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Abstract: This paper presents an exact solution to the Timoshenko beam theory (TBT) for first-order analysis, second-

order analysis, and stability. The TBT covers cases associated with small deflections based on shear deformation 

considerations, whereas the Euler–Bernoulli beam theory (EBBT) neglects shear deformations. Thus, the Euler–

Bernoulli beam is a special case of the Timoshenko beam. The momentcurvature relationship is one of the governing 

equations of the EBBT, and closed-form expressions of efforts and deformations are available in the literature. 

However, neither an equivalent to the momentcurvature relationship of EBBT nor closed-form expressions of efforts 

and deformations can be found in the TBT. In this paper, a momentshear forcecurvature relationship, the equivalent 

in TBT of the momentcurvature relationship of EBBT, was presented. Based on this relationship, first-order and 

second-order analyses were conducted, and closed-form expressions of efforts and deformations were derived for 

various load cases. Furthermore, beam stability was analyzed and buckling loads were calculated. Finally, first-order 

and second-order element stiffness matrices were determined.  

Keywords: Timoshenko beam; momentshear forcecurvature relationship; closed-form solutions; non-uniform 

heating; stability; second-order element stiffness matrix; elastic Winkler foundation 

 

1. Introduction 

The Timoshenko beam theory (TBT) was developed by Stephen Timoshenko (1921) early in the 20th century. The 

model accounts for shear deformations, making it suitable for describing the behavior of thick beams, whereas the 

Euler–Bernoulli beam theory (EBBT) neglects them. If the shear modulus of the beam material approaches infinity, the 
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beam becomes rigid in shear and the TBT converges towards EBBT. Thus, the Euler–Bernoulli beam is a special case of 

the Timoshenko beam. First-order analysis of the Timoshenko beam is routinely performed; the principle of 

virtual work yields accurate results and is easy to apply. Unfortunately, second-order analysis of the Timoshenko beam 

cannot be modeled with the principle of virtual work. Various studies have focused on the analysis of Timoshenko 

beams, most of which using numerical methods. Sang-Ho et al. (2019) presented a nonlinear finite element analysis 

formulation for shear in reinforced concrete Beams; that formulation utilizes an equilibrium-driven shear stress function. 

Abbas and Mohammad (2013) suggested a two-node finite element for analyzing the stability and free vibration of 

Timoshenko beam; interpolation functions for displacement field and beam rotation were exactly calculated by 

employing total beam energy and its stationing to shear strain. Hayrullah and Mustapha (2017) performed a buckling 

analysis of a nano sized beam by using Timoshenko beam theory and Eringen’s nonlocal elasticity theory; the vertical 

displacement function and the rotation function are chosen as Fourier series. Chen et al. (2018) used the variational 

iteration method to analyze the flexural vibration of rotating Timoshenko beams; accurate natural frequencies and mode 

shapes under various rotation speeds and rotary inertia were obtained. Onyia and Rowland-Lato (2018) presented a 

finite element formulation for the determination of the critical buckling load of unified beam element that is free from 

shear locking using the energy method; the proposed technique provides a unified approach for the stability analysis of 

beams with any end conditions. Pavlovic and Pavlović (2018) investigated the dynamic stability problem of a 

Timoshenko beam supported by a generalized Pasternak-type viscoelastic foundation subjected to compressive axial 

loading, where rotary inertia is neglected; the direct Liapunov method was used.  In stability analysis Timoshenko and 

Gere (1961) proposed formulas to account for shear stiffness by means of calculation of buckling loads of the associated 

Euler–Bernoulli beams. Hu et al. (2019) used matrix structural analysis to derive a closed-form solution of the second-

order element stiffness matrix; the buckling loads of single-span beams were also determined.  

The momentcurvature relationship, one of the governing equations of the EBBT, has no equivalent in the TBT 

literature. Furthermore, closed-form expressions of efforts and deformations are not common. In this paper a 

momentshear forcecurvature relationship (MSFCR), the equivalent in TBT of the momentcurvature relationship of 

EBBT, was presented. The relationship between the curvature, the bending moment, the bending stiffness, the shear 

force, and the shear stiffness was then described. Based on MSFCR, closed-form expressions of efforts and 
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Differentiating both sides of Equation (5) with respect to x yields the following equation:                                                      

              (6)  

Substituting Equation (3) into Equation (6) yields the following: 

                                                                                                                                  (7)                  

Equation (7) yields the following momentshear forcecurvature relationship (MSFCR) combining bending and shear:          

                                                                                                                                      

                                                                                                                                                                                              

For a uniform beam along segments, substituting Equation (1) into Equation (8) yields,  

                       (9)     

                                                                                                                                                                                               
For a tapered beam, substituting Equation (1) into Equation (8) yields, 

                                                                                                                                              

             (10)                

In the case of non-uniform heating, Equation (9) becomes: 

                                                                                                                                                (11)    

where T is the coefficient of thermal expansion, T = Tbb - Ttb is the difference between the temperature 

changes at the beam’s bottom fibers (Tbb) and top fibers (Ttb), and d is the height of the beam.  

Combining Equations (1) and (5) yields the rotation angle as follows:                                                                       

                                                                                                                                                                      

Equations (5) to (12) apply as well in first-order analysis and in second-order analysis.                                                   

                                                         
                                                                                                                              

2.1.3   Summary of Timoshenko and Euler-Bernoulli beam equations 

Table 1 summarizes the fundamental Timoshenko beam equations and compares them to the Euler–Bernoulli beam 

equations.  
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 Table 1.  Summary of equations for Timoshenko and Euler–Bernoulli beams 

 Timoshenko beam Euler–Bernoulli beam 

Statics   

Geometry 

  

Momentshear 

forcecurvature 

equation 

  

 
 
The bending shear factor is defined as follows:                                                                     

                                                                                                               (13)                
 

 

2.2   First-order analysis of uniform Timoshenko beams 

2.2.1   Governing equations 

The application of Equation (2) yields the following formulation of the bending moment:  

                                                                                                                                          (14)                

Substituting Equation (2) into the MSFCR (Equation (9)) for a uniform beam and integrating twice yields: 

                                                                                                            (15)                

The shear forces and rotation angles are determined using Equations (1) and (14), and Equations (12), (14), and (15), 

respectively. 

              (15a) 

(15b) 

 

The integration constants Ci (i = 1, 2, 3, and 4) are determined using the boundary conditions and continuity equations and 

combining the deflections, the rotation angles, the bending moments, and the shear forces. 
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Let us define following vectors, 

                                       (16)                                                (17)       

 

The element stiffness matrix in local coordinates of the Timoshenko beam is denoted by KTbl. The relationship between   

the aforementioned vectors is as follows:  

       
             (18)                

Applying Equation (15c) with the distributed load q = 0, yields the following: 

                                                                                                  (19)    

                                                                                                                                                 (20)                

                          (20a) 

 

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and for 

bending moments and shear forces in the element stiffness matrix (see Figure 2), we can set following static 

compatibility boundary conditions using Equation (19):    

                
             (21)                

             (22)                

             (23)                 

             (24)                 

Considering the sign conventions adopted for the displacements and rotations in general (see Figure 1) and for 

displacements and rotations in the member stiffness matrix (see Figure 2), we can set following geometric compatibility 

boundary conditions using Equations (20) and (20a):      

                          (25)                 
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The vectors of Equations (16) and (17) become 
 

 

 

The element stiffness matrix becomes: 

                                                         (33)                 

 
where  

                                        (34)      
  

 

 
2.2.4   Beam resting on an elastic Winkler foundation 

For a beam resting on a Winkler foundation with stiffness Kw, Equation (2) of static equilibrium becomes,                               

                    (35)          (35a)                                   

 
Differentiating Equation (35) twice with respect to x, combined with the MSFCR (Equation (9)), yields:        

                                                                                             (36)                        

 
The solution of Equation (36) yields the formulation of M(x) with four integration constants (A1, B1, C1, D1). The shape 
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for kw - 4/2 > 0, kw - 4/2 = 0, and kw - 4/2 < 0, respectively . Combining M(x) with Equation (35) yields the 

following equations:  

                  
               (37)        (38)  

                                                                                                                                                       
The expression of M(x) being known, applying Equation (1) yields the shear force, and the combination of M(x) with 

Equations (12) and (38) yields the rotations of the cross section. 

 

 
2.3     Second-order analysis of uniform Timoshenko beams 

The analysis conducted in this section holds for compressive forces smaller (absolute values) than the buckling load.  

2.3.1   Governing equations 

A uniform beam is analyzed, an elastic Winkler foundation not being considered. The axial force N (positive in tension) 

is assumed to be constant in segments of the beam. The equation of static equilibrium is as follows:          

                                                                                  
                                                                                              (39)                 

Combining Equation (39) with the MSFCR (Equation (9)) yields the following: 

                                                                                              (40) 

The solution of Equation (40) yields M(x), which contains the integration constants C1 and C2. The combination of M(x) 

with Equation (39) yields following equations: 

 
                         (41)                 

                             (42)                 

The transverse force T(x) is determined as follows: 

                                                                                              (43)                 

Substituting Equations (1) and (41) into Equation (43) yields the transverse force T(x) as follows: 
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TIMOSHENKO BEAM THEORY EXACT SOLUTION 

Combining Equations (39) and (49) yields the following: 

                                                                                                  (51)                 

                                                                                              (52)                 

The combination of Equation (12) for the rotation of the cross section with Equations (49) and (51) yields the following, 

with the parameter 2 defined as shown:  

                                            

                                                                                                                                                                 
By applying Equations (1), (43), (49), and (51), the transverse force T(x) yields: 

                                                                                                (55)                 

Considering the static compatibility boundary conditions (Equations (21) to (34)), whereby the shear forces are replaced 

by the transverse forces, the geometric compatibility boundary conditions, and Equations (49) to (55), the following 

equations are obtained: 

 
                                                                                                                     

                                                                                                                          

                                                                                                   (56)                 

                                                                                                                          

                                                                                                                          

                                                                                                      

 

The combination of Equations (18), (45), (46), and (56) yields the element stiffness matrix as follows: 

                            (57)  
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The development of Equation (57) yields the following formulation:  

                   (58)           

 

Accordingly, the element stiffness matrix of the beam having a hinge is as follows: 

             (59)     

 

Case 2:  Tensile force or compressive force with k  -1                                                                                                           

The solution of Equation (48) is as follows, with the parameter 3 defined as shown:  

                                               

 

Combining Equations (39) and (60) and integrating with respect to x yields the following: 

                                                                                               (62)                 

                                                                                       (63)   

Combination of Equation (12) for the rotation of the cross section, with Equations (60) and (62) yields the following: 
                                                                                                                                                                                              

                                                                                                                                                                                     

The parameter 4 (Equation (65)) has a positive value in the case of tension and a negative value in the case of 

compression with k  -1. Applying Equations (1), (43), (60), and (62), the transverse force T(x) yields the following: 

                                                   (66)   

K11 = -k2sin1/ 
 
K12 = -k(1 - cos1)/ 
 
K22 = k(cos1 -1/2sin1)/ 
 
K24 = k(-1 + 1/2sin1)/ 
 
 = 2 - 2cos1 - 2sin1

K11 = -k2cos1/ 
 
K12 = -ksin1/ 
 
 = sin1 - 2cos1 

11 12 11 123 2 3 2

22 12 242

11 123 2

22

Tbl

EI EI EI EI
K K K K

l l l l
EI EI EI

K K K
l l lK

EI EI
K K

l l
EI

sym K
l

  
 
  

  
 
 
 
 
 

11 12 113 2 3

12 12 2

11 3

Tbl

EI EI EI
K K K

l l l
EI EI

K K K
l l

EI
sym K

l

  
 
   
 
 
  

2 3 2 3 3( ) cosh sinh
1

x x k
M x A B

l l k
  


  



2 3 3 2 3 3 2

2 3 2 3 2 2

( )
sinh cosh

( ) cosh sinh

dw x x x
Nl A B NlC

dx l l
x x

Nw x A B NC x ND
l l

   

 

   

    

2 4 3 2 4 3 2 4( ) sinh cosh (1 )
x x

Nl x A B NlC k k
l l

            (64) (65)

2( )T x NC

(61) (60)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 July 2021                   doi:10.20944/preprints202011.0457.v3

https://doi.org/10.20944/preprints202011.0457.v3


TIMOSHENKO BEAM THEORY EXACT SOLUTION 

Considering the static compatibility boundary conditions (Equations (21) to (24)), whereby the shear forces are replaced 

by the transverse forces, and the geometric compatibility boundary conditions, and Equations (60) to (66), the element 

stiffness matrix can be expressed as follows: 

        

             (67)   

 

The development of Equation (67) yields the following formulation:  

                                                                                                                                                            (68)   
                                                                                                                                                                     
 
                                                                    
                                                                                                                                                                     
 

 

Accordingly, the element stiffness matrix of the beam having a hinge is as follows: 

             (69a)   

(69b)   

             (70)            

2.3.3   Analysis of some load cases 

Detailed results for various support conditions and loadings are presented in Appendices E and F. 
 
 

Uniformly distributed load p. Equation (48) is modified as follows:  
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Case 1:  Compressive force with k  -1. The analysis, conducted similarly to Section 2.3.2, yields 
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Case 2:  Tensile force or compressive force with k  -1. The analysis yields                                                                         
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Non-uniform heating 

Combining Equation (11) and Equation (39) with q(x) = 0, yields the modification of Equation (48) as follows:  
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Case 1:  Compressive force with k  -1. The analysis, conducted similarly to Section 2.3.2, yields 
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2.3.4   Beam resting on an elastic Winkler foundation with an axial load 

In the equation of static equilibrium, the axial force N (the value of which is positive in tension) is assumed to be 

constant in segments of the beam. The stiffness of the Winkler foundation is denoted by Kw.                                                      

      
                                                                                                  (72)                

The combination of Equation (72) with the MSFCR (Equation (9)) yields the following: 

                                                                                             (73)                

Differentiating twice both sides of Equation (73) with respect to x and combining the result with the MSFCR (Equation 

(9)) yields the following: 

           
                                                                                 (74)                

 
The solution of Equation (74) yields the formulation of M(x) with four integration constants. From M(x), combined with 

Equations (1) and (73), the shear force V(x) and the deflection w(x) can be deduced. The application of Equations (12) 

and (43) yields the transverse forces T(x) and the rotations of the cross section (x).  

 

2.3.5   Stability of the Timoshenko beam 

The formulations of bending moment M(x), deflection w(x), rotation of the cross section (x), and transverse force T(x) 

are used to determine the buckling load.  

For k  -1, Equations (49) to (55) are considered to satisfy the boundary conditions and continuity conditions.  

For k  -1, Equations (60) to (66) are considered to satisfy the boundary conditions and continuity conditions.  

The resulting eigenvalue problem is solved to determine the buckling loads. 
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The buckling load Ncr is defined as follows: 

                                                                                         (75)                             

Values of the buckling factor  are listed in Table 4. Closed-form expressions of the matrices expressing the boundary 

conditions are presented in Appendix D. To determine the buckling loads the determinants of those matrices are set to 

zero. Closed-form expressions of the buckling factors for a pinned–pinned beam, a fixed–free beam, and a fixed–fixed 

beam are also presented in Appendix D. 

Table 4.   Buckling factors for Timoshenko beam with various support conditions  

 = EI/GAl² = 0.000 0.025 0.050 0.075 0.100 0.1250 0.150 

Pinnedpinned beam (SS–SS) 

 = 1.0000 1.1163 1.2220 1.3192 1.4096 1.4946 1.5750 

Fixedpinned beam (F–SS) 

 = 0.6992 0.8716 1.0146 1.1392 1.2510 1.3530 1.4474 

Fixedfree beam (F–FR) 

 = 2.0000 2.0608 2.1198 2.1772 2.2332 2.2877 2.3410 

Fixedfixed beam (F–F) 

 = 0.5000 0.7048 0.8623 0.9951 1.1122 1.2181 1.3155 

 
We recall that the exact values of the buckling factors  for  = 0.0 (corresponding to the Euler–Bernoulli beam) for the 

support conditions SS–SS, F–SS, F–FR and F–F are 1.00, 0.700, 2.00, and 0.500, respectively.  

 

3.2.2   Beams subjected to uniformly distributed load and an axial force 

Let us calculate the responses of a uniform pinnedpinned beam subjected to a uniformly distributed load and an axial 

force, as shown in Figure 7. 

 

2 2/( )crN EI l  
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  (78)  
                              

                                                                                                                                                                                              
 

 
Let us now calculate the element stiffness matrix of the beam with the formula presented by Hu et al. (2019): 

 
 
 

 (79)                
 
 
 
 
 
The aforementioned characteristics become P = 1.5  EI/L²,   = 1- P/(ksGA) = 1- 1.5  0.05 = 0.925, 

 
and                                      

 

 
Details of the calculations are presented in the abovementioned Supplementary Material. 

 
                              

(80)                 
 
 
 

 

The results of this study are in good agreement with those of Hu et al. (2019). 

In fact, both formulas are identical since following equivalences exist between the parameters considered by Hu et al. 

(2019) (, ), and those considered in the present study (k,, 1, 2 ):  = 1+ k,  = 1,  = 2, (/L)2 = -k/L2. 

The equations for the determination of the buckling loads (see Appendix D) are also identical to those of Hu et al. 

(2019) (Table 1). However, the formula presented by Hu et al. (2019) only applies for compressive forces with k  -1.  

For this beam subjected to a tensile force (k = 1.5 (Equation (47))), the stiffness matrix becomes (Equation (67): 

 
                              

  (81)                         
 
 
 

 

² / 1.5 / 0.925 1.273PL EI   

1
0 0 ( / )² 0 1 0 0 1

( / )² 0 0 0 0 / 1 0

0 0 ( / )² 0 sin 1

( / )²cos ( / )²sin 0 0 / sin / cos 1 0
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L L
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L cos L

L L L L


 


  

       


   
   
     
   
        

0.0917 0.2303 0.0917 0.2303

0.2303 0.6759 0.2303 0.2454

0.0917 0.2303 0.0917 0.2303

0.2303 0.2454 0.2303 0.6759

TblK EI

 
   
   
  

0.0917 0.2303 0.0917 0.2303

0.2303 0.6759 0.2303 0.2454

0.0917 0.2303 0.0917 0.2303

0.2303 0.2454 0.2303 0.6759

TblK EI

 
   
   
  

0.8850 1.4784 0.8850 1.4784

1.4784 4.6884 1.4784 1.2253

0.8850 1.4784 0.8850 1.4784

1.4784 1.2253 1.4784 4.6884

TblK EI
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4. Conclusion 

The momentshear forcecurvature relationship presented in this study enabled the derivation of closed-form solutions 

for first-order analysis, second-order analysis, and stability of Timoshenko beams. The results showed that the 

calculations conducted as described in this paper are exact. Closed-form expressions of efforts and deformations for 

various load cases were presented, as well as closed-form expressions of second-order element stiffness matrices (the 

axial force being tensile or compressive) in local coordinates. The determination of element stiffness matrices (ESM) 

enables the analysis of systems with the direct stiffness method. We showed that ESM can also be determined by the 

presence of hinges.   

Calculation of bending moments and shear forces: 

Influence of tensile force: With increasing tensile force, bending moments decrease (in absolute values), and with 

increasing bending shear factor, bending moments decrease (in absolute values).  

Influence of compressive force:  With increasing compressive force, bending moments increase (in absolute values), and 

with increasing bending shear factor, bending moments also increase (in absolute values).  

Stability of the beam: With increasing bending shear factor, the buckling load decreases.  

The following aspects not addressed in this study could be examined in future research: 

 Analysis of linear structures, such as frames, through the transformation of element stiffness matrices from local 

coordinates in global coordinates. 

 Second-order analysis of frames free to sidesway with consideration of P- effect. 

 Use of the direct stiffness method, since element stiffness matrices are presented.    

 Analysis of positions of discontinuity (interior supports, springs, hinges, abrupt change of section), since closed-

form expressions of bending moments, shear or transverse forces, rotation angles, and deflection are known. 

 Beams resting on Pasternak foundations, the Pasternak soil parameter can be considered as a tensile force.  

Supplementary Materials: The following files were uploaded during submission:  

 “Deflection calculation of a pinnedpinned beam using the principle of virtual work,”  

 “Analysis of a fixedpinned beam under concentrated load,” 

 “Buckling analysis of a pinnedpinned beam,”  
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 “Buckling analysis of a fixedpinned beam,”  

 “Buckling analysis of a fixedfree beam,”  

 “Buckling analysis of a fixedfixed beam,”  

 “Bending analysis of a pinnedpinned beam subjected to a uniformly distributed load and an axial force,”   

 “Bending analysis of a fixedpinned beam subjected to a concentrated load and an axial force,” and   

 “Second-order element stiffness matrix.”   

Funding:  

Acknowledgments:  

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A Deflection calculation at position x0 with the principle of virtual work    

                                                                                               (A1) 

M(x), V(x) are the bending moment and shear force due to the distributed load, respectively. m(x), v(x) are the bending 

moment and shear force due to a virtual unit load at the point of interest x0, respectively.  

M(x) = px(l-x)/2 V(x) = p(l/2-x)   

m(x) = x(l-x0)/l for x  x0   m(x) = x0(l-x)/l for x  x0     (A2) 

v(x) = 1-x0/l  for x < x0   v(x) = -x0/l  for x > x0 

Substituting Equations (A2) into Equation (A1) yields,  

 
                                                                                            (A3) 

 

 

 

 

0

( ) ( ) ( ) ( )
( )

M x m x V x v x
x dx dx

EI GA



 

  

2 0 0 0
0 0 0 0

1 1
( ) ( ) 1 (1 )

24 2

x l x x
x pl x l x x pl

EI l l GA l
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Appendix B Closed-form expressions of single-span systems for various support conditions and loadings 

The equations of Sections 2.2.1 and 2.2.2 are applied, and the corresponding boundary conditions are satisfied. Closed-

form expressions of bending moment and deflection curves are as follows: 

 
Pinned–pinned beam 

 Uniformly distributed load p 

 

(B1)                

 

 

 Triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                               

                                                                                           (B2) 

                                                                      

 Non-uniform heating 

  

 

Fixed–Free beam 

 Uniformly distributed load p 

                                                                                         (B4) 

 
 Triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                        (B5) 

                                                                                                    

 Non-uniform heating  

                                                                                               (B6)   

2
2

2
4 3 2 3

( )
2 2

1
( ) ( )

24 6 2 2

p pl
M x x plx

p pl pl
EI w x x x x pl x 

   

     

3

5 3 3

( )
6 6

1 7
( )

120 6 6 360 6

p pl
M x x x

l
p pl

EI w x x x pl x
l



  

           
   

2
3

2 3
5 3 2

( )
6 2 3

1
( )

120 2 6 6 2

p pl pl
M x x x

l

p pl pl pl
EI w x x x x x

l
 

   

       
 

2

2
4 3 2 3

( )
2 2

1
( )

24 12 2 24 2

p pl
M x x x

p pl pl
EI w x x x x pl x



  

       
 

2( ) 0 ( )
2 2

T TEI EI
M x EI w x x lx

 
    

2( ) 0 ( )
2

TEI
M x EI w x x


   

(B3)
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Fixed–pinned  

 Uniformly distributed load p 

                                                                                                

                                                                                                   (B7)                

                                                                                                    

 Triangular distributed load (zero at x = 0, and p at x = l)                                                                                 

             

            (B8) 

                                                                                              

 Non-uniform heating  

                    

                                                                               (B9)   

Fixed–fixed beam  

 Uniformly distributed load p 

(B10) 

 

 Triangular distributed load (zero at x = 0, and p at x = l) 

                                                                                (B11)  

                                                                                                  

2 2

2
4 3 2 3
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2
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24 6 2

5 12 1

8(1 3 ) 8(1 3 )

p
M x x Aplx Bpl

p pl pl
EI w x x A x B x Apl x

A B
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 Non-uniform heating  

                                                                                               (B12)   

Appendix C Fixedpinned Timoshenko beam subjected to a concentrated load 

Equations (19), (20), and (20a) are applied on both sides of the concentrated load, x1 at the left side (x1  a) and x2 at the 

right side (x2  b): 

                                                                                                       

                                                                                                     (C1) 

                                                                                                 

Similar equations are applied on the right side (with the variable x2). Following boundary conditions and continuity 

conditions are applied:  

 w(x1 = 0) = 0:    D1 = 0        

 (x1 = 0) = 0:    - l²×A1 + C1 = 0       

 w(x1 = a) = w(x2 = 0):   -A1/6×a3 - B1/2×a2 + C1×a + D1 = D2    

 (x1 = a) = (x2 = 0):   -A1/2×a2 - B1×a + C1 - l²×A1= C2 -l²×A2  (C2) 

 M (x1 = a) = M (x2 = 0):   A1× a + B1 = B2       

 Q (x1 = a) - Q (x2 = 0) = P:      A1 - A2 = P       

 M(x2 = b) = 0:    A2× b + B2 = 0       

 w(x2 = b) = 0:    -A2/6×b3 - B2/2×b2 + C2×b + D2 = 0    

The unknowns are determined by solving the system of equations, and the moments can be calculated as follows:  

Fixed-end moment MFEM = B1, and moment under the load MUL = B2. 

For calculation with the principle of virtual work the fixed-end moment and the moment under the load can be 

expressed as follows: 

                              (C3)                

1 1 1 1 1 1

3 21 1
1 1 1 1 1 1

2 21
1 1 1

( ) ( )

( )
6 2

( )
2

M x A x B V x A

A B
EI w x x x C x D

A
EI x x B x l A C 

  

     

     

 2

(1 / ) / /
/ /

6 1/ 3 /
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b l a l b l
M Pl M b l M Pab l

EI GAl
  

     
 

( ) ( ) 0TM x EI EI w x   
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For other support conditions (pinnedpinned, fixedfree, and fixedfixed) the boundary conditions (Equations (C2)a, 

(C2)b, (C2)g, and (C2)h) are modified accordingly, and the bending moment and deflection curves are deduced using 

Equation (15c) with q = 0. 

Appendix D Buckling loads of single-span beams with various support conditions 

Compressive force with k  -1:  The eigenvalue problem led to following equations: sinh3 = 0,  

sinh3 - 4cosh3 = 0, cosh3 = 0, and 2 – 2cosh3 + 4sinh3 = 0 for a pinned–pinned beam, a fixed–

pinned beam, a fixed–free beam, and a fixed–fixed beam, respectively. Recalling that 4 is negative, those equations 

have no nontrivial solutions; consequently, no buckling occurred due to the action of a compressive force with k  -1.          

Compressive force with k > -1  

Pinned–pinned beam: the results are presented in the Supplementary Material “Buckling analysis of a pinnedpinned 

beam.” To determine the buckling load, the determinant of the matrix M expressing the boundary conditions is set to 

zero. The matrix M, the determinant equation, and the buckling factor  are as follows: 

 

 

                     (D1) 

 

 

 

Fixed–pinned beam: the results are presented in the Supplementary Material “Buckling analysis of a fixedpinned 

beam,” with the matrix and the equation as follow: 

 

 

(D2) 

 

 

 

 

1
1 1

1 1

1.00 0.00 0.00 1.00

1.00 0.00 0.00 0.00
sin 0, 1 ²

cos sin 0.00 0.00

cos sin 1.00 1.00

M   
 
 

 
 
    
 
   

1 2 12

1 1 1 1 1

1 1

1.00 0.00 0.00 1.00

sin cos 00.00 1.00 0.00

cos sin 0.00 0.00 sin cos 0

cos sin 1.00 1.00

M
k
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Fixed–free beam: the results are presented in the Supplementary Material “Buckling analysis of a fixedfree beam,” 

with the matrix, the equation and the buckling factor  as follows 

 

 

              (D3) 

 

 

 

Fixed–fixed beam: the results are presented in the Supplementary Material “Buckling analysis of a fixedfixed beam,” 

with the matrix and the equations as follows: 

 

 

 

                (D4) 

 

 

 

Appendix E Timoshenko beams subjected to various load cases and an axial force 

The compressive forces are assumed smaller (absolute values) than the buckling load.  

Case 1:  Compressive force with k  -1. The bending moment and the deflection curve are denoted by Mc1(x) and 

wc1(x), respectively. Let us recall the parameters 1 and 2 defined in Equations (50) and (54), respectively. 

 
(E1) 

 

Case 2:  Tensile force or compressive force with k  -1. The bending moment and the deflection curve are denoted 

by Mc2(x) and wc2(x), respectively. Let us recall the parameters 3 and 4 defined in Equations (61) and (65), 

respectively.                                                                                                                                                                                     

(E2) 

The parameter 4 (Equation (65)) has a positive value in the case of tension and a negative value in the case of 

compression with k  -1.  

2
1

1 1
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cos 0, 4 ²
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Pinned–pinned beam  

 Uniformly distributed load 
 

 

 

 

 

 

(E3) 

 

 

 
 
 
For k = -1, using Equations (40) and (47) yields the bending moment M(x) = pl²/k = -pl².  

 

 Triangular distributed load (zero at x = 0, and p at x = l) 
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 Non-uniform heating  
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Fixed–pinned beam  

 Uniformly distributed load p 

                                                                                                

                                                                                                                          

                                                                                                    

 

(E6) 

 

 

 

 

 

 Triangular distributed load (zero at x = 0, and p at x = l)                                                                                 
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 Non-uniform heating  
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Fixed–free beam  

 Uniformly distributed load p 
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 Triangular distributed load (zero at x = 0, and p at x = l)            
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 Non-uniform heating  
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Fixed–fixed beam  

 Uniformly distributed load p 
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 Triangular distributed load (zero at x = 0, and p at x = l) 
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 Non-uniform heating  

                                            

(E14) 

 

 

Appendix F Timoshenko beams subjected to a concentrated load and an axial force 

The compressive forces are assumed smaller (absolute values) than the buckling load.  

Equations (49) to (55) are applied in case of a compressive force with k  -1, and Equations (60) to (66) are applied in 

case of a tensile force or a compressive force with k  -1. In the case of a compressive force with k  -1, the 

constants of integration left of the concentrated force are A11, B11, NC11, and ND11, and right of the concentrated force 

they are A12, B12, NC12, and ND12. In the case of a tensile force or a compressive force with k  -1, the constants of 

integration left of the concentrated force are A21, B21, NC21, and ND21, and right of the concentrated force they are A22, 

B22, NC22, and ND22.   

Fixedpinned beam 

Case of a compressive force with k  -1: following boundary conditions and continuity conditions are applied:  

 w(x1 = 0) = 0:   -A11 + ND11 = 0        

 (x1 = 0) = 0:   -B112 + NC11×l = 0       

 w(x1 = a) = w(x2 = 0):  -A11cos1a/l - B11sin1a/l + NC11×a + ND11 = -A12 + ND12   

 (x1 = a) = (x2 = 0):  A112sin1a/l - B112cos1a/l + NC11×l = -B122 + NC12×l            (F1) 

 M (x1 = a) = M (x2 = 0):  A11cos1a/l + B11sin1a/l = A12       

 T (x1 = a) - T (x2 = 0) = P:     NC11 – NC12 = P        

 M(x2 = b) = 0:   A12cos1b/l + B12sin1b/l = 0      

 w(x2 = b) = 0:   -A12cos1b/l - B12sin1b/l + NC12×b + ND12 = 0    
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Solving the equation system yields the constants of integration as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case of a tensile force or a compressive force with k  -1: the corresponding boundary conditions and 

continuity conditions are applied. Solving the equation system yields the constants of integration as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

11
1 1

11

11
2 1 2 1 2

11

12 1 1

12

12

1 112

1 1

1 0 0 1 0 0 0 0

0 0 0 0 0 0

cos sin 1 1 0 0 1

sin cos 0 0 0

cos sin 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 cos sin 0 0

0 0 0 0 cos sin 1

l

A a a
a

l lB
a aNC l l
l lND

a a
A

l l
B

NC
b b

ND l l
b b

b
l l



 

    

 

 

 


 

     
 
    
    
 
   
 
  

 


1

0

0

0

0

0

0

0

P






   
   
   
   
   
      
   
   
   
   
    
 
 
 

4

21
3 3

21

21
4 3 4 3 4

21

22 3 3

22

22

3 322

3

1 0 0 1 0 0 0 0

0 0 0 0 0 0

cosh sinh 1 1 0 0 1

sinh cosh 0 0 0

cosh sinh 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 0 cosh sinh 0 0

0 0 0 0 cosh sin

l

A a a
a

l lB
a aNC l l
l lND

a a
A

l l
B

NC
b b

ND l l
b

l



 

    

 

 






     
 
     
    
 
   
 
  

 

1

3

0

0

0

0

0

0

0

h 1

P

b
b

l



 
 
 
   
   
   
   
   
      
   
   
   
   
    
 
 
  

(F2)

(F3)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 July 2021                   doi:10.20944/preprints202011.0457.v3

https://doi.org/10.20944/preprints202011.0457.v3


TIMOSHENKO BEAM THEORY EXACT SOLUTION 

Pinnedpinned beam 

Case of a compressive force with k  -1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case of a tensile force or a compressive force with k  -1 
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Fixed–fixed beam  

Case of a compressive force with k  -1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case of a tensile force or a compressive force with k  -1 
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Fixed–free beam  

Case of a compressive force with k  -1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case of a tensile force or a compressive force with k  -1:  
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For a concentrated load P applied at the tip of the fixedfree beam, the moment and deflection curves are as follows: 

 

 

 

 

 

 

It is worth mentioning that the results of Equation (F10) satisfy the following equations of equilibrium using the free 

body diagram:   

 

 

For the case of an external moment M*(in counterclockwise) applied at the beam the continuity equations are modified 

as follows:  

Case of a compressive force with k  -1  

 M (x1 = a) - M (x2 = 0) = M*  A11cos1a/l + B11sin1a/l - A12 =  M*
   (F12) 

 T (x1 = a) - T (x2 = 0) = 0:      NC11 – NC12 = 0     (F13) 

Case of a tensile force or a compressive force with k  -1 

 M (x1 = a) = M (x2 = 0):   A21cosh3a/l + B21sinh3a/l - A2 =  M*
   (F14) 

 T (x1 = a) - T (x2 = 0) = 0:      NC21 – NC22 = 0     (F15) 
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