analysis of Timoshenko
beams, most of which using numerical methods. Sang-Ho et al. (2019) presented a nonlinear finite element analysis
formulation for shear in reinforced concrete Beams; that formulation utilizes an equilibrium-driven shear stress function.
Abbas and Mohammad (2013) suggested a two-node finite element for analyzing the stability and free vibration of
Timoshenko beam; interpolation functions for displacement field and beam rotation were exactly calculated by
employing total beam energy and its stationing to shear strain. Hayrullah and Mustapha (2017) performed a buckling
analysis of a nano sized beam by using Timoshenko beam theory and Eringen’s nonlocal elasticity theory; the vertical
displacement function and the rotation function are chosen as Fourier series. Chen et al. (2018) used the variational
iteration method to analyze the flexural vibration of rotating Timoshenko beams; accurate natural frequencies and mode
shapes under various rotation speeds and rotary inertia were obtained. Onyia and Rowland-Lato (2018) presented a
finite element formulation for the determination of the critical buckling load of unified beam element that is free from
shear locking using the energy method; the proposed technique provides a unified approach for the stability analysis of
beams with any end conditions. Pavlovic and Pavlovi¢ (2018) investigated the dynamic stability problem of a
Timoshenko beam supported by a generalized Pasternak-type viscoelastic foundation subjected to compressive axial
loading, where rotary inertia is neglected; the direct Liapunov method was used. In stability analysis Timoshenko and
Gere (1961) proposed formulas to account for shear stiffness by means of calculation of buckling loads of the associated
Euler—Bernoulli beams. Hu et al. (2019) used matrix structural analysis to derive a closed-form solution of the second-
order element stiffness matrix; the buckling loads of single-span beams were also determined.

The moment—curvature relationship, one of the governing equations of the EBBT, has no equivalent in the TBT
literature. Furthermore, closed-form expressions of efforts and deformations are not common. In this paper a
moment—shear force—curvature relationship (MSFCR), the equivalent in TBT of the moment—curvature relationship of
EBBT, was presented. The relationship between the curvature, the bending moment, the bending stiffness, the shear

force, and the shear stiffness was then described. Based on MSFCR, closed-form expressions of efforts and
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deformations were derived, as well as first-order and second-order element stiffness matrices. Stability analysis was

conducted, and the buckling lengths of single-span systems were determined.

2. Materials and Methods

2.1 Governing equations
2.1.1 Statics

The sign convention adopted for the loads, bending moments, shear forces, and displacements is illustrated in Figure 1.

l q(x)
¥ / /

w

Fig 1 Sign convention for loads, bending moments, shear forces, and displacements

Specifically, M(x) is the bending moment in the section, V(X) is the shear force, w(X) is the deflection, and q(X) is the

distributed load in the positive downward direction.

In first-order analysis the equations of static equilibrium on an infinitesimal element are as follows:

dM (X) " d*M(x)

Vix) = - |
=" dx’ 90 @

According to the Timoshenko beam theory, the bending moment and the shear force are related to the deflection w(X) and

the rotation (positive in clockwise) of cross section @(x) as follows:
dw(x)
dx

M (x) = —EI d(gix) (3) V(X)=KGA><(

—(p(X)j (4)

In these equations E is the elastic modulus, I is the second moment of area, k is the shear correction factor, G is the shear

modulus, and A is the cross section area. Equations (1), (3), and (4) also apply in second-order analysis.

2.1.2 Material and geometric equations

Equation (4) can be formulated as follows

dw() _ V) 5)
dx v+ xGA
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Differentiating both sides of Equation (5) with respect to X yields the following equation:

d*w(x) _ d¢(x)+i(Mj

dx’ dx  dx\ xGA ©)
Substituting Equation (3) into Equation (6) yields the following:
2
d W(X):_M(X)+i V (X) 7
dx’ El  dx\xGA

Equation (7) yields the following moment—shear force—curvature relationship (MSFCR) combining bending and shear:

d’w(x) M(x) d (V(x
£)+ ()—— —() =0 (8)
dx El  dx\ xGA
For a uniform beam along segments, substituting Equation (1) into Equation (8) yields,
d’w(x) M(x 1 d*M(x
(0, M) 0 _, o
dx ElI  xGA dx
For a tapered beam, substituting Equation (1) into Equation (8) yields,
2 2
d ng)+ M) 1 d Mz(x)+ 1 : ><dKGA(x)XdM(x) 0 (10)
dx El(x) xGA(x) dx (xkGA(X)) dx dx
In the case of non-uniform heating, Equation (9) becomes:
2 2
dw(x)+M(x)_ 1 ><d M(x)+aTAT:0, an

dx’ El xGA dx° d
where ar is the coefficient of thermal expansion, AT = ATy, - ATy, is the difference between the temperature
changes at the beam’s bottom fibers (ATyp,) and top fibers (ATy), and d is the height of the beam.

Combining Equations (1) and (5) yields the rotation angle as follows:
dw(x) 1 dM(x)
dx  xkGA dx

P(X) = (12)

Equations (5) to (12) apply as well in first-order analysis and in second-order analysis.

2.1.3 Summary of Timoshenko and Euler-Bernoulli beam equations
Table 1 summarizes the fundamental Timoshenko beam equations and compares them to the Euler—Bernoulli beam

equations.
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Table 1. Summary of equations for Timoshenko and Euler-Bernoulli beams

Timoshenko beam Euler—Bernoulli beam
Statics
dM (x)
dx
dw(x) 1 dM(x) dw(x)
Geometr o(X) = — X x) = —
g dx  xGA  dx P(X) dx
Moment—shear d ZW(X) . M (X) d V(X) ~ d ZW(X) .\ M (X) O
force—cu r.vature dx? El dx | xGA Ve £l =
equation
The bending shear factor is defined as follows:
El (13)
o= 2
I"xGA
2.2 First-order analysis of uniform Timoshenko beams
2.2.1 Governing equations
The application of Equation (2) yields the following formulation of the bending moment:
M (X) = —”q(x)dxdx+Clx+C2 (14
Substituting Equation (2) into the MSFCR (Equation (9)) for a uniform beam and integrating twice yields:
El
El xw(x):—” ——q(X)+ M (x) |dxdx+C,x+C, (15)
xGA
The shear forces and rotation angles are determined using Equations (1) and (14), and Equations (12), (14), and (15),
respectively.
V(X)= —Iq(x)dx+C1 (15a)
El
El xp(x) == M ()dx———C, +C, (15b)
xGA

The integration constants C; (i = 1, 2, 3, and 4) are determined using the boundary conditions and continuity equations and

combining the deflections, the rotation angles, the bending moments, and the shear forces.
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2.2.2 Analysis of some load cases

Detailed results for various support conditions and loadings are presented in Appendix B.

Uniformly distributed load g

Applying Equations (14) to (15b) yields

M(x):—%x2+CIX+C2, V(X) =-gx+C,
El ><W(x)=ix4—&x3—l(cz+oclzq)x2+c3x+c4 (15¢)
24 6 2

El x o(X) :%x3 —%xz ~C,x—al’C, +C,

Non-uniform heating:
o AT

Equation (11) is applied instead of Equation (9). The thermal curvature strainis Ky = .

Equation (15¢) becomes

M(x)=Cx+C,, V(X)=C,

El XW(X):_%X3_%(C2+EIKT)X2+C3X+C4 (15d)

El ><gp(x)=—%x2 —(C, +Elx; )x+C, —al’C,

2.2.3 Element stiffness matrix
The sign convention for bending moments, shear forces, displacements, and rotation angles adopted for use in

determining the element stiffness matrix in local coordinates is illustrated in Figure 2.

Mk. Px

Fig 2 Sign convention for bending moments, shear forces, displacements, and rotation angles for first-order 4 x 4

element stiffness matrix
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Let us define following vectors,

§=[Vi;M.;Vk;Mk]T (16) \7=[Wi;goi;wk;qok]T (17)

The element stiffness matrix in local coordinates of the Timoshenko beam is denoted by Kry. The relationship between

the aforementioned vectors is as follows:
S =K, xV (18)

Applying Equation (15c) with the distributed load q = 0, yields the following:
M (x)=C,x+C, V(x)=C,

(19)
El ><w(x)=—%x3—%x2+C3x+C4 (20)
El ><go(x):—%x2—czx—ozI2C1 +C, (20a)

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and for
bending moments and shear forces in the element stiffness matrix (see Figure 2), we can set following static

compatibility boundary conditions using Equation (19):

V,=-V(x=0)=-C, (21)
M, =M(x=0)=C, (22)
V., =V(x=I)=C, (23)
M,=—M(x=Il)=-CI|-C, (24)

Considering the sign conventions adopted for the displacements and rotations in general (see Figure 1) and for
displacements and rotations in the member stiffness matrix (see Figure 2), we can set following geometric compatibility
boundary conditions using Equations (20) and (20a):

(25)

W(x=0)=w —E xw=C,
@x=0)=¢ —>H x@ =—d’G +C, (26)
w(x=I)=w, >E xw, =*/6xG —I*/2xC, +IC,+C, @)
g(x=1)=¢ >H xq =(-1/2-a)xI'C -IC,+C, 29
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The combination of Equations (16) to (18) and Equations (21) to (28) yields the first-order element stiffness matrix of

the Timoshenko beam:

- 1 r -1

-1 0 00 0 0 0 1
D NS RGN —al? 0 10 ose
! 1 0 0 0 -1°/6 “12/2 1 1

-1 -1 0 0 |[(-1/2-a)> - 1 0]

The development of Equation (28a) yields the following widely known formulation of the first-order element stiffness

matrix of the Timoshenko beam:

12 El 6 EI -I12El 6 ﬂ_
l+o P 1+ I° 1+ P 1+¢I?
4+pEl -6 EI 2-¢El
2
K., - l+p | 1+l l+¢ | (29)
12 El -6 El
l+p I 149 I?
: I+o 1 |
where
_ 12El 30)
4 I°xGA

Assuming the presence of a hinge at the right end, the sign convention for bending moments, shear forces,
displacements, and rotations is illustrated in Figure 3.
Mi_(pi
V.wi

| Vk. W

Fig 3 Sign conventions for bending moments, shear forces, displacements, and rotation angles for first-order 3 x 3

element stiffness matrix
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The vectors of Equations (16) and (17) become

§=[Vi;|V|i;Vk]T (31) VZ[V"i;goi;Wk]T (32)

The element stiffness matrix becomes:

3 Bl 3 El -3 El]

l+o'I° 1+¢' 1> 1+¢' D

3 EI -3 EI
KTb|: '_ ' 2 33
l+p' | 1+¢'l (33)

sym 3 E

i l+o' I’

where
Q'= 23E| (34)
I"xGA

2.2.4 Beam resting on an elastic Winkler foundation

For a beam resting on a Winkler foundation with stiffness Ky, Equation (2) of static equilibrium becomes,

d*M (x El
EMX _x WW(X) ==0(X) @3s) =K, — sa)
dx’ I
Differentiating Equation (35) twice with respect to X, combined with the MSFCR (Equation (9)), yields:
4 2
d M4(x) K, d? M(x) K, M(x)z—d q(zx) 36)
dx kGA  dx’ EI dx

The solution of Equation (36) yields the formulation of M(x) with four integration constants (A, By, C;, D). The shape

of M(x) depends on the parameter K, - 4/ Otz as follows:

M (X) = A cosh cfl + B, sinh cfl +C, cosh 52 + D, sinh é‘z +M (%), (36a)

M (X) = A cosh )I( +B cfl cosh 8;1 +C, sinh §1 +D cfl smh gzl +M (X), (36b)

M X X (360)
(X)= A cosh¢, T X COS 52 + B, cosh 51 xsin ¢, T +

C, sinhcflTchosszX+ D, sinhfllﬁxsinleé+ M (%),
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for ky, - 4/ o > 0, ky -4/ o = 0, and k, - 4/ o < 0, respectively . Combining M(x) with Equation (35) yields the

following equations:

dw(x) d’M(x) . da(x)
“odx dx® dx

The expression of M(x) being known, applying Equation (1) yields the shear force, and the combination of M(x) with

2
K, W(X) = % +q(xX) @37 K (38)
X

Equations (12) and (38) yields the rotations of the cross section.

2.3 Second-order analysis of uniform Timoshenko beams
The analysis conducted in this section holds for compressive forces smaller (absolute values) than the buckling load.
2.3.1 Governing equations
A uniform beam is analyzed, an elastic Winkler foundation not being considered. The axial force N (positive in tension)

is assumed to be constant in segments of the beam. The equation of static equilibrium is as follows:
d°M(x) ., d*w(X)
2 + N 2
dx dx

Combining Equation (39) with the MSFCR (Equation (9)) yields the following:

= —C|(X) (39)

N .d°M(x) N o
(1+K‘GA) v _EM(X)_ q(x) (40)

The solution of Equation (40) yields M(x), which contains the integration constants C; and C,. The combination of M(x)

with Equation (39) yields following equations:

dw(x) _ _dM(x) _
N o ox _[q(x)dx+CS (41)
Nw(x) =—M (x) - [[ q(x)dxdx + C,x +C, (42)

The transverse force T(x) is determined as follows:

T(x) =V (x)+ N IV

(43)

Substituting Equations (1) and (41) into Equation (43) yields the transverse force T(x) as follows:

T(x)= —jq(x)dx+C3 (44)
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The combination of M(x), Equations (12) and (41) yields the rotation of the cross section as follows:

N _dM(x)
Np() ==(1+——) = =~ [a(x)dx+C, (440)

2.3.2 Element stiffness matrix
The sign conventions for bending moments, transverse forces, displacements, and rotations adopted for use in

determining the element stiffness matrix in local coordinates is illustrated in Figure 4.

M., i

Tiwi
] Tk, Wk

Mk Dk

Fig 4 Sign convention for bending moments, transverse forces, displacements, and rotation angles for second-order

4 x 4 element stiffness matrix

Let us define following vectors,

S=[T;M;T;M, ] s V=[w;p:w;0] @

we set
N = k— (47)
|2
The combination of Equation (40), the bending shear factor (Equation (13)), Equation (47), and the absence of a

distributed load yields the following:

d> M(x) k

(I+ka)—= 2 =M () =0 (48)

Case 1: Compressive force with ka > -1

The solution of Equation (48) is as follows, with the parameter £1 defined as shown:

M (X) = A cos 51 + B, sin 51 (49) & = ‘/% (50)
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Combining Equations (39) and (49) yields the following:
dw(x)

= A, sin 951 —B,&, cos fl +NIC, (51)

Nw(X) =—A cos 2:1 — B, sin 2:1 +NC,x+ ND, (52)

The combination of Equation (12) for the rotation of the cross section with Equations (49) and (51) yields the following,

with the parameter &2 defined as shown:
Nlp(x) = A&, sin cfl —B,&, cos 51 +NIC, (53 & =4-K(l+ka) (54

By applying Equations (1), (43), (49), and (51), the transverse force T(x) yields:

T (X) = NC1 (55)
Considering the static compatibility boundary conditions (Equations (21) to (34)), whereby the shear forces are replaced
by the transverse forces, the geometric compatibility boundary conditions, and Equations (49) to (55), the following

equations are obtained:
T.=-T(x=0)—>T,=-NC,
M, =M(x=0)=A
T, =T(x=D)—>T, =NC,
M, =—M(x=I)=—A cos& —B,sin¢ (56)
W(X=0)=wW, - Nxw =-A +ND,
p(X=0)=@ >Nx@ =-B<& /1+NC,
w(x=1)=w, > Nxw, =-A cosé —B,sin +NIC, + ND,
p(X=l)=¢p, > Nxg =AS /Ixsing —B¢&, /I xcos& + NC,

The combination of Equations (18), (45), (46), and (56) yields the element stiffness matrix as follows:

- -1

i -1 0 0 1
0 0 -1 0

0 & 1 0

k 1 0 0 0 |

Kry = El 75X X , (57)
| 0 0 1 0] | —cos¢,  —sing | 1
[—cosg —sing 0 0] o 2Zginé& —icosf 1 0
| S 1 |
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The development of Equation (57) yields the following formulation:

[ El El El El K11 = -k&sin& /A
K11|_3 Klzl_z _K11|_3 K12|_2
El El El K2 =-k(I - cos&;)/A
Kzz |_ _Klz |_2 K24 |_ (58)
Kot = £l £l K, = k(cos&; -1/E,sin&, /A
K11 |_3 K12 I_z
El K24 = k(-l + l/ﬁzsmil)/A
sym K,, T

- - A =2 -2cos&; - &E,81n&,

Accordingly, the element stiffness matrix of the beam having a hinge is as follows:

[ El El El |
K11 |_3 K12 |_2 —K11 |_3 Ky = -kX&zCOSE_,l/A
El El }
K = K., T -K,, T K, = -kxsin&;/A (59)
sym K11 % A= Sil’l(tj] - &,QCOS&J

Case 2: Tensile force or compressive force with ko < -1

The solution of Equation (48) is as follows, with the parameter £3 defined as shown:

K
M (X) = A, cosh §3 + B, sinh 53 (60) & = (61)
1+ka
Combining Equations (39) and (60) and integrating with respect to x yields the following:
NI dv;(x) —A¢&, sinh 53 - B,&, cosh §3 +NIC, (62)
X
Nw(x) =-A, coshé3 — B, sinh 53 + NC,x + ND, (63)

Combination of Equation (12) for the rotation of the cross section, with Equations (60) and (62) yields the following:

Nlp(x) =—A,&, sinh 53 —B,¢, cosh 53 +NIC, (64 &, =2Jk(l+ka) (65

The parameter &4 (Equation (65)) has a positive value in the case of tension and a negative value in the case of

compression with ka < -1. Applying Equations (1), (43), (60), and (62), the transverse force T(x) yields the following:

T(x)=NC, (66)
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Considering the static compatibility boundary conditions (Equations (21) to (24)), whereby the shear forces are replaced
by the transverse forces, and the geometric compatibility boundary conditions, and Equations (60) to (66), the element

stiffness matrix can be expressed as follows:

] [ 0 01
0 0 -1 0 &
0 —= 1 0
KTbI =El TR :
| 0 0 1 0| | —cosh¢ —sinhg | 1
—coshé  —sinh 0 0 .
- 5 ‘i —%smhgﬁ —%coshf1 10
The development of Equation (67) yields the following formulation:
[ El El El El K, =kE sinh&_/A
K11|_3 K12|_2 _K11|_3 K12|_2 a ! 3
El El El K, = k(1 - cosht,)/A
K22 - K12 12 K24 e
I |? I - (68)
Ky = £ El K, =k(coshg, - 1/€ sinhE )/A
K11 |_3 _K12 I_z .
| K , = k(-1 + 1/¢ sinh& )/A
sym K,,—
. Y 20 A =2 -2cosh + & sinhg,
Accordingly, the element stiffness matrix of the beam having a hinge is as follows:
[ El El El |
Ky |_3 K, |_2 -K,, |_3 K = -kx&4cosh&s/A (69a)
El El L
S Ko —Kopr K, = -kxsinh&;/A (69b)
El e
sym K, T A = sinh&; - E4coshé; (70)
2.3.3 Analysis of some load cases
Detailed results for various support conditions and loadings are presented in Appendices E and F.
Uniformly distributed load p. Equation (48) is modified as follows:
d°M(x) k
(1+ka) —I—zM(x):—p (71a)

dx?
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Case 1: Compressive force with ka > -1. The analysis, conducted similarly to Section 2.3.2, yields
P
M (X) = Alcosf1 +B sm§1 ” T(X) =—px+ NC,
X . X P,
Nw(X) =—A cosgll——B1 SméT_EX + NC,x+ ND, (71b)

. X X
Nlp(X) = Aé,siné, T B,&, cosé, T pIx+ NIC,

Case 2: Tensile force or compressive force with Ka. < -1. The analysis yields
I 2

M (X) = A, cosh §3 + B, sinh 53 pk T(X)=—px+NC,

X : X P,
Nw(X) =—A, cosh ¢, T B, sinh &, I__EX +NC,x+ ND, (71c)
Nlg(x) = A&, sinh &, If— B,&, cosh &, If— plx + NIC,

Non-uniform heating

Combining Equation (11) and Equation (39) with q(x) = 0, yields the modification of Equation (48) as follows:

d? |v| (x) k k 1)

(I+ke) === M(X) = Elx;

Case 1: Compressive force with ko > -1. The analysis, conducted similarly to Section 2.3.2, yields

M (X) = A,cos§1 +B s1n.§1——EIKT, T(x)=NC,
Nw(X) =—A cos flli . Sin 51 + NC,x+ ND, (71e)

Nlp(x) = A, sin§1 - B¢, cos§1 + NIC,

Case 2: Tensile force or compressive force with ka < -1. The analysis yields

M (X) = A, cosh 53 + B, sinh 53 —Elx;, T(X)=NC,
Nw(x) = —A, cosh 53 — B, sinh 53 +NC,x+ ND, (71)

Nlg(x) = —A&, sinh &, If— B,&, cosh ¢, TX+ NIC,
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2.3.4 Beam resting on an elastic Winkler foundation with an axial load
In the equation of static equilibrium, the axial force N (the value of which is positive in tension) is assumed to be

constant in segments of the beam. The stiffness of the Winkler foundation is denoted by K.

d’M(x d>w(x
dxz( Y v )—KWW(X)=—Q(X) (72)

The combination of Equation (72) with the MSFCR (Equation (9)) yields the following:

N )dzM(x)_N

K =1 M (73)
WW(X) (+KGA o El (X)+q(x)

Differentiating twice both sides of Equation (73) with respect to X and combining the result with the MSFCR (Equation

(9)) yields the following:

(1+ N )d“M(X)_[N LK, jdzM(x)JrKWM(X):_dzq(x)

dx? El dx?

<GA ) dx’ El  xGA 79

The solution of Equation (74) yields the formulation of M(x) with four integration constants. From M(x), combined with
Equations (1) and (73), the shear force V(x) and the deflection w(x) can be deduced. The application of Equations (12)

and (43) yields the transverse forces T(x) and the rotations of the cross section ¢(x).

2.3.5 Stability of the Timoshenko beam
The formulations of bending moment M(x), deflection w(x), rotation of the cross section ¢(x), and transverse force T(x)
are used to determine the buckling load.
For kot > -1, Equations (49) to (55) are considered to satisfy the boundary conditions and continuity conditions.
For kat < -1, Equations (60) to (66) are considered to satisfy the boundary conditions and continuity conditions.

The resulting eigenvalue problem is solved to determine the buckling loads.
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3. Results and Discussion

3.1 First-order analysis of Timoshenko beams
3.1.1 Uniform Timoshenko beam subjected to uniformly distributed load

Let us calculate the responses of a pinned—pinned beam subjected to a uniformly distributed load as shown in Figure 5.

(AT

! ]

Fig5 Beam subjected to a uniformly distributed load
The characteristics are as follows: p=10kN/m, L =10m, b=0.3 m, H=0.5m, E = 34.5x106 kN/m?, v = 0.3, and k =
5/6. The calculation of the deflections with the principle of virtual work is presented in Appendix A. Details of the
results are presented in the Supplementary Material “Deflection calculation of a pinned—pinned beam using the principle
of virtual work.” Table 2 lists the results obtained with the principle of virtual work and those obtained in this study.
Moreover, closed-form expressions of single-span systems for various support conditions and loadings are presented in
Appendix B.

Table 2. Deflections of the beam: Principle of virtual work, and present study

Node Principle of virtual
Present study

position work (exact results)
0.0 0.00000 0.00000
1.0 0.00382 0.00382
2.0 0.00722 0.00722
3.0 0.00988 0.00988
4.0 0.01157 0.01157
5.0 0.01215 0.01215
6.0 0.01157 0.01157
7.0 0.00988 0.00988
8.0 0.00722 0.00722
9.0 0.00382 0.00382
10.0 0.00000 0.00000

The results of this study are exact.
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3.1.2 Beams subjected to concentrated load

Let us calculate the responses of a uniform fixed—pinned beam subjected to a concentrated load, as shown in Figure 6.

P=100kN

P

a =5.0m L b=3.0m
i | = 8.0m |

Fig 6 Beam subjected to a concentrated load

Details of the analysis and results are listed in Appendix C and in the Supplementary Material “Analysis of a
fixed—pinned beam under concentrated load.” Table 3 displays the moments at the fixed end (Mggy) and under the load
(M) for different values of the bending shear factor, calculated as described in this paper and according to the principle
of virtual work (exact values).

Table 3. Moments in beam subjected to a concentrated load

o= El/xGAI*= 0.0000 0.0250 0.0500 0.0750 0.1000 0.1250 0.1500

Calculations as described in this paper

Mpgm = -12.89 -11.99 -11.21 -10.52 -9.92 -9.38 -8.89
My = 13.92 14.25 14.55 14.80 15.03 15.23 15.42

Calculations according to the principle of virtual work (exact values)

Mpgm = -12.89 -11.99 -11.21 -10.52 -9.92 -9.38 -8.89
M, = 13.92 14.25 14.55 14.80 15.03 15.23 15.42

The results of this study are exact.

3.2 Second-order analysis of Timoshenko beams
3.2.1 Stability of beams
We determined the buckling loads of uniform single-span beams with various support conditions for different values of
the bending shear factor. Details of the analysis and results are listed in Appendix D and in the Supplementary Materials

“Buckling analysis of a pinned—pinned beam,” “Buckling analysis of a fixed—pinned beam,” “Buckling analysis of a

fixed—free beam,”and “Buckling analysis of a fixed—fixed beam.”
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The buckling load N, is defined as follows:
2 2
Ncr =-n"El /(ﬂl) (75)
Values of the buckling factor 3 are listed in Table 4. Closed-form expressions of the matrices expressing the boundary
conditions are presented in Appendix D. To determine the buckling loads the determinants of those matrices are set to
zero. Closed-form expressions of the buckling factors for a pinned—pinned beam, a fixed—free beam, and a fixed—fixed

beam are also presented in Appendix D.

Table 4. Buckling factors for Timoshenko beam with various support conditions

o = El/kGAI? = 0.000 0.025 0.050 0.075 0.100 0.1250 0.150

Pinned—pinned beam (SS-SS)

B= 1.0000 1.1163 1.2220 1.3192 1.4096 1.4946 1.5750

Fixed—pinned beam (F-SS)

B= 0.6992 0.8716 1.0146 1.1392 1.2510 1.3530 1.4474

Fixed—free beam (F-FR)

B= 2.0000 2.0608 2.1198 2.1772 2.2332 2.28717 2.3410

Fixed—fixed beam (F-F)

B= 0.5000 0.7048 0.8623 0.9951 1.1122 1.2181 1.3155

We recall that the exact values of the buckling factors § for a = 0.0 (corresponding to the Euler—Bernoulli beam) for the

support conditions SS—SS, F-SS, F-FR and F-F are 1.00, 0.700, 2.00, and 0.500, respectively.

3.2.2 Beams subjected to uniformly distributed load and an axial force
Let us calculate the responses of a uniform pinned—pinned beam subjected to a uniformly distributed load and an axial

force, as shown in Figure 7.
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Fig 7 Beam subjected to a uniformly distributed load and an axial force

The bending moments at mid-span (position L/2) are calculated for different values of axial force (coefficient k) and
bending shear factor o, and the results are listed in Table 5. Closed-form expressions of bending moment and
deflection curves are presented in Appendix E, together with those related to other support conditions and loadings.
Details of the results are presented in the Supplementary Material “Bending analysis of a pinned—pinned beam subjected

to a uniformly distributed load and an axial force.”

Table 5. Moments at position L/2 for different values of shear factor and axial load

o =0.025 o =0.05 o =0.075 o=0.10

k= MMP /pl? = k= MMP /pl? = k= MMP /pl? = k= MMP /pl*=
-7.50 2.4474 -6.50 7.8536

-6.00 0.5278 -6.00 1.3947 -5.50 4.2593

-5.00 0.3453 -5.00 0.5242 -5.00 1.0825 -4.50 1.3635
-4.00 0.2561 -4.00 0.3215 -4.00 0.4316 -4.00 0.6553
-3.00 0.2032 -3.00 0.2313 -3.00 0.2684 -3.00 0.3197
-2.00 0.1683 -2.00 0.1804 -2.00 0.1944 -2.00 0.2108
-1.00 0.1435 -1.00 0.1477 -1.00 0.1522 -1.00 0.1570
0.00 0.1250 0.00 0.1250 0.00 0.1250 0.00 0.1250
1.00 0.1107 1.00 0.1083 1.00 0.1060 1.00 0.1038
2.00 0.0993 2.00 0.0955 2.00 0.0920 2.00 0.0887
3.00 0.0900 3.00 0.0854 3.00 0.0812 3.00 0.0774
4.00 0.0822 4.00 0.0772 4.00 0.0727

The limits of k corresponding to buckling are listed in the Supplementary Material “Buckling analysis of a

pinned—pinned beam”.
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3.2.2a Beams subjected to concentrated load
Let us calculate the responses of a uniform fixed—pinned beam subjected to a concentrated load and an axial load, as

shown in Figure 8. The compressive forces are assumed smaller (absolute values) than the buckling load.

P=10.0kN

/ a=5.0m I b=3.0m !'
g | = 8.0m !'

Fig 8 Beam subjected to a concentrated load and an axial force

Details of the analysis and results are listed in Appendix F and in the Supplementary Material “Bending analysis of a
fixed—pinned beam subjected to a concentrated load and an axial force.” Furthermore, closed-form expressions of
bending moments and deflections for other support conditions are presented in Appendix F. Table 6 lists the fixed-end
moments (Mggy) and under the load (M, ) for different values of bending shear factor and axial force.

Table 6. Moments in beam subjected to a concentrated load and an axial force

Coefficient of axial force k=-4.0 Coefficient of axial force k=-6.0
o = EI/'kGAI? = 0.0000 0.0250 0.0500 0.0000 0.0250 0.0500
Mrgm = -15.65 -16.99 -18.98 -17.60 -21.58 -29.28
M, = 16.73 19.72 23.70 18.72 24.68 35.46
Coefficient of axial force k=4.0 Coefficient of axial force k=6.0
o = EI/'kGAI? = 0.0000 0.0250 0.0500 0.0000 0.0250 0.0500
Megm = -11.04 -9.31 -7.98 -10.32 -8.39 -6.98
My = 12.03 11.27 10.60 11.29 10.22 9.35

3.2.3 Second-order element stiffness matrix
Let us calculate the second-order element stiffness matrix of a beam with the following characteristics:
k =-1.5 (Equation (47)), o. = 0.05 (Equation (13)), and length L. = 4.0 m. The matrix is calculated using Equations (57)
and (58). Details of the results are presented in the Supplementary Material “Second-order element stiffness matrix.”

The calculation of the element stiffness matrix of this Timoshenko beam yields:
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[ 0.0917 02303 —0.0917 0.2303 |
0.2303  0.6759 —0.2303 0.2454
10 = EI % (78)

-0.0917 -0.2303 0.0917 -0.2303

| 0.2303  0.2454 -0.2303  0.6759 |

K

Let us now calculate the element stiffness matrix of the beam with the formula presented by Hu et al. (2019):

0 0 WLp 0] 1 o o1
K, ~Bpx (A/LP 0 0 0[] o0 AL 10 (79)
0 0 WL Of| oosA sni L 1
{(WLPosd «AULPsind 0 0] |—pl/Lsind pA/Losd 1 0

The aforementioned characteristics become P =1.5 x EI/L?, y = 1- P/(ksGA) = 1- 1.5 x 0.05 = 0.925,

and A =1PL2/ yEI =+/1.5/0.925 =1.273

Details of the calculations are presented in the abovementioned Supplementary Material.

0.0917 0.2303 —-0.0917 0.2303
0.2303 0.6759 —-0.2303 0.2454
= El'% (80)
-0.0917 -0.2303 0.0917 -0.2303
0.2303 0.2454 -0.2303 0.6759

K

The results of this study are in good agreement with those of Hu et al. (2019).

In fact, both formulas are identical since following equivalences exist between the parameters considered by Hu et al.

(2019) (3, 1), and those considered in the present study (k,a, &, £ ): x = 1+ ka, A =&, xA = E,, y (ML) = -k/L%

The equations for the determination of the buckling loads (see Appendix D) are also identical to those of Hu et al.

(2019) (Table 1). However, the formula presented by Hu et al. (2019) only applies for compressive forces with ko > -1.

For this beam subjected to a tensile force (k = 1.5 (Equation (47))), the stiffness matrix becomes (Equation (67):

[ 0.8850 1.4784 —0.8850 1.4784 |
1.4784  4.6884 —1.4784 1.2253 (81)

—0.8850 -1.4784 0.8850 —1.4784
| 1.4784  1.2253 -1.4784 4.6884

Ky, = El'x
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4, Conclusion

The moment—shear force—curvature relationship presented in this study enabled the derivation of closed-form solutions
for first-order analysis, second-order analysis, and stability of Timoshenko beams. The results showed that the
calculations conducted as described in this paper are exact. Closed-form expressions of efforts and deformations for
various load cases were presented, as well as closed-form expressions of second-order element stiffness matrices (the
axial force being tensile or compressive) in local coordinates. The determination of element stiffness matrices (ESM)
enables the analysis of systems with the direct stiffness method. We showed that ESM can also be determined by the

presence of hinges.
Calculation of bending moments and shear forces:

Influence of tensile force: With increasing tensile force, bending moments decrease (in absolute values), and with
increasing bending shear factor, bending moments decrease (in absolute values).

Influence of compressive force: With increasing compressive force, bending moments increase (in absolute values), and
with increasing bending shear factor, bending moments also increase (in absolute values).

Stability of the beam: With increasing bending shear factor, the buckling load decreases.

The following aspects not addressed in this study could be examined in future research:
v Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local

coordinates in global coordinates.

v Second-order analysis of frames free to sidesway with consideration of P-A effect.
v Use of the direct stiffness method, since element stiffness matrices are presented.
v Analysis of positions of discontinuity (interior supports, springs, hinges, abrupt change of section), since closed-

form expressions of bending moments, shear or transverse forces, rotation angles, and deflection are known.

v Beams resting on Pasternak foundations, the Pasternak soil parameter can be considered as a tensile force.

Supplementary Materials: The following files were uploaded during submission:

e “Deflection calculation of a pinned—pinned beam using the principle of virtual work,”
e “Analysis of a fixed—pinned beam under concentrated load,”

e “Buckling analysis of a pinned—pinned beam,”
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e “Buckling analysis of a fixed—pinned beam,”
e “Buckling analysis of a fixed—free beam,”
e “Buckling analysis of a fixed—fixed beam,”
e “Bending analysis of a pinned—pinned beam subjected to a uniformly distributed load and an axial force,”
e “Bending analysis of a fixed—pinned beam subjected to a concentrated load and an axial force,” and
e “Second-order element stiffness matrix.”
Funding:
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Appendix A Deflection calculation at position x, with the principle of virtual work

5(,) = J~M(x)><m(x)d J-V(x)xv(x)dx

xKGA

(AD)

M(x), V(x) are the bending moment and shear force due to the distributed load, respectively. m(x), v(x) are the bending
moment and shear force due to a virtual unit load at the point of interest x,, respectively.

M(x) =px(I-x)2  V(x) =p(l/2-x)

m(x) = x(1-x)/1 for x < x¢ m(x) = xo(1-x)/1 for x > x¢ (A2)
v(x) = 1-x¢/l for x <xg v(x)=-x¢/l forx>xo

Substituting Equations (A2) into Equation (A1) yields,

1 X, I =X 1 X
5(x0):ﬁplzx0(l—xo)[l+l—0 |0:|+2KGAXO(1_|_O)pI (A3)
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Appendix B Closed-form expressions of single-span systems for various support conditions and loadings

The equations of Sections 2.2.1 and 2.2.2 are applied, and the corresponding boundary conditions are satisfied. Closed-

form expressions of bending moment and deflection curves are as follows:

Pinned—pinned beam
e Uniformly distributed load p

P, Pl
M(X)=——X +—X
() == 5

2
El ><w(x):£x4 —ﬂx3 —ozﬂx2 +(L+ﬂj pl°x
24 12 2 24 2

e Triangular distributed load (zeroatx =0, and patx =1)

p.s Pl
M(X)=——X +—X
) ol 6

El xw(X) Py —(l+ajﬂx3 +(L+ﬁ] pl’x
1201 6 6 360 6

e Non-uniform heating

Elx;, , Elx;

M(x)=0 El xw(x)=- Ix
Fixed—Free beam
e Uniformly distributed load p
M(x):—£x2+ pIx—lo—I2
2 2
p 4+ Pl s 1. pl” , 3
El xw(X)=—X" ——X —(a@a——)—X" +aplx
(x) 24 6 ( 2) 2 P
e Triangular distributed load (zeroatx=0,and patx =1)
2
M(x):—£x3+p—|x—i
ol 2 3
2 3
EIxw(x):LXS—[l+ajp—lx3+£x2+a£x
1201 2 6 6 2
e Non-uniform heating
El
M (x) =0 El x W(X) = — ——2T 2

2

d0i:10.20944/preprints202011.0457.v3

(B1)

(B2)

(B3)

(B4)

(B3)

(B6)
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Fixed—pinned
e Uniformly distributed load p
M (X) = —gxz + Aplx+ Bpl?

2

P+ Pl s pl~ , 3
El xw(x)=—x"—-A—x"—(B —X Apl~x
X W(X) 4 < (B+a) 5 +aAp

A St12a a__ "l
8(1+3cx) 8(1+3c)

e Triangular distributed load (zeroatx=0,and patx =1)

M (X) = —6—'[: X’ + Aplx + Bpl

2
El xw(X) P —(A+ oz)ﬂx3 — Bix2 +aAplPx
1201 6 2
9420 5 —14
40(1+3e) 240(1+3a)
e Non-uniform heating
M (x) = AX+B, EIxw(x):—%x3—%(BI+EIKT)x2+aI2A1x
A= Elx; B —— Elx;
21(1/3+a) 2(1/3+a)

Fixed—fixed beam

e Uniformly distributed load p

2
I\/I(x):—£x2+ﬂx—l
2 2 12

12

2
El ><W(x)=2—F;x“—£lx3 _(Q_L)ﬂ)g +a

e Triangular distributed load (zeroatx=0,and patx =1)

M (X) = —6—F:x3 + Aplx+ Bpl®

2
El xw(x):%xs—(A+a)%lx3—B%

A:O.15+205 B 0.8+12c

1+12a 241+ 12a)

d0i:10.20944/preprints202011.0457.v3

x> +a AplPx

(B7)

(B8)

(B9)

(B10)

(B11)
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e Non-uniform heating

M (X)=—-Elx; El xw(x)=0 (B12)

Appendix C Fixed—pinned Timoshenko beam subjected to a concentrated load

Equations (19), (20), and (20a) are applied on both sides of the concentrated load, X1 at the left side (X1 < a) and X7 at the

right side (X2 < b):
M(X1):A|X1+Bl V(X1):A|

El ><w(x1)=—%xl3—%XIZ+C1XI+D1 -

El ><(p(x):—%x2 —Bx—al’A +C,

Similar equations are applied on the right side (with the variable X). Following boundary conditions and continuity

conditions are applied:

v w(x;=0)=0: D=0

v o(x;=0)=0: -alPxA;+C =0

v wi(x;=a) = w(x,=0): -A/6xa’ - Bi/2xa’+ C;xa+ D, =D,

v oox;=a)=e(x,=0): -A2xa% - Byxa +Cy - al2xA = C, -al?xA, (C2)
vV M(®E;=a)=M (x,=0): Axa+B, =B,

v Q(xi=a)-Q(x,=0)=P: A -A,=P

v M(x,=b)=0: Axb+B,=0

v w(x=b)=0: -Ay/6xb* - By/2xb*+ Coxb + D, =0

The unknowns are determined by solving the system of equations, and the moments can be calculated as follows:
Fixed-end moment Mgy = B;, and moment under the load My, = B..
For calculation with the principle of virtual work the fixed-end moment and the moment under the load can be

expressed as follows:
_ (I+b/Dxa/lxb/I
6x(1/3+El/xGAI*)

Meey = x Pl M, =b/IxM_,, +Pab/I (C3)
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For other support conditions (pinned—pinned, fixed—free, and fixed—fixed) the boundary conditions (Equations (C2),,

(C2)p, (C2)g, and (C2)y) are modified accordingly, and the bending moment and deflection curves are deduced using

Equation (15¢) with q = 0.

Appendix D Buckling loads of single-span beams with various support conditions

Compressive force with ke <-1: The eigenvalue problem led to following equations: sinh§3 =0,

sinh&; - E4coshés; = 0, cosh&s; = 0, and 2 — 2cosh&; + E481nh&; = O for a pinned-pinned beam, a fixed—

pinned beam, a fixed—free beam, and a fixed—fixed beam, respectively. Recalling that (%_,4 is negative, those equations

have no nontrivial solutions; consequently, no buckling occurred due to the action of a compressive force with ko < -1.

Compressive force with ke > -1

Pinned—pinned beam: the results are presented in the Supplementary Material “Buckling analysis of a pinned—pinned
beam.” To determine the buckling load, the determinant of the matrix M expressing the boundary conditions is set to

zero. The matrix M, the determinant equation, and the buckling factor B are as follows:

[ —1.00 0.00 0.00 1.00]
1.00 0.00 0.00 0.00
M = siné =0, =1+ ar? (D1)

cosé,  sin&  0.00 0.00 g d

| —cosg, —sing, 1.00 1.00 |

Fixed—pinned beam: the results are presented in the Supplementary Material “Buckling analysis of a fixed—pinned

beam,” with the matrix and the equation as follow:

[ —-1.00  0.00 0.00 1.00]
M — 0.00 -&, 1.00 0.00 siné, —¢&,cosé =0 D2)
cosé,  siné,  0.00 0.00 — & siné +kcosé =0

| —cosg, —sing; 1.00 1.00
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Fixed—free beam: the results are presented in the Supplementary Material “Buckling analysis of a fixed—free beam,”

with the matrix, the equation and the buckling factor 3 as follows

[—1.00 0.00 0.00 1.00]

0.00 - 1.00 0.00
M= , g cosé& =0,  pB=+d+ar? (D3)
cosé, sing, 0.00 0.00

000 000 1.00 0.00

Fixed—fixed beam: the results are presented in the Supplementary Material “Buckling analysis of a fixed—fixed beam,”

with the matrix and the equations as follows:

[ ~1.00 0.00 0.00 1.00] (i 5)2 ing (& —sin& )= 0
—cos¢é, ) —sin —sin¢, ) =
0.00 ~£  1.00 0.00 : e e
M = . —2-2co0sé, —&,siné, =0
—cosé,  —siné,  1.00 1.00 )
. D4
Esing  —&cosE 1.00 0.00 osinSx| 2sin 4 Koosli]og PP
) - 2 2 & 2
sin%:0—>ﬁ:%\/1+4ﬂ2a, 25in%+gcos%=0
1

Appendix E Timoshenko beams subjected to various load cases and an axial force

The compressive forces are assumed smaller (absolute values) than the buckling load.

Case 1: Compressive force with ka, > -1. The bending moment and the deflection curve are denoted by M, (X) and

We1(X), respectively. Let us recall the parameters él and éz defined in Equations (50) and (54), respectively.

& =\k/(1+ka) & = -k (I1+ka) (ED)

Case 2: Tensile force or compressive force with ka < -1. The bending moment and the deflection curve are denoted

by Mc(x) and wea(X), respectively. Let us recall the parameters &3 and 4 defined in Equations (61) and (65),

§3=«/k/(1+ka) &,

The parameter &4 (Equation (65)) has a positive value in the case of tension and a negative value in the case of

respectively.

+ k(1+ka) (E2)

compression with ka < -1.
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Pinned—pinned beam

e Uniformly distributed load

2 X l-cosé& pl> . _x pl°
Mo 0 =—Gmcos - Bmsing -
E 4 2 3 4
EI><W1(X)— cosf1 p|2 L= cosg, Slnéi_ix%fﬂx_%
k® sin¢ I 2k 2k K
2 _ 2 2
Mo =~ cosh g, X -1 =200 BT ginh 2 X B &
K | sinhé, Kk K
4 4 2 3 4
Elxwz(x)—ﬂcosh; G P Izcoshs, e X Pl e PE, P
k? k® sinh{, I 2k 2k k

For ka = -1, using Equations (40) and (47) yields the bending moment M(x) = pl#k = -apl>.

e Triangular distributed load (zeroatx=0,and patx =1)

Pl sin§1—+p—lx

k'sin &, Ik
4 3
El xw,, (X) = kzp.' sin;f—ﬂxu(l_ljﬂx
S

2

Mcl(x):_

in¢, | 6k 6 k) K
(E4)
M (X)——p—lzsmh§ —+EX
. k sinh &, 1k
4 3
Elchl(x)=2p—ls1 hg%i—iI 3+(1 ]pl X
k®sinh &, 6k 6 k) k
e Non-uniform heating
? x P x P
M, (X)=Acos& — +Bs1n§l —Elx;, Elxw,(x)= ,Asi?coseﬁT—Bl?51r1§1 +A1?
A =Elx B, = Elx; L1
! ! ! sing, tan¢
(ES)

2 |2

M., (X)= Azcoshf3 +B smhf3 —Elx;, EI><WCZ(X):—AZI?coshéI5 I(smhg@ +A2—

1 1
= Elx B, =Elx —
A ! ’ T(sinhé tanhg‘j
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Fixed—pinned beam

e Uniformly distributed load p

2

M (x)= A pl?cos & = +Bp|2s1n§1 s

k

4 2 4

o, (0=-A 2 coss X8 2 ing X Py og P p L

_/2sin& + (fz—sinfl)/k . :(l/k—1/2)cos§1—1/k

sin & —&, cos &, b sing-&cos
(E6)
2 2 p|2
M., (X)= A, pl cosh§3 +B pl s1nh§3—+T

4 4 2 4
El xw_,(X)=-A, pkl cosh§3——B pkl s1nh§3§—g—l +£,B —X+A2 pl
_ 1/2sinh &; + (@—smhé@) 5 _(1/k—1/2)cosh§3—1/k

~ sinh& £, cosh ¢, > sinh&, —&, coshé,

e Triangular distributed load (zeroatx=0,and patx =1)
2 2 pl
M. (X)=Anpl cosfl +B pl smg?1 +?X

4 3 4
El xw,, (X)=— A— os§1 ~B, p' 51———x +(B§2+a)%x+Aj Pl
:(1/6—1/k—a)sm§1+§2/k 3 :(1/k+a—1/6)cos§1—1/k

sin g, — ¢, os g, 1 sin g, —¢, Cos g,

(E7)

M_,(X)= Azplzcoshf3 +B, plzs1nh§3—+ il X

4

4 4
Elchz(x)z—Az%cosh@——B pkl s1nh(§3£—6%ix +(B, 54+05)%X+A2 Pl

_(1/6-1/k—a)sinh & + &, /K 5 _(/k+a—=1/6)cosh & —1/k
- sinh & — &, cosh &, * sinh& —& coshé
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e Non-uniform heating

Mo (X)=Acosg T " +B Sing - X _El,

|2 x I E
EIle(X)——Al?cosélT B, ksmg1 +B§2_X+Al_
A = Elx sing, — &, B = Elx — 1-cos¢,
sing —¢&, cos& SnE —& c0sE,
(E8)
M_,(X)= Azcoshcf3 +B s1nh§3 —Elx;
|2 X I2
EIsz(X)——Az?coshéT ksmh§3 +B§4 X+Az_
A2 El x 51nh§3_§4 B _E|K‘ 1- COShf3
" sinh & - &, cosh &, sinh &, — &, cosh &,
Fixed—free beam
e Uniformly distributed load p
pl*
M., (0= APl cos & 7+ B pl”siné, -+ & -
| 1 x pl*_, pP pl*
EIchl(X):_AITCOSéT_BlpTSH'lflT— K X* + " X+A’T
Alz_tanfl_ 1 BI:L
s, Kcosé, &
(E9)
2
Mcz(x)=A2p|2c0sh§3£+szlzsinh§3£+%
* pl* . _x p*, pl’ pl*
E|XWcz(X)=—A2pTC hé -B TSlnhél——Ex%THAzT
tanhg, 1 1

A=o &, k cosh &, Pg


https://doi.org/10.20944/preprints202011.0457.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2021 d0i:10.20944/preprints202011.0457.v3

TIMOSHENKO BEAM THEORY EXACT SOLUTION

e Triangular distributed load (zeroatx =0, and patx =1)

Mcl(x)zAplzcos;L Blplzsin§15+p?'x
4 3 4
El xw,, (X) = A— sglf—B p' n;f——lix +(&,B +a)%x+Al pl
A= 1 (1/2—1/k—0{)tan§1 8 (1/2-1/k=-a)
kcos, & 1 &

(E10)
M., (X)= Azplzcoshg3 +B,pl*sinh & — +%IX

4

! 1* ., x pl
El x W, (X) = - AZpTcosh;T_szTsmhéT_g_k

1 (1/2—1/k—a)tanh ¢, _(172-1/k=a)

A N eohg, 3 R

3

+(&,B, +a)%X+AZ pI”

e Non-uniform heating

COS§1T 2 .
M, () = Elx; —1|, El'xw,(x)=Elx; " (l—cosélTj,
Cos ¢ cos ¢, o
cosh§3)|( g .
M_(X)=Elx, | ———1|, Elxw,(X)=Elx, ———|1—cosh&, — |,
() "l cosh¢, () =El kcoshé( & Ij
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Fixed—fixed beam

e Uniformly distributed load p

2

M. (X) = A1p|200s§1 +B plzsmf1 pk|
4 4 2 4
Elxw,, (X)=—A pk' cosgl——B pk' smgllf—g—' +EB —x+A1 p'
_(I=cos&)/2—(&, —sing )/ ¢, 5 _(l—cosﬁl)/§2—1/2sm§1
~ 2-2cos& —&siné ' 2-2c0s& —&,sing
(E12)
s

M, (X) = Azplzcosh§3—+ B plzs1nh§3

k
5 S 1} 5
EIsz(X)——AZpTcoshg’:S -B, pk h@——Z—k +&,B, pk x+ A P p
:(l—cosh§3)/2—(§4—sinh§3)/§4 . :(l—cosh§3)/§4+1/2smh§3
2—2coshé&, + &, sinh &, > 2-2coshé +&,sinh &,

e Triangular distributed load (zeroatx=0,and patx =)
Mcl(x):Alplzcosilli+Blplzsin§1£+p?|x
Elxw, (x) = A P cosz X g P ngf——'x +(§B+oc)ﬂx+A1 p'4
Tk " k 71 ek ? k
(1/6—0:)(1—c0s§1)—1/2(52—s1né‘1)/§2 3 :1/2(1—0053,‘1)/4‘2—(1/6—a)sin§1

A= 2—2cosé —¢&,sin ¢, ’ 1 2—2cosé —¢&,sin ¢,
E13
MCZ(X):A2plzcosh§3|—x+szlzsinh§3§+p?lx (1)
* X * I I’ |*
Elchz(x)z—Aszcosh@I— pk snh§3——6p—k +(&,B, +a)pTx+A2 P
AZ_(1/6—05)(1—cosh§3)—1/2(§4—smh§3)/§4 B _1/2(1—cosh§3)/§4 (1/6—ca)sinh &,
= _ , , =

2-2cosh &, + &, sinh &, 2-2cosh &, + &, sinh &,
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Mg (X)=—-Elx;
Mcz(x) =—El Kt

TIMOSHENKO BEAM THEORY EXACT SOLUTION

Non-uniform heating

El xw,, (X)=0
El xw,,(X) =0

(E14)

Appendix F Timoshenko beams subjected to a concentrated load and an axial force

The compressive forces are assumed smaller (absolute values) than the buckling load.

Equations (49) to (55) are applied in case of a compressive force with ko > -1, and Equations (60) to (66) are applied in

case of a tensile force or a compressive force with ka < -1. In the case of a compressive force with ka > -1, the

constants of integration left of the concentrated force are A;;, B;;, NCy;, and NDy,, and right of the concentrated force

they are A, Bis, NCyp, and ND,. In the case of a tensile force or a compressive force with ka < -1, the constants of

integration left of the concentrated force are A, By, NC,;, and ND,;, and right of the concentrated force they are A,,,

Bzz, Nsz, and ND22.

Fixed—pinned beam

Case of a compressive force with ka > -1: following boundary conditions and continuity conditions are applied:

v

v

v

w(x,=0) =0:
o(x;=0)=0:
w(x, = a) = w(x,=0):
o(x1=2) = o(x,=0):

M (x;=a)=M (x,=0):

T(x1=a)-T(X2=O)=P:

M(x,=b) = 0:

w(x,=b)=0:

-A;1 +NDy =0

-B11& + NC; 1 x1=0

-Ajicosg a/l - Byjsingja/l + NCyjxa +NDy =-Aj;, + NDy,
Ap1&psinga/l - By&ycosEja/l + NCyx1=-BE, + NCypxl (F1)
Aqjcos& a/l+ Bysinga/l = Ay,

NC;; —NC;;=P

Ayc0sE b/1+ Bypsing b/l =0

—Alzcosilb/l - Blzsinélb/l + NClsz +ND;,=0
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Solving the equation system yields the constants of integration as follows:

[ -1 0 0 1 0 0 0o o7
0 £, Il 0 0 0 0 0
| A | . a 0]
—cosé&,—  —siné— a1 1 0 0 -1
. 3 & ’
NC“ 52 sin (51 E _52 COS 51 E | 0 0 52 —I 0 0
ND,, ' | 0
= a ) a X
A, cos &, T sin &, T 0 0 -1 0 0 0 0
B, 0 0 1 0 0 0 -1 0 P
NC,, b ] 0
ND,, | 0 0 0 0 cos;l— sincflT 0 0 10 |
b ) b
0 0 0 0 —cos¢ n —sin ¢, T b 1 (F2)

Case of a tensile force or a compressive force with koo < -1: the corresponding boundary conditions and

continuity conditions are applied. Solving the equation system yields the constants of integration as follows:

1 0 01 0 0 0 0
0 ¢, 10 0 0 0 0
Mol Coshg @ —sinhe @ a 1 0 o -1 |°
BZ] I I O
NCy | | g sinheg 2 —£coshe 2 1 0 0 & ol |0
ND,, | ! 0
= X
A, cosh@ii sinhéii 00 -l 0 0 0| |0
By, 0 0 10 0 o -1 o| |P
NC,, . . 0
ND,, 0 0 0 0 cosh§3T 51nh§3T 0 0 0
b . _b
0 0 0 0 —cosh§3|— —smh§3|— b 1

(F3)


https://doi.org/10.20944/preprints202011.0457.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2021

d0i:10.20944/preprints202011.0457.v3

TIMOSHENKO BEAM THEORY EXACT SOLUTION

Pinned—pinned beam

Case of a compressive force with ka > -1

1

S

S © T o o O o O

| I—

0 —cos;% —sinéflT b

Case of a tensile force or a compressive force with ka < -1

(F4)

S © T © o o o O

(F5)
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Fixed—fixed beam

Case of a compressive force with ka > -1

-1 0
0 _égz
—COS 51% —sincfli3

) a a
&, siné T —£, cosé, T

a
cos ¢, n
0

0

. a
siné, —

|
0

0
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1 0 0 o o]
0 0 0 0 0
1 1 0 0 -1
0 0 &, -1 0
0 —1 0 0 0
0 0 0 -1 0
: b
0 &sing— £ COS§1|_ Il 0
.. Db
0 —cosé — —51n§1T b 1J
1 0 0 0 0
0 0 0 0 0
1 1 0 0 -1
0 0 £, -1 0
0 -1 0 0 0
0 0 0 -1 0
. b b
0 ¢ smhéT £, coshéT I 0

S © T o oo O©o o O

d0i:10.20944/preprints202011.0457.v3

(F6)

S O TV O O O O O

(F7
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Fixed—free beam

Case of a compressive force with ka > -1

[ -1 0 01 0 o o0 o
_ . 0 —£ 0 0 _
A 2 0]
! a

B, —cos & — sin ¢, T a 1 1 0 0 -1 0

NC,, a 0

ND, &siné— —¢& cosé T I 0 0 g, -1 0 0

= X

Az cos& 2 singS 0 0 1 o o of |

B, | P

NC,, 0 0 1 0 0 0 -1 0 0

ND,, 0 0 0 0 cos cflIE sin §1IE 0 0 10
0 0 0 0 0 0 1 0]
L (F8)
Case of a tensile force or a compressive force with ko < -1:
[ 0 0 1 0 0 o ol
_ _ 0 £ Il 0 0 _
i a 4 a 0
B,, —cosh ¢, T —sinh &, n a 1 1 0 0 -1 0
NC,, a a 0
—£,sinhé,— —&,coshé,— |0 0 -1 0
N D21 _ 54 53 I 54 53 I 54 y O
i cosh&, 2 simhEE 0 0 - o o o |Y
Bzz I I P
NC,, 0 0 1 0 0 0 -1 0 0
| ND,, | 0 0 0 0 cosh ég% sinh §3|9 0 0 0]
i 0 0 0 0 0 0 1 0]

(F9
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For a concentrated load P applied at the tip of the fixed—free beam, the moment and deflection curves are as follows:

MCI(X) - —PI tan@ COS 51 §+P—|Sin(§1 1
2 | 5 |
3 3 , .
Elw, ()= P08 e X PP e X P PP tang
k 3 | kgz | k k £
(F10)
Mcz(X)=—P|%cosh§3§+ﬂsinh§3§
4 I 54 |
3 ; , .
Elxwe; (%) :l%COShéi—isinh 53%+ PI”,_ PI' tanh g,

:, ke, k&

It is worth mentioning that the results of Equation (F10) satisfy the following equations of equilibrium using the free

body diagram:
M, (Xx=0)+Pl—Nw,(x=1)=0
M, (X=0)+Pl-Nw_,(x=1)=0

(F11

For the case of an external moment M (in counterclockwise) applied at the beam the continuity equations are modified
as follows:
Case of a compressive force with ka > -1
v M(®xi=a)-Mx,=0)=M" Ajcoséa/l + Byjsing a/l - Ap= M’ (F12)
vV Txi=a)-T((x,=0)=0: NC;;—NC;,=0 (F13)
Case of a tensile force or a compressive force with ka < -1
v M(x;=a)=M (x,=0): Ajicoshé&sa/l + Byjsinh&za/l - A, = M’ (F14)

v T(x1=a)-T(X2=O)=0: NC21*NC22:0 (FIS)
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